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Abstract. Let H
[n] be the canonical half space in R

n, that is,

H
[n] = {(t1, . . . , tn) ∈ R

n \ {0} | ∀j, [tj 6= 0 and t1 = t2 = · · · = tj−1 = 0] ⇒ tj > 0} ∪ {0}.

Let M(H[n]) denote the Banach algebra of all complex Borel measures with support contained

in H
[n], with the usual addition and scalar multiplication, and with convolution ∗, and the

norm being the total variation of µ. It is shown that the maximal ideal space X(M(H[n]))

of M(H[n]), equipped with the Gelfand topology, is contractible as a topological space. In

particular, it follows that M(H[n]) is a projective free ring. In fact, for all subalgebras R

of M(H[n]) that satisfy a certain mild condition, it is shown that the maximal ideal space
X(R) of R is contractible. Several examples of such subalgebras are also given.
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1. Introduction

The aim of this paper is to show that the maximal ideal space X(R) of some Banach
subalgebras (possessing a certain mild property) of the convolution algebra M(H[n]) of all

complex Borel measures with support in the half space H
[n], is contractible. It follows then

that such Banach algebras are projective free rings. All the notation and precise definitions
are explained below.

In particular, our result can be viewed as a two-fold generalization:

(1) of the result in [9], from the one dimensional case (of the half space [0,+∞) of R) to

the n-dimensional case (the half space H
[n] of R

n).

(2) of the result in [8], from the specific subalgebra of almost periodic measures of M(H[n])
to all subalgebras of M(H[n]) satisfying a certain condition. (The result in [8] was
in turn a generalization of a one-dimensional result of A. Brudnyi [2] to the multi-
dimensional setting.)

Although the current result is a generalization of the result from the conference paper [9], it
does not follow automatically.

Definition 1.1. Let H
[n] ⊂ R

n be the canonical half space defined by

H
[n] = {(t1, . . . , tn) ∈ R

n \ {0} | ∀j, [t1 = t2 = · · · = tj−1 = 0, tj 6= 0] ⇒ tj > 0} ∪ {0}.

M(H[n]) denotes the set of all complex Borel measures with support contained in H
[n].

Then M(H[n]) is a complex vector space with addition and scalar multiplication defined in

the pointwise manner as usual. The space M(H[n]) becomes a complex algebra if convolution
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of measures (denoted henceforth by ∗) is taken as the operation of multiplication in the

algebra. With the norm of µ taken as the total variation of µ, M(H[n]) is a Banach algebra.
Recall that the total variation ‖µ‖ of µ is defined by

‖µ‖ = sup

∞
∑

k=1

|µ(Ek)|,

the supremum being taken over all partitions of H
[n], that is over all countable collections

(Ek)k∈N of Borel subsets of H
[n] such that Ek

⋂

Em = ∅ whenever m 6= k and
⋃

k∈N
Ek = H

[n].

The identity with respect to convolution in M(H[n]) is the Dirac measure δn
0 in R

n supported
at 0, given by

δn
0 (E) =

{

1 if 0 ∈ E,

0 if 0 6∈ E,

where E is any Borel subset of H
[n].

Definition 1.2. For µ ∈ M(H[n]), define the measures µ[k] ∈ M(H[k]), k = n, n− 1, . . . , 2, 1,

inductively as follows. Set µ[n] = µ. Suppose µ[k] ∈ M(H[k]) has been defined. Then

µ[k−1] ∈ M(H[k−1]) is defined by

µ[k−1](E) = µ({0} × E),

where E is any Borel subset of H
[k−1].

Given θ ∈ [0, 1) and µ ∈ M(H[k]), the measure µθ ∈ M(H[k]) is defined by

(1) µθ(E) =

∫

E

(1 − θ)t1dµ(t),

where E is any Borel subset of H
[k]. If θ = 1, and k > 1, then

µ1 := δ1
0 ⊗ µ[k−1],

while if k = 1, then set µ1 = µ({0})δ1
0 .

Notation 1.3. If R is a complex commutative unital Banach algebra, then X(R) denotes the
maximal ideal space of R. Thus X(R) is the set of all nonzero complex homomorphisms from
R to C. X(R) is endowed with the Gelfand topology, that is, the weak-∗ topology induced
from the dual space L(R; C) of the Banach space R.

If R is any Banach subalgebra of M(H[n]) which satisfies a mild assumption, namely Prop-
erty (P) in Theorem 1.5 below, then we will show that X(R) is contractible. The notion of
contractibility of a topological space is recalled below.

Definition 1.4. A topological space X is said to be contractible if there exists a continuous
map H : X×[0, 1] → X and an x0 ∈ X such that for all x ∈ X, H(x, 0) = x and H(x, 1) = x0.

