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Abstract

Kingman�s Theorem on skeleton limits �passing from limits as n!
1 along nh (n 2 N) for enough h > 0 to limits as t!1 for t 2 R �is
generalized to a Baire/measurable setting via a topological approach.
Its a¢ nity with a combinatorial theorem due to Kestelman and to
Borwein and Ditor and another due to Bergelson, Hindman and Weiss
is established. As applications, a theory of �rational�skeletons akin to
Kingman�s integer skeletons, and more appropriate to a measurable
setting, is developed, and two combinatorial results in the spirit of
van der Waerden�s celebrated theorem on arithmetic progressions are
o¤ered.
Classi�cation: 26A03
Keywords: measurable function, Baire property, generic prop-

erty, in�nite combinatorics, Ramsey theory, complete metrizability,
Steinhaus theory, discrete skeletons, essential contiguity, bitopology,
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1 Introduction

The background to the theme of the title is Feller�s theory of recurrent events.
This goes back to Feller in 1949 [F1], and received its �rst textbook synthesis
in [F2] (see e.g. [GS] for a recent treatment). One is interested in something
("it", let us say for now �we can proceed informally here, referring to the
above for details) that happens (by default, or by �at) at time 0, may or may
not happen at discrete times n = 1; 2; : : :, and is such that its happening �re-
sets the clock�, so that if one treats this random time as a new time-origin,
the subsequent history is a probabilistic replica of the original situation. Mo-
tivating examples include return to the origin in a simple random walk (or
coin-tossing game); attaining of a new maximum in a simple random walk;
returning to the initial state i in a (discrete-time) Markov chain. Writing un
for the probability that "it" happens at time n (so u0 = 1), one calls u = (un)
a renewal sequence. Writing fn for the probability that "it" happens for the
�rst time at n > 1 (f0 := 0), f = (fn), the generating functions U , F of u,
f satisfy the Feller relation U(s) = 1=(1� F (s)).
It is always worth a moment when teaching stochastic processes to ask

the class whether time is discrete or continuous. It is both, but which aspect
is uppermost depends on how we measure, or experience, time �whether
our watch is digital or has a sweep second hand, one might say. In con-
tinuous time, one encounters analogues of Feller�s theory above in various
probabilistic contexts �e.g., the server in an M=G=1 queue being idle. In
the early 1960s, the Feller theory, queueing theory (in the phase triggered by
Kendall�s work, [Ken1]) and John Kingman were all young. Kingman found
himself drawn to the task of creating a continuous-time version of Feller�s
theory of recurrent events (see [King4] for his reminiscences of this time) �a
task he triumphantly accomplished in his theory of regenerative phenomena,
for which his book [King3] remains the standard source. Here the role of
the renewal sequence is played by the Kingman p-function, where p(t) is the
probability that the regenerative phenomenon � occurs at time t � 0.
A continuous-time theory contains within itself in�nitely many versions

of a discrete-time theory. For each �xed h > 0, one obtains from a Kingman
regenerative phenomenon � with p-function p(t) a Feller recurrent event (or
regenerative phenomenon in discrete time, as one would say nowadays), �h
say, with renewal sequence un(h) = p(nh) �called the discrete skeleton of �
for time-step h �the h-skeleton, say.
While one can pass from continuous to discrete time by taking skeletons,
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it is less clear how to proceed in the opposite direction �how to combine
discrete-time information for various time-steps h to obtain continuous-time
information. A wealth of information was available in the discrete-time case �
for example, limit theorems for Markov chain transition probabilities. It was
tempting to seek to use such information to study corresponding questions
in continuous time, as was done in [King1]. There, Kingman made novel use
of the Baire category theorem, to extend a result of Croft [Cro], making use
of a lemma attributed both to Golomb and Gould and to Anderson and Fine
(see [NWGGAF] for both).
While in the above we have limits at in�nity through integer multiples

nx, we shall also be concerned with limits through positive rational multiples
qx (we shall always use the notations limn and limq for these). There are at
least three settings in which such rational limits are probabilistically relevant:
(i) In�nitely divisible p-functions. The Kingman p-functions form a semi-

group under pointwise multiplication (if pi come from �i with �1, �2 inde-
pendent, p := p1p2 comes from � := �1 \ �2, in an obvious notation). The
arithmetic of this semigroup has been studied in detail by Kendall [Ken2].
(ii) Embeddability of in�nitely divisible laws. If a probability law is in-

�nitely divisible, one can de�ne its qth convolution power for any positive
rational q. The question then arises as to whether one can embed these
rational powers into a continuous semigroup of real powers. This is the
question of embeddability, studied at length (see e.g. [Hey], Ch. III) in
connection with the Lévy-Khintchine formula on locally compact groups.
(iii) Embeddability of branching processes. While for simple branching

processes both space (individuals) and time (generations) are discrete, it
makes sense in considering e.g. the biomass of large populations to work
with branching processes where space and/or time may be continuous. While
one usually goes from the discrete to the continuous setting by taking limits,
embedding is sometimes possible; see e.g. Karlin and McGregor [KMcG],
Bingham [Bin].
In addition, (i) led Kendall ([Ken2], Th. 16) to study sequential regular

variation (see e.g. [BGT] §1.9). The interplay between the continuous and
sequential aspects of regular variation, and between measurable and Baire
aspects, led us to our recent theory of topological regular variation (see e.g.
[BOst4] and our other recent papers), our motivation here.
In Section 2 we discuss the relation between Kingman�s Theorem and

the Kestelman-Borwein-Ditor Theorem (KBD), introducing de�nitions and
summarizing background results which we need (including the density topol-
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ogy). In Section 3 we generalize to a Baire/measurable setting the Kingman
Theorem (originally stated for open sets). Our (bi-)topological approach
(borrowed from [BOst11]) allows the two cases to be treated as one that, by
specialization, yields either case. (This is facilitated by the density topol-
ogy). The theorem is applied in Section 4 to establish a theory of �rational�
skeletons parallel to Kingman�s integer skeletons. In Section 5 we o¤er a
new proof of KBD in a �consecutive�format suited to proving in Section 6
combinatorial results in the spirit of van der Waerden�s celebrated theorem
on arithmetic progressions. Again a bitopological (actually �bi-metric�) ap-
proach allows uni�cation of the Baire/measurable cases. Our work in Section
6 is based on a close reading of [BHW], our debt to which is clear.

2 Preliminaries

In this section we motivate and de�ne notions of contiguity. Then we gather
classical results from topology and measure theory (complete metrizability
and the density topology). We begin by recalling the following result, in
which the expression �for generically all t�means for all t except in a meagre
or non-null set according to context. We use the terms Baire set/function
to mean a set/function with the Baire property. Evidently, the interesting
cases are with T Baire non-meagre/measurable non-null. The result in this
form is due in the measure case to Borwein and Ditor [BoDi], but already
known much earlier albeit in somewhat weaker form by Kestelman ([Kes] Th.
3), and rediscovered by Kemperman [Kem] and later by Trautner [Trau] (see
[BGT] p. xix and footnote p. 10).

Theorem KBD (Kestelman-Borwein-Ditor Theorem, KBD). Let
fzng ! 0 be a null sequence of reals. If T is Baire/Lebesgue measurable,
then for generically all t 2 T there is an in�nite set Mt such that

ft+ zm : m 2Mtg � T:

We give a new uni�ed proof of the measure and Baire cases in Section
5, based on almost complete metrizability (see below); earlier uni�cation was
achieved through a bitopological approach (as here to the Kingman Theorem)
in [BOst11]. This result is a theorem about additive in�nite combinatorics. It
is of fundamental and unifying importance in contexts where additive struc-
ture is key; its varied applications include proofs of classical results such
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as Ostrowski�s Theorem on the continuity of Baire/Lebesgue convex (and so
additive) functions (cf. [BOst3]), a plethora of results in the theory of subad-
ditive functions (cf. [BOst5], [BOst6]), the Steinhaus Theorem on distances
([BOst3], [BOst12]) and the Uniform Convergence Theorem of regular vari-
ation ([BOst1]). Its generalizations to normed groups may be used to prove
the Uniform Boundedness Theorem (see [Ost]). Recently it has found appli-
cations to additive combinatorics in the area of Ramsey Theory (for which see
[GRS], [HS]), best visualized in the language of colour: one seeks monochro-
matic structures in �nitely coloured situations. Two examples are included
in Section 6.
The KBD theorem is about shift-embedding of subsequences of a null

sequence fzng into a single set T with an assumption of regularity (Baire
/ measurable). Our generalizations in Section 3 of a theorem of Kingman�s
have been motivated by the wish to establish �multiple embedding�versions
of KBD: we seek conditions on a sequence fzng and a family of sets fTkgk2!
which together guarantee that one shift embeds (di¤erent) subsequences of
fzng into all members of the family.
Evidently, if t + zn lies in several sets in�nitely often, then the sets in

question have a common limit point, a sense in which they are contiguous
at t: Thus contiguity conditions are one goal, the other two being regularity
conditions on the family, and admissibility conditions on the null sequences.
We view the original Kingman Theorem as studying contiguity at in�nity,

so that divergent sequences zn (i.e. with zn ! +1) there replace the null
sequences of KBD. The theorem uses openness as a regularity condition on
the family, co�nality at in�nity (e.g. unboundedness on the right) as the
simplest contiguity condition at in�nity, and

zn+1=zn ! 1 (multiplicative form); zn+1 � zn ! 0 (additive form) (*)

as the admissibility condition on the divergent sequence zn ((*) follows from
regular variation by Weissman�s Lemma, [BGT] Lemma 1.9.6). Taken to-
gether, these three guarantee multiple embedding (at in�nity).
One can switch from �1 to 0 by an inversion x ! 1=x; and thence to

any � by a shift y ! y + � : Openness remains the regularity condition, a
property of density at zero becomes the analogous admissibility condition on
null sequences, and co�nality (or accumulation) at � the contiguity condition.
The transformed theorem then asserts that for admissible null sequences �n
there exists a scalar � such that the sequence ��n + � has subsequences in
all the open sets Tk provided these all accumulate at � :
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In the next section, we will replace Kingman�s regularity condition of
openness by the Baire property, or alternatively measurability, to obtain two
versions of Kingman�s theorem �one for measure and one for category. We
develop the regularity theme bitopologically, working with two topologies,
so as to deduce the measure case from the Baire case by switching from the
Euclidean to the density topology.

De�nitions and notation (Essential contiguity conditions). We
use the notation Br(x) := fy : jx � yj < rg and ! := f0; 1; 2; :::g: Likewise
for a 2 A � R and metric � = �A on A; B

�
r (a) := fy 2 A : �(a; y) < rg

and clA denotes closure in A: For S given, put S>m = SnBm(0): R+ denotes
the (strictly) positive reals. We write R�+ for R+ regarded as a multiplicative
group, and

A �B := fab : a 2 A; b 2 Bg; A�1 := fa�1 : a 2 Ag;

for A;B subsets of R+.
Call a Baire set S essentially unbounded if for each m 2 N the set S>m is

non-meagre. This may be interpreted in the sense of the metric (Euclidean)
topology, or as we see later in the measure sense by recourse to the density
topology. To distinguish the two, we will qualify the term by referring to the
metric or the measure sense.
Say that a set S � R+ accumulates essentially at 0 if S�1 is essentially

unbounded. (In [BHW] such sets are called measurably/Baire large at 0:)
Say that S � R+ accumulates essentially at t if (S � t) \ R+ accumulates
essentially at 0:
We turn now to some topological notions. Recall (see e.g. [Eng] 4.3.23

and 24) that a metric space A is completely metrizable i¤ it is a G� subset of
its completion (i.e. A =

T
n2! Gn with each Gn open in the completion of A);

in which case it has an equivalent metric under which it is complete. Thus
a G� subset A of the line has a metric � = �A; equivalent to the Euclidean
metric, under which it is complete. (So for each a 2 A and " > 0 there is
� > 0 such that B�(a) � B�" (a) which enables the construction of �-Cauchy
sequences.)
This motivates the de�nition below, which allows us to capture a feature

of measure-category duality: both exhibit G� inner-regularity modulo sets
which we are prepared to neglect.

De�nition. Call A � R almost complete (in category/measure) if

6



(i) there is a meagre set N such that AnN is a G�, or
(ii) for each " > 0 there is a measurable set N with jN j < " and AnN a

G�.

Thus A almost complete is Baire resp. measurable. A bounded non-null
measurable subset A is almost complete: for each " > 0 there is a compact
(so G�) subset K with jAnKj < "; so we may take N = AnK. Likewise a
Baire non-meagre set is almost complete �this is in e¤ect a restatement of
Baire�s Theorem:

Theorem B (Baire�s Theorem �almost completeness of Baire
sets). For A � R Baire non-meagre there is a meagre set M such that
AnM is completely metrizable.