Our main result is the following:

Theorem 1.5. Suppose that R is a Banach subalgebra of M(H[n]) satisfying the property

(P) For all µ ∈ R and all θ ∈ [0, 1], µθ, δ1
0 ⊗ µ

[n−1]
θ , . . . , δn−1

0 ⊗ µ
[1]
θ ∈ R.

Then the maximal ideal space X(R) equipped with the Gelfand topology is contractible.

In particular, by a result proved in [3], the above implies that R is a projective free ring.
The definition of a projective free ring is given below.
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Definition 1.6. A commutative ring R with identity is said to be projective free if every
finitely generated projective R-module is free. Recall that if M is an R-module, then

(1) M is free if M ∼= Rd for some integer d ≥ 0;
(2) M is projective if there is an R-module N and an integer d ≥ 0 such that M⊕N ∼= Rd.

In terms of matrices (with entries from R), the ring R is projective free iff for every square
matrix P satisfying P 2 = P , there exists an invertible matrix G such that

GPG−1 =

[

Ik 0
0 0

]

;

see [4, Proposition 2.6].

For example, it can be seen from the matricial definition that any field F is projective
free, since matrices P satisfying P 2 = P are diagonalizable over F. Quillen and Suslin
independently proved, that the polynomial ring over a projective free ring is again projective
free (see [5]), and so in particular, the polynomial ring F[x1, . . . , xn] is projective free, settling
Serre’s conjecture from 1955. In the context of Banach algebras, the following result was
shown recently [3, Corollary 1.4.(1)]:

Proposition 1.7. Let R be a semisimple complex commutative unital Banach algebra. If the
maximal ideal space X(R) (equipped with the Gelfand topology) of the Banach algebra R is
contractible, then R is a projective free ring.

Recall that a commutative unital Banach algebra is said to be semisimple if its radical
(that is, the intersection of all maximal ideals) is 0.

Proposition 1.8. Every Banach subalgebra R of M(H[n]) is semisimple.

This will be proved at the end of Section 2. In light of Proposition 1.7, the main result
given in Theorem 1.5 then implies the following.

Corollary 1.9. Let R be a Banach subalgebra of M(H[n]) satisfying the property (P) from
Theorem 1.5. Then R is projective free.

At the end of this article, we give examples of subalgebras R of M(H[n]) which satisfy the
property (P), which include several well-known classical convolution algebras of measures.
Thus we have (with the notation explained in Section 4):

Corollary 1.10. Let R be one of the Banach algebras L1(H[n]) + Cδn
0 , A(H[n]), APW n

Σ or
APn

Σ . Then the maximal ideal space X(R) is contractible. In particular, R is projective free.

The motivation for investigating whether or not convolution algebras of measures are pro-
jective free rings also arises from control theory, in the problem of stabilization of linear
systems, since if R is a projective free ring, then every stabilizable plant with a transfer func-
tion over the field of fractions of R has a doubly coprime factorization. The reader is referred
to [7], [3] for details.

The proof of Theorem 1.5 is given in Section 3, while examples are given in Section 4. But
first, a few technical results used in the sequel are proved in Section 2.

2. Preliminaries

In this section, a few auxiliary facts needed to prove the main result are shown.

Lemma 2.1. Let µ ∈ M(H[k]). Then
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(1) µθ ∈ M(H[k]).
(2) ‖µθ‖ ≤ ‖µ‖.
(3) (δk

0 )θ = δk
0 for all θ ∈ [0, 1] and all k = 1, . . . , n.

Proof. (1) and (3) follow immediately from the definitions. The inequality in (2) is shown
below. Note that ‖µθ‖ = sup

∑

|µθ(Ei)|, the supremum being taken over all partitions (Ei)i∈N

of H
[k]. There exists a Borel measurable function w such that d|µ|(t) = eiw(t)dµ(t). So

|µθ(Ei)| =

∣

∣

∣

∣

∫

Ei

(1 − θ)t1dµ(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ei

e−iw(t)(1 − θ)t1eiw(t)dµ(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ei

e−iw(t)(1 − θ)t1d|µ|(t)

∣

∣

∣

∣

≤

∫

Ei

1d|µ|(t) = |µ|(Ei).

Hence
∑

|µθ(Ei)| ≤
∑

|µ|(Ei) = |µ|(H[k]) = ‖µ‖. �

Lemma 2.2. If µ, ν ∈ M(H[k+1]) and k ≥ 1, then (µ ∗ ν)[k] = µ[k] ∗ ν [k].