Proof. For A � R Baire non-meagre we have A [M1 = UnM0 with Mi

meagre and U a non-empty open set. Now M0 =
S
n2!Nn with Nn nowhere

dense; the closure Fn := �Nn is also nowhere dense (and the complement
En = RnFn is dense, open). The set M 0

0 =
S
n2! Fn is also meagre, so

A0 := UnM 0
0 =

T
n2! U \ En � A: Taking Gn := U \ En; we see that A0 is

completely metrizable. �

The tool whereby we interpret measurable functions as Baire functions
is re�nement of the usual metric (Euclidean) topology of the line R to a
non-metric one: the density topology ( see. e.g. [Kech], [LMZ], [CLO]). Re-
call that for T measurable, t is a (metric) density point of T if lim�!0 jT \
I�(t)j=� = 1; where I�(t) = (t � �=2; t + �=2). By the Lebesgue Density
Theorem almost all points of T are density points ([Hal] Section 61, [Oxt]
Th. 3.20, or [Go¤]). A set U is d-open (density-open = open in the den-
sity topology) if each of its points is a density point of U: We mention �ve
properties:
(i) The density topology (d; say) is �ner than (contains) the Euclidean

topology ([Kech], 17.47(ii)).
(ii) A set is Baire in the density topology i¤ it is (Lebesgue) measurable

([Kech], 17.47(iv)).
(iii) A Baire set is meagre in the density topology i¤ it is null ([Kech],

17.47(iii)). So (since a countable union of null sets is null), the Baire theorem
holds for the line under d :
(iv) (R; d) is a Baire space.
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(v) A function is d-continuous i¤ it is approximately continuous in Den-
joy�s sense ([Den]; [LMZ], p.1, 149).
The reader unfamiliar with the density topology may �nd it helpful to

recall Littlewood�s Three Principles ([Lit] Ch. 4, [Roy] Section 3.6 p.72):
general situations are �nearly�the easy situations �i.e. are easy situations
modulo small sets. Theorem 0 below is in this spirit. We refer now to
Littlewood�s Second Principle, of a measurable function being continuous on
nearly all of its domain, in a form suited to our d-topology context.

Theorem L (Lusin�s Theorem; cf. [Hal] end of Section 55). For
f : R+ ! R measurable, there is a density open set S which is almost all of
R+ and an increasing decomposition S :=

S
m

Sm into density open sets Sm

such that each f jSm is continuous in the usual sense:

Proof. By a theorem of Lusin (see e.g. [Hal], op.cit.), there is an increas-
ing sequence of (non-null) compact sets Kn (n = 1; 2; :::) covering almost all
of R+ with the function f restricted to Kn continuous on Kn: Let Sn com-
prise the density points of Kn; so Sn is density-open, is almost all of Kn (by
the Lebesgue Density Theorem) and f is continuous on Sn. Put S :=

S
m

Sm;

then S is almost all of R+, is density open and f jSm is continuous for each
m: �

Two results, Theorem S below and Theorem 1 in the next section, depend
on the following consequence of Steinhaus�s theorem concerning the existence
of interior points of A � B�1 ([St], cf. [BGT] Th. 1.1.1) for A;B measurable
non-null. The �rst is in multiplicative form a sharper version of Sierpiński�s
result that any two non-null measurable sets realize a rational distance.

Lemma S (Multiplicative Sierpínski Lemma; [Sier]). For a; b den-
sity points of their respective measurable sets A;B in R+ and for n = 1; 2; :::,
there exist positive rationals qn and points an; bn converging to a; b through
A;B respectively such that bn = qnan:

Proof. For n = 1; 2; ::: and the consecutive values " = 1=n the sets
B"(a) \A and B"(b) \B are measurable non-null, so by Steinhaus�theorem
the set

[B \B"(b)] � [A \B"(a)]�1
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contains interior points and so in particular a rational point qn: Thus for
some an 2 B"(a) \ A and bn 2 B"(b) \B we have

qn = bna
�1
n ;

and as ja� anj < 1=n and jb� bnj < 1=n; an ! a; bn ! b. �

Remarks. 1. For the purposes of Theorem 2 below, we observe that qn
may be selected arbitrarily large, for �xed a; by taking b su¢ ciently large
(since qn ! ba�1).
2. The Lemma addresses d-open sets but also holds in the metric topology

(the proof is similar but simpler), and so may be restated bitopologically
(from the viewpoint of [BOst11]) as follows.

Theorem S (Sierpiński, [Sier]). For R+ with either the Euclidean or the
density topology, if a; b are respectively in the open sets A;B, then for n =
1; 2; ::: there exist positive rationals qn and points an; bn converging metrically
to a; b through A;B respectively such that

bn = qnan:

3 A bitopological Kingman Theorem

We begin by simplifying essential unboundedness modulo null/meagre sets.

Theorem 0. In R+ with the Euclidean or density topology, for S Baire/measurable
and essentially unbounded there exists an open/density-open unbounded G
and meagre/null M with GnM � S:

Proof. Choose integers mn inductively with m0 = 0 and mn+1 > mn the
least integer such that

(mn;mn+1) \ S is non-meagre;

for given mn the integer mn+1 is well-de�ned, as otherwise for each m > mn

we would have (mn;m) \ S meagre, and so also

(mn;1) \ S =
[

m>mn

(mn;m) \ S meagre,

9



contradicting S essentially unbounded. Now, as (mn;mn+1)\S is Baire/measurable,
we may chooseGn open/density-open andMn;M

0
n meagre subsets of (mn;mn+1)

such that
((mn;mn+1) \ S) [Mn = Gn [M 0

n:

Hence Gn is non-empty. Put

G :=
[
n

Gn; M :=
[
n

Mn:

ThenM is meagre andG is open unbounded and, sinceM\(mn;mn+1) =Mn

and G \ (mn;mn+1) = Gn;

GnM =
[
n

GnnM =
[
n

GnnMn �
[
n

(mn;mn+1) \ S = S;

as asserted. �

De�nition (Weakly Archimedean property � an admissibility
condition). Here we denote by X the line with either the metric or density
topology. Let (I; <) be a linearly ordered set, e.g. N or Q: Our purpose
will be to take limits through subsets J of I which are unbounded on the
right (more brie�y: unbounded). When specializing to N or Q we will write
n!1 or q !1: Say that a family fhi : i 2 Ig of self-homeomorphisms of
the topological space X is weakly Archimedean if, for each non-empty open
set V in X and any j 2 I the open set

Uj(V ) :=
[
i�j
hi(V )

meets every essentially unbounded set in X:

Theorem 1 (implicit in [BGT] Th. 1.9.1 (i)). In the multiplicative group
of positive reals R�+ with Euclidean topology, the functions hn(x) = dnx for
n = 1; 2; ::; are homeomorphisms and fhn : n 2 Ng is weakly Archimedean,
if dn is divergent and (*) holds. For any interval J = (a; b) with 0 < a < b
and any m;

Um(J) :=
[
n�m

dnJ

10



contains an in�nite half-line, and so meets every unbounded open set. Simi-
larly this is the case in the additive group of reals R with hn(x) = dn+x and
Um(J) =

[
n�m

dn + J:

Proof. For given " > 0 and all large enough n; 1� " < dn=dn+1 < 1 + ":
Write x := (a + b)=2 2 J: For " small enough a < x(1 � ") < x(1 + ") < b;
and then a < xdn=dn+1 < b; so xdn 2 dn+1J; and so dnJ meets dn+1J: Thus
for large enough n consecutive dnJ overlap; as dn ! 1; their union is thus
a half-line. �

Remark. Some such condition as (*) is necessary, otherwise the set
Um(J) risks missing an unbounded sequence of open intervals. For an indirect
example, see the remark in [BGT] after Th. 1.9.2 and G.E.H. Reuter�s elegant
counterexample to a corollary of Kingman�s Theorem, a break-down caused
by the absence of our condition. For a direct example, note that if dn =
rn log n with r > 1 and J = (0; 1); then dn + J and dn+1 + J misses the
interval (1 + rn log n; rn+1 log(1 + n)) and the omitted intervals have union
an unbounded open set; to see that the omitted intervals are non-degenerate
note that their lengths are unbounded:

rn+1 log(1+n)�rn log n�1] = rn log n[r(log(1+n)= log n)�1�1=(cn log n)]!1:

Theorem 1 does not extend to the real line under the density topology;
the homeomorphisms hn(x) = nx are no longer weakly Archimedean, as we
demonstrate by an example in Theorem 10. We are thus led to an alternative
approach:

Theorem 2. In the multiplicative group of reals R�+ with the density
topology, the family of homeomorphisms fhq : q 2 Q+g de�ned by hq(x) :=
qx; where Q+ has its natural order, is weakly Archimedean.

Proof. Let B be Baire and essentially unbounded in the d-topology.
Then B is measurable and essentially unbounded in the sense of measure.
From Theorem 0, we may assume that B is density-open. Let A be non-
empty density-open. Fix a 2 A and j 2 Q+: Since B is unbounded, we
may choose b 2 B such that b > ja: By Theorem S there is q 2 Q+ with
j < q < ba�1 such that qa0 = b0, with a0 2 A and b0 2 B: Thus

Uj(A) \B � hq(A) \B = qA \B 6= ?;
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as required. �

Note that (*) is relevant to the distinction between integer and rational
skeletons; see the prime-divisor example on p. 53 of [BGT]. Theorem 2 holds
with Q+ replaced by any countable dense subset of R�+, although later we
use the closure of Q+ under multiplication. There is an a¢ nity here with
the use of a dense �skeleton set�in the Heiberg-Seneta Theorem, Th. 1.4.3 of
[BGT], and its extension Th. 3.2.5 therein.

Theorem 3 (Bitopological Kingman Theorem � [King1] Th. 1,
[King2], where I = N). If X is a Baire space,
(i) fhi : i 2 Ig is a countable, linearly ordered, weakly Archimedean family

of self-homeomorphisms of X, and
(ii) fSk : k = 1; 2; :::g are essentially unbounded Baire sets,

then in any non-empty open set there exists � such that for each k 2 N there
exists an unbounded subset Jk� of I with

fhj(�) : j 2 Jk�g � Sk:

Equivalently, if (i) and
(ii)0 fAk : k = 1; 2; :::g all accumulate essentially at 0, then in any non-

empty open set there exists � such that for each k = 1; 2; ::: there exists Jk�
unbounded with

fhj(�)�1 : j 2 Jk�g � Ak:

Proof. For each k = 1; 2; ::: choose Gk open and Nk and N 0
k meagre such

that
Sk [N 0

k = Gk [Nk:
Put

N :=
[
n;k

h�1n (N
0
k);

then N is meagre (as hn; and so h�1n ; is a homeomorphism).
As Sk is essentially unbounded, Gk is unbounded (otherwise, for some m;

Gk � (�m;m), and so Sk \ (m;1) � Nk is meagre). De�ne the open sets

Gjk :=
[
i�j
h�1i (Gk):
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We �rst show that each Gjk is dense. Suppose, for some j; k; there is a
non-empty open set V such that

V \Gjk = ?:

Then for all i � j;

V \ h�1i (Gk) = ?; Gk \ hi(V ) = ?:

So
Gk \

[
i�j
hi(V ) = ?;

i.e., for U j the open set
U j :=

[
i�j
hi(V );

Gk \ U j = ?: (disjoint)

But as Gk is unbounded, this contradicts fhig being a weakly Archimedean
family.
Thus the open set Gjk is dense (meets every non-empty open set); so, as

I is countable, the set

H :=
1\
k=1

\
j2I

Gjk

is also dense open (as X is a Baire space). So for any non-empty open subset
V we may choose

� 2 (H \ V )nN:
Fix �: Thus for all k = 1; 2; :::

� 2 V \
\
j2I

[
i�j
h�1i (Gk) and � =2 N: (eta)

For all m; as hm(�) =2 hm(N) we have for all m; k

hm(�) =2 N 0
k:

By (eta), for each k select an unbounded Jk� such that for j 2 Jk�; � 2 h�1j (Gk);
for such j we have

� 2 h�1j (Sk):
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That is,
fhj(�) : j 2 Jk�g � Sk: �

Working in either the density or the Euclidean topology, we obtain the
following conclusions.

Theorem 4C (Kingman Theorem for Category). If fSk : k =
1; 2; :::g are Baire and essentially unbounded in the category sense, then in
any non-empty density open set (in particular an interval) there exists � such
that for each k 2 N there exists an unbounded subset Jk� of N with

fn� : n 2 Jk�g � Sk:

In particular this is so if the sets Sk are open.

Theorem 4M (Kingman Theorem for Measure). If fSk : k =
1; 2; :::g are measurable and essentially unbounded in the measure sense, then
in any non-empty open set there exists � such that for each k 2 N there
exists an unbounded subset Jk� of Q+ with

fq� : q 2 Jk�g � Sk:

In the corollary below Jkt refers to unbounded subsets of N or Q+ accord-
ing to the category/measure context. It specializes down to a KBD result
for a single set T when Tk � T , but it falls short of KBD in view of the
extra admissibility assumption and the factor � (the latter an artefact of the
multiplicative setting).

Corollary. For fTk : k 2 !g Baire/measurable and zn ! 0 admissible,
for generically all t 2 R there exist �t and unbounded Jkt such that for
k = 1; 2; :::

t 2 Tk =) ft+ �tzm : m 2 Jkt g � Tk:

Proof. For T Baire/measurable, let N = N(T ) be the set of points t 2 T
which are not points of essential accumulation of T ; then t 2 N if for some
n = n(t); the set T \ B1=n(t) is meagre/null. As N is Lindelöf, for some
countable S � N

N �
[
t2S
T \B1=n(t)(t);
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and so N is meagre/null. Thus the set Nk of points t 2 Tk such that Tk � t
does not accumulate essentially at 0 is meagre/null, as is N =

S
k

Nk: For

t =2 N; put 
t := fk 2 ! : Tk � t accumulates essentially at 0g: Applying
Kingman�s Theorem to the sets fTk � t : k 2 
tg and the sequence zn ! 0;
there exist �t and unbounded Jkt such that for k 2 
t

f�tzm : m 2 Jkt g � Tk � t; i.e. ft+ �tzm : m 2 Jkt g � Tk:

Thus for t =2 N; so for generically all t; there exist �t and unbounded Jkt such
that for k = 1; 2; :::

t 2 Tk =) ft+ �tzm : m 2 Jkt g � Tk: �

4 Applications - Rational skeletons

In [King1] Kingman�s applications were concerned mostly with limiting be-
haviour of continuous functions, studied by means of h-skeletons de�ned by

LN(h) := lim
n!1

f(nh);

assumed to exists for all h in some interval I. This works for Baire functions;
but in our further generalization to measurable functions f : R+!R; we
are led to study limits LQ(h) := limq!1 f(qh); taken through the rationals.
Using the decomposition

q := n(q) + r(q); n(q) 2 !; r(q) 2 [0; 1);

the limit LQ(h) may be reduced to, and so also computed as, LN(h) (provided
we admit perturbations on h; making the assumption of convergence here
more demanding) �see Theorem 9 below.

Theorem 5 (Conversion of sequential to continuous limits at
in�nity �cf. [King1] Cor. 2 to Th. 1). For f : R+ ! R measurable and V
a non-empty, density-open set (in particular, an open interval), if

lim
q!1

f(qx) = 0; for each x 2 V;

then
lim
t!1

f(t) = 0:

15



Proof. Suppose not; choose c > 0 with lim supt!1 jf(t)j > c > 0: By
Theorem L there is a density-open set S which is almost all of R+ and an
increasing decomposition S :=

S
m

Sm such that each f jSm continuous. Put

B = fs 2 S : jf(s)j > cg: For any M > 0; there is s� 2 Sm for some m with
s� > M such that jf(s�)j > c: Then by continuity of f jSm, for some � > 0
we have jf(s)j > c for s 2 B�(s�) \ Sm: Thus B is essentially unbounded.
By Theorem 4M there is v 2 V such that qv 2 B; for unboundedly many
q 2 Q+; but, for such a v; we have limq!1 f(qv) 6= 0; a contradiction. �

We will need the following result, which is of independent interest. The
Baire case is implicit in [King1] Th. 2.

Theorem 6 (Constancy of rationally invariant functions). If for
f : R+ ! R measurable/Baire

f(qx) = f(x); for q 2 Q+ and x 2 R+;

then f(x) takes a constant value almost everywhere (quasi almost every-
where).

Proof (for the measure case). Again by Theorem L, there is a density-
open set S which is almost all of R+ and an increasing decomposition S :=S
m

Sm such that each f jSm continuous. We claim that on S the function f

is constant. Indeed, by Theorem S if a; b are in Sm; then, since they are
density points of Sm; there are an; bn in Sm and qn in Q+ such that bn = qnan
with an ! a and bn ! b; as n ! 1 (in the metric sense). Hence, since
f(qnan) = f(an); relative continuity gives

f(b) = lim
n!1

f(bn) = lim
n!1

f(qnan) = lim
n!1

f(an) = f(a):

The Baire case is similar, but simpler. �

Of course, if f(x) is the indicator function 1Q(x); which is measurable/Baire,
then f(x) is constant almost everywhere, but not constant, so the result in
either setting is best possible.

Theorem 7 (Uniqueness of limits � cf. [King1] Th. 2). For f :
R+ ! R measurable/Baire, suppose that for each x > 0 the limit

L(x) := lim
q!1

f(qx)
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exists and is �nite on an interval I. Then L(x) takes a constant value a.e.
(quasi a.e.) in R+, L say, and

lim
t!1

f(t) = L:

Proof. Since Q+ is countable, the function L(x) is measurable/Baire.
Note that for q 2 Q+ one has L(qx) = L(x); so if L is de�ned for x 2 I; then
L is de�ned for x 2 qI for each q 2 Q+ and hence for all x 2 R+: The result
now follows from Theorem 6. As for the �nal conclusion, replacing f(x) by
f(x)� L; we may suppose that L = 0; and so may apply Theorem 5. �

We now extend an argument in [King1]. Recall that f is essentially
bounded on S if ess supS f <1:

De�nition. Call f essentially bounded at in�nity if for some M

ess sup
(n;1)

f �M; for all large enough n; i.e. lim sup
n!1

[ess sup
(n;1)

f ] <1:

Theorem 8 (Essential boundedness theorem �cf. [King1] Cor. 3
to Th. 1). For f : R+ ! R measurable/Baire, suppose that for each x 2 V

supff(qx) : q 2 Q+g <1:

Then f(t) is essentially bounded at in�nity.

Proof. Suppose not. Then for each n = 1; 2; ::: there ism 2 N, arbitrarily
large, such that

ess sup
(m;1)

f > n:

We proceed inductively. Suppose that m(n) has been de�ned so that

ess sup
(m(n);1)

f > n:

Choose m(n+ 1) > m(n) so that

Gn := ft : m(n) < t < m(n+ 1) and jf(t)j > ng

17



is non-null (otherwise, o¤ a null set, we would have jf(t)j � n for all t >
m(n); making n an essential bound of f on (m;1); for each m > m(n);
contradicting the assumed essential unboundedness). Each Gn is measurable
non-null, so de�ning

G :=
[
n

Gn

yields G essentially unbounded. So there is v 2 V such that qv 2 G; for an
unbounded set of q 2 Q+: Since each setGn is bounded, the set fqv : q 2 Q+g
meets in�nitely many of the disjoint sets Gn; and so

supfjf(qv)j : q 2 Q+g =1;

contradicting our assumption. �

We close with the promised comparison of LQ(h) with LN(h) (of course,
if LQ(h) exists, then so does LN(h) and they are equal). We use the decom-
position q = n(q) + r(q); with n(q) 2 N and r(q) 2 [0; 1) \Q:

Theorem 9 (Perturbed skeletons). For f : R+!R measurable, the
limit LQ(h) exists for all h in the non-empty interval I = (0; b) with b > 0
i¤ for all h in I the limit

lim
n
f(n(h+ zn))

exists, for every null sequence zn with

rn := n(zn=h) 2 [0; 1) \Q:

Furthermore, if either limit exists on I, then it exists a.e. on R+, and then
both limits are equal a.e. to LN(h):
If I = (a; b) with 0 < a < b; the assertion holds far enough to the right.

Proof. First we prove the asserted equivalence.
Suppose the limit LQ(h) exists for all h in the interval I: Then given zn

as above, take qn := n+ rn; rn = n(zn=h); then n(qn) = n; r(qn) = rn; and

qnh = n(h+ zn):

So the following limit exists:

lim
n
f(n(h+ zn)) = lim

n
f(qnh) = LQ(h):
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For the converse, take zn as above (so zn = rnh=n with rn 2 [0; 1) \ Q);
our assumption is L(h; frng) exists for all h 2 I; where

L(h; frng) := lim
n
f(n(h+ zn)):

Write @L(frng) for the �domain of L��the set of h for which this limit exists.
Thus I � @L(frng): Let qn ! 1 be arbitrary in Q+: So qn = n(qn) + r(qn)
and writing rn := r(qn) and zn := rnh=n(qn);

qnh = n(qn)[h+ rnh=n(qn)] = n(qn)[h+ zn]; and rn = n(zn=h) 2 [0; 1) \Q:

By assumption, limn f(qnh) = L(h; frng) exists for h 2 I. Restricting from
fng to fpng the limit limn f(np(h+ zn)) exists for each p 2 N, and

L(h; frng) = lim
n
f(np(h+ zn)) = lim

n
f(n(h0 + z0n));

where z0n = pzn and h
0 = ph: So

L(h; frng) = L(ph; frng);

as
n(z0n=h

0) = n(zn=h) = rn 2 [0; 1) \Q:
That is, L(ph; frng) exists for p a positive integer, whenever L(h; frng) exists,
and equals L(h; frng). As h=p 2 I = (0; b) for h 2 I and L(h; frng) =
L(p(h=p); frng) = L(h=p; frng); L(rh; frng) exists whenever r is a positive
rational. So the domain @L of L includes all intervals of the form rI for
positive rational r; and so includes the whole of R+: Moreover, L(:; frng) is
rationally invariant. But, since f is measurable, L is a measurable function
on I � Q!+: Now Q+ can be identi�ed with N � N, and hence Q!+ can be
identi�ed with N!: This in turn may be identi�ed with the irrationals I (see
e.g. [JayRog] p.9). So L is measurable on R+ � I and so, by Theorem 6,
L(:; frng) is almost everywhere constant.
This proves the equivalence asserted. For the �nal assertion, the argument

in the last paragraph shows that, given the assumptions, LQ(h) exists for a.e.
positive h; from here the a.e. equality is immediate. This completes the case
I = (0; b): For I = (a; b) with a > 0;

S
p2N
pI contains some half-line [c;1) by

Th. 1. �
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The following example, due to R. O. Davies, clari�es why use of the
natural numbers and hence also of discrete skeletons LN(h) is inadequate in
the measure setting. (We thank Roy Davies for this contribution.)

Theorem 10. The open set

G :=

1[
m=1

(m� 2�(m+2);m)

is disjoint for each n = 1; 2; ::: from the dilations nF of the non-null closed
set F de�ned by

F := [
1

2
; 1]n

 1[
m=1

2m[
n=m

(
m

n
� 1

n2m+2
;
m

n
)

!
:

Proof. Suppose not. Put zm := 2�(m+2) and

E :=
1[
m=1

2m[
n=m

(
m

n
� 1

n
zm;

m

n
):

Then for some n; there is f 2 F and g 2 G such that nf = g: So for some
m = 1; 2; :::

m� zm < nf = g < m; i.e.
m

n
� zm
n
< f <

m

n
:

But as 1=2 � f � 1; we have n=2 � m and

m

n
� 1

n
zm < 1; i.e. m� zm < n:

Thus m � n � 2m; yielding the contradiction that f =2 F: Put

am :=
2mX
n=m

1

n
; so that

1

2
� am � 1:

Then

jEj =
1X
m=1

amzm �
1X
m=1

2�(m+2) =
1

4
;

and jEj � 1=8: Hence the set F has measure at least 1=4: �
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5 KBD in van der Waerden style

Fix p: Let zn be a null sequence. We prove a generalization of KBD inspired
by the van der Waerden theorem on arithmetic progressions (see Section 6).
For this we need the notation

t+ �zpm = t+ zpm+1; t+ zpm+1; :::; t+ zpm+p

as an abbreviation for a block of consecutive terms of the null sequence all
shifted by t. Our uni�ed proof, based on the G�-inner regularity common
to measure and category noted in Section 2, is inspired by a technique in
[BHW].

Theorem 11 (Kestelman-Borwein-Ditor Theorem �consecutive
form; [BOst9]). Let fzng ! 0 be a null sequence of reals. If T is Baire/Lebesgue
measurable and p 2 N, then for generically all t 2 T there is an in�nite set
Mt such that

ft+ �zpm : m 2Mtg := ft+ zpm+1; t+ zpm+1; :::; t+ zpm+p : m 2Mtg � T:

This will follow from the two results below, both important in their own
right. The �rst and its corollary address displacements of open sets in the
density and the Euclidean topologies; it is mentioned in passing in a note
added in proof (p. 32) in Kemperman [Kem], Th. 2.1 p. 30, for which
we give an alternative proof. The second parallels an elegant result for the
measure case treated in [BHW].

Theorem K (Displacements Lemma �Kemperman�s Theorem;
[Kem] Th. 2.1 with Bi = E; ai = t). If E is non-null Borel, then f(x) :=
jE \ (E + x)j is continuous at x = 0; and so for some " = "(E) > 0

E \ (E + x) 6= ?; for jxj < ":

More generally, f(x1; :::; xp) := j(E + x1) \ ::: \ (E + xp)j is continuous at
x = (0; :::; 0); and so for some " = "p(E) > 0

(E + x1) \ ::: \ (E + xp) 6= ?; for jxij < " (i = 1; :::; p).
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Proof 1 (After [BHW]; cf. e.g. [BOst12], Section Th. 5.2 and 6.5). Let t be
a density point of E: Choose " > 0 such that

jE \B"(t)j >
3

4
jB"(0)j:

So, for x 2 B"(0); we have by invariance of Lebesgue measure that

j(E + x) \B"(t+ x)j >
3

4
jB"(0))j:

But, again by invariance, as B"(t) + x = B"(0) + t + x this set has measure
jB"(0)j: So

jE \ (E + x)j � jE \ (E + x) \ (B"(t) + x)j >
3

2
jB"(0)j � jB"(0)j > 0:

Hence, for x 2 B"(0); we have jE \ (E + x)j > 0:

For the p-fold form we need some notation. Let t again denote a density
point of E and x = (x1; :::; xn) a vector of variables: Set Aj := B(t)\E\(E+
xj) for 1 � j � n: For each multi-index i = (i(1); :::; i(d)) with 0 < d < n,
put

fi(x) : = jAi(1) \ ::: \ Ai(d)j;
fn(x) : = jA1 \ ::: \ Anj; f0 = jB(t) \ Ej:

We have already shown that the functions fj(x) = jB(t) \ E \ (E + xj)j
are continuous at 0: Now argue inductively: suppose that, for i of length less
than n; the functions fi are continuous at (0; :::; 0): Then for given " > 0;
there is � > 0 such that for jjxjj < � and each such index i we have

�" < fi(x)� f0 < ";

where f0 = jB(t) \ Ej: Noting that
n[
i=1

Ai � B(t) \ E;

and using upper or lower approximations, according to the signs in the
inclusion-exclusion identity

j
n[
i=1

Aij =
X
i

jAij �
X
i<j

jAi \ Ajj+ :::+ (�1)n�1j
\
i

Aij;
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one may compute linear functions L("); R(") such that

L(") < fn(x)� f0 < R("):

Indeed taking xi = 0 in the identity, both sides collapse to the value f0:
Continuity follows. �

Proof 2. Apply instead Theorem 61.A of [Hal] (Ch. XII, p. 266) to
establish the base case, and then proceed inductively as before. �

Corollary. Theorem K holds for non-meagre Baire sets E in place of
Borel sets in the form:
for each p in N there exists " = "p(E) > 0 such that

(E + x1) \ ::: \ (E + xp) 6= ?; for jxij < " (i = 1; :::; p).

Proof. A non-meagre Baire set di¤ers from an open set by a meagre set.
�

We will now prove Theorem 11 in two steps. To motivate the proof strat-
egy, note that the embedding property is upward-hereditary: if T includes
a subsequence of zn by a shift t in T; then so does any superset of T: We
�rst consider a Baire non-meagre/closed non-null closed set T , just as in
[BHW], modi�ed to admit the consecutive format. We next deduce the the-
orem by appeal to G� inner-regularity of category/measure. (The subset E
of exceptional shifts can only be meagre/null.)

Theorem 12 (Generalized BHW Lemma �Existence of sequence
embedding; cf. [BHW] Lemma 2.2). For T a Baire non-meagre / measur-
able non-null and a null sequence zn ! 0; there exist t 2 T and an in�nite
Mt such that

ft+ �zpm : m 2Mtg � T:
Proof. The result is upward hereditary, so w.l.o.g. we may assume that

A is Baire non-meagre/measurable non-null and completely metrizable, say
under a metric � = �A. (For A measurable non-null we may pass down
to a compact non-null subset, and for A Baire non-meagre we simply take
away a meagre set to leave a Baire non-meagre G� subset). Since this is an
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equivalent metric, for each a 2 A and " > 0; there is � = �(") > 0 such that
B�(a) � B�" (a): Thus, by taking " = 2�n�1 the �-ball B�(a) has �-diameter
less than 2�n:
Working inductively in steps of length p, we de�ne subsets of A (of

possible translators) Bpm+i of �-diameter less than 2�m for i = 1; :::p as
follows. With m = 0; we take B0 = A. Given n = pm and Bn open
in A; choose N such that jzkj < minf1

2
jxnj; "p(Bn)g; for all k > N: For

i = 1; :::; p; let xn�1+i = zN+i 2 Z; then by Theorem K or its Corollary
Bn \ (Bn � xn) \ ::: \ (Bn � xn+p) is non-empty (and open). We may now
choose a non-empty subset Bn+i of A which is open in A with �-diameter less
than 2�m�1 such that clABn+i � Bn \ (Bn � xn) \ :::(Bn � xn+i) � Bn+i�1:
By completeness, the intersection

T
n2N

Bn is non-empty. Let

t 2
\
n2N

Bn � A:

Now t + xn 2 Bn � A; as t 2 Bn+1; for each n: Hence M := fm : zmp+1 =
xn for some n 2 Ng is in�nite. Moreover, if zpm+1 = xn then zpm+2 =
xn+1; :::; zpm+p = xn+p�1 and so

ft+ �zpm : m 2Mtg � A: �

We now extend Theorem 12 from an existence to a genericity statement,
thus completing the proof of Theorem 11. Some care is needed to ensure
that we stay in the realm of Baire/measurable sets.

Theorem 13 (Genericity of sequence embedding). For T Baire/measurable
and zn ! 0, for generically all t 2 T there exists an in�nite Mt such that

ft+ �zpm : m 2Mtg � T:

Hence, if Z � X accumulates at 0 (has an accumulation point there), then
for some t 2 T the set Z \ (T � t) accumulates at 0 (along Z). Such a t
may be found in any open set on which T has non-null trace.

Proof. Let T be a non-null measurable/Baire non-meagre set. W.l.o.g.
we may suppose that T is Borel (in the measure case, since T is equal to
a �-compact set modulo null sets, it is enough to prove the theorem for T
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compact and non-null; in the Baire case apply Theorem B to reduce to a
G� set). Suppose there is zn ! 0 for which the conclusion fails, that is, the
�exceptional�set E � T; of points t of T for which is there is not an in�nite
set Mt with

ft+ �zpm : m 2Mtg � T;
is non-null/non-meagre. But

TnE = T \
\
n2!

[
m>n

[(T � zpm+1) \ ::: \ (T � zpm+p)]

is Borel and hence so is E:
Again we may assume that E is completely metrizable. Applying Theo-

rem 12 to E; we obtain t 2 E � T and an in�nite Mt such that

ft+ �zpm : m 2Mtg � E � T;

yielding a contradiction to the de�nition of E.
With the main assertion proved, let Z � X accumulate at 0 and suppose

that zn in Z converges to 0: Take p = 1: Then, for some t 2 T; there is an
in�niteMt such that ft+zm : n 2Mtg � T: Thus fzm : n 2Mtg � Z\(T�t)
has 0 as a joint accumulation point. �

The preceding argument identi�es only that Z \ (T � t) has a point of
simple, rather than essential, contiguity. More in fact is true, as we show in
Theorem 14 below.

Notation. Omitting the superscript if context allows, denote by MBa
0

resp. MLeb
0 the family of Baire/Lebesgue measurable sets which accumulate

essentially at 0. Note for the next theorem that if A;B 2M0; then by KBD,
for generically all t 2 A; (A� t) \B accumulates at 0:

The following is a strengthened version of two results in [BHW] (their
Lemma 2.4 is (iii) below).

Theorem 14 (Shifted-�lter property of M0). Let A be Baire non-
meagre/measurable non-null, B 2MBa=Leb

0 :
(i) If (A� t) \B accumulates (simply) at 0; then (A� t) \B 2M0;
(ii) For A;B 2M0; and generically all t 2 A; the set (A� t)\B 2M0;
(iii) For B 2M0 and t such that (B� t)\B accumulates (simply) at 0;

the set (B � t) \B accumulates essentially at 0:
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Proof. We will prove (i) separately for the two cases (a) Baire (b) mea-
sure. From KBD (i) implies (ii), while (i) specializes to (iii) by taking A = B:
(a) Baire case. Assume that A is Baire non-meagre and that B accumu-

lates essentially at 0:
Suppose that A [ N1 = UnN0 with U open, non-empty, and N0 and N1

meagre. Put M = N0 [ N1 and �x t 2 AnM; so that t is quasi almost any
point in A; put M�

t := M [ (M � t); which is meagre. As UnM � A; note
that by translation (U � t)n(M � t) � A� t:
Let " > 0: W.l.o.g. B"(0) � U � t: By the assumption on B; B \ B"(0)

is non-meagre, and thus so is [B \B"(0)]nM�
t . But the latter set is included

in B \ (A� t); indeed

[B \B"(0)]nM�
t � [B \ (u� t)]n(M � t) = B"(0) \B \ (A� t):

As " was arbitrary, B \ (A� t) accumulates essentially at 0:
(b) Measure case. Let A;B be non-null Borel, with B accumulating

essentially at e:W.l.o.g. both are density-open (all points are density points).
By KBD, (A � t) \ B accumulates (simply) at e for almost all t 2 A: Fix
such a t:
Let " > 0 be given. Pick x 2 (A � t) \ B with jxj < "=2 (possible since

B \ (A� t) accumulates at e): As x and x� t are density points of B and A
(resp.) pick � < "=2 such that

jB \B�(x)j >
3

4
jB�(x)j =

3

4
jB�(e)j

and
jA \B�(x� t)j >

3

4
jB�(x� t)j =

3

4
jB�(e)j;

which is equivalent to

j(A� t) \B�(x)j >
3

4
jB�(e)j:

Then, by the inclusion-exclusion identity,

j(A� t) \B \B�(x)j >
3

2
jB�(e)j � jB�(e)j > 0:

But jxj < "=2 < "� � so jxj+ � < "; and thus B�(x) � B"(e); hence

j(A� t) \B \B"(e)j > 0:

As " > 0 was arbitrary, (A� t) \B is measurably large at e: �
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6 Applications: Additive combinatorics

Recall van der Waerden�s theorem [vdW] of 1927, that in any �nite colour-
ing of the natural numbers, one colour contains arbitrarily long arithmetic
progressions. This is one of Khintchine�s three pearls of number theory [Kh],
Ch. 1. It has had enormous impact, for instance in Ramsey theory ([Ram1];
[GRS], [HS], Ch. 18) and additive combinatorics [TV]; [HS], Ch. 14).
An earlier theorem of the same type, but for �nite partitions of the reals

into measurable cells, is immediately implied by the theorem of Ruziewicz
[Ruz] in 1925, quoted below. We deduce its category and measure forms from
the consecutive format of the KBD Theorem. The Baire case is new.

Theorem R (Ruziewicz�s Theorem [Ruz]; cf. [Kem] after Lemma 2.1
for the measure case). Given p positive real numbers k1; ::kp and any Baire
non-meagre/measurable non-null set T; there exist d; and points x0 < x1 <
::: < xp in T such that

xi � xi�1 = kid; i = 1; :::; p:

Proof. Given k1; ::kp; de�ne a null sequence by the condition zpm+i =
ki2

�m (i = 1; :::; p): Then there is t 2 T and m such that

ft+ zmp+1; :::; t+ zmp+pg � T:

Taking d = 2�m; x0 = t and

xi = t+ zmp+i = t+ kid;

we have x0 < x1 < ::: < xp and

xi+1 � xi = kid: �

Remarks. 1. If R is partitioned into a �nite number of Baire/measurable
cells, one cell is necessarily non-meagre/measurable, and so contains in par-
ticular arbitrarily long arithmetic progressions (take p arbitrarily large in
Theorem R).
2. By referring to the continuity properties of the functions fi in Theorem

K, Kemperman strengthens the Ruziewicz result in the measure case, by
establishing the existence of an upper bound for d; which depends on p and
T only.
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We now use almost completeness and the shifted-�lter property (Th. 14)
to prove the following.

Theorem BHW ([BHW] Th. 2.6 and 2.7). For a Baire/measurable set
A which accumulates essentially at 0; there exists in A a sequence of reals
ftng such that �F (t) :=

P
i2F ti 2 A for every F � !:

Proof. The theorem is upward hereditary so w.l.o.g. we may assume that
A is completely metrizable (for A measurable non-null we may pass down to
a compact non-null subset accumulating essentially at 0, and for A Baire
non-meagre we simply take away a meagre set to leave a Baire non-null G�
subset). Let � = �A be a complete metric equivalent to the Euclidean metric.
Denote by �-diam the � diameter of a set.
Referring to the shifted-�lter property of MBa

e or MLeb
e ; we choose in-

ductively decreasing sets An � A and points tn 2 An: Assume inductively
that:
(i) (An � tn) accumulates at 0;
(ii) �F =

P
i2F
ti 2 AmaxF ; for any �nite set of indices F � f0; 1; :::; ng;

(iii) �-diam(�F ) � 2�n for all �nite F � f0; 1; :::; ng:

By Theorem 14,

An+1 = An \ (An � tn) accumulates essentially at 0:

Let �n 2 (0; tn) be arbitrary (we will make a speci�c choice for �n later). By
above, we may pick

tn+1 2 An+1 \ (0; �n=2) such that (An+1 � tn+1) accumulates at 0:

Thus tn is chosen inductively with tn+1 2 An+1 \ (An+1 � tn+1) and
P
i2I
ti

convergent for any I. Also

1X
i=n+1

ti � tn+1
1X

i=n+1

2�i = �n2
�n < �n:

Evidently t1 2 A1: As An � An+1 � An� tn; we see that, as t1+ :::+ tn 2
An; we have t1 + ::: + tn+1 2 An+1: More generally, �F =

P
i2F
ti 2 AmaxF
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for any �nite set of indices F � f0; 1; :::; n + 1g. For " = 2�n�1 there is
� = �(") > 0 small enough such that for all �nite F � f0; 1; :::; n+ 1g

B�(�F ) � B�" (�F ):

Taking �n < �(2�n�1) in the inductive step above implies that, for any in�nite
set I; the sequence �I\f0;:::;ng is Cauchy under �; and so �I 2 A: �

Remark (Generalizations). Much of the material here (which extends
immediately from additive to multiplicative formats) can be taken over to
the more general contexts of Rd and beyond �to normed groups (including
Banach spaces), for which see [BOst12]. We choose to restrict here to the
line �Kingman�s setting �for simplicity, and in view of Mark Kac�s dictum:
No theory can be better than its best example.

Postscript. It is no surprise that putting a really good theorem and a
really good mathematician together may lead to far-reaching consequences.
We hope that John Kingman will enjoy seeing his early work on category
still in�uential forty-�ve years later. The link with combinatorics is much
more recent, and still pleases and surprises us �as we hope it will him, and
our readers.
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