Proof. Let E ⊂ H
[k] be a Borel set. Then

(µ ∗ ν)[k](E) = (µ ∗ ν)({0} × E) =

∫

{0}×E

µ(({0} × E) − t)dν(t)

=

∫

{0}×E

µ({0} × (E − τ))dν [k](τ)

=

∫

E

µ[k](E − τ)dν [k](τ) = (µ[k] ∗ ν [k])(E).

This completes the proof. �

Lemma 2.3. If µ, ν ∈ M(H[k+1]) where k ≥ 1, then (δ1
0 ⊗µ[k])∗ (δ1

0 ⊗ν [k]) = δ1
0 ⊗ (µ[k] ∗ν [k]).

Proof. (The notation Fµ is used for the Fourier transform of µ: (Fµ)(w) =
∫

eiwtdµ(t),

w ∈ R). For w1 ∈ R and ω ∈ R
k,

F((δ1
0 ⊗ µ[k]) ∗ (δ1

0 ⊗ ν [k]))(w1, ω) = (F(δ1
0 ⊗ µ[k]))(w1, ω) · (F(δ1

0 ⊗ ν [k]))(w1, ω)

= (Fδ1
0)(w1) · (Fµ[k])(ω) · (Fδ1

0)(w1) · (Fν [k])(ω)

= 1 · (Fµ[k])(ω) · 1 · (Fν [k])(ω) = (Fµ[k])(ω) · (Fν [k])(ω)

= (F(µ[k] ∗ ν [k]))(ω) = 1 · (F(µ[k] ∗ ν [k]))(ω)

= (Fδ1
0)(w1) · (F(µ[k] ∗ ν [k]))(ω)

= (F(δ1
0 ⊗ (µ[k] ∗ ν [k])))(w1, ω).

Taking the inverse Fourier transform, the claim follows. �

Proposition 2.4. If µ, ν ∈ M(H[k]), then for all θ ∈ [0, 1], (µ ∗ ν)θ = µθ ∗ νθ.

Proof. Let us first suppose that θ ∈ [0, 1). If E is a Borel subset of H, then

(µ ∗ ν)θ(E) =

∫

E

(1 − θ)t1d(µ ∗ ν)(t) =

∫∫

σ+τ∈E

σ,τ∈H
[k]

(1 − θ)σ1+τ1dµ(σ)dν(τ).
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On the other hand,

(µθ ∗ νθ)(E) =

∫

τ∈H[k]
µθ(E − τ)dνθ(τ) =

∫

τ∈H[k]





∫

σ∈E−τ

σ∈H[k]

(1 − θ)σ1dµ(σ)



 dνθ(τ)

=

∫∫

σ+τ∈E

σ,τ∈H
[k]

(1 − θ)σ1+τ1dµ(σ)dν(τ).

Now consider the case when θ = 1. If k = 1, the claim follows immediately, since

(µ ∗ ν)1 = (µ ∗ ν)({0})δ1
0 = µ({0}) · ν({0})δ1

0 = (µ({0})δ1
0 ) ∗ (ν({0})δ1

0) = µ1 ∗ ν1.

If k > 1, then

µ1 ∗ ν1 = (δ1
0 ⊗ µ[k−1]) ∗ (δ1

0 ⊗ ν [k−1]) = δ1
0 ⊗ (µ[k−1] ∗ ν [k−1]) = δ1

0 ⊗ (µ ∗ ν)[k−1] = (µ ∗ ν)1.

This completes the proof. �

The following result says that for a fixed µ ∈ M(H[k]), the map θ 7→ µθ : [0, 1] → M(H[k])
is continuous.

Proposition 2.5. If µ ∈ M(H[k]) and θ0 ∈ [0, 1], then lim
θ→θ0

µθ = µθ0 in M(H[k]).

Proof. 1◦ Consider first the case when θ0 ∈ [0, 1). Given an ǫ > 0, first choose an R > 0 large
enough so that |µ|(B) < ǫ, where B = {t ∈ R

k | ‖t‖2 ≤ R}. Let θ ∈ [0, 1). There exists a

Borel measurable function w such that d(µθ − µθ0)(t) = e−iw(t)d|µθ − µθ0|(t). Thus

‖µθ − µθ0‖ = |µθ − µθ0|(H
[k]) =

∫

H[k]

eiw(t)d(µθ − µθ0)(t)

=

∣

∣

∣

∣

∫

H[k]

eiw(t)d(µθ − µθ0)(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

H[k]

eiw(t)((1 − θ)t1 − (1 − θ0)
t1)dµ(t)

∣

∣

∣

∣

.

Hence

‖µθ − µθ0‖ ≤

∣

∣

∣

∣

∫

B∩H[k]

eiw(t)((1−θ)t1−(1−θ0)
t1)dµ(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

H[k]\B
eiw(t)((1−θ)t1−(1−θ0)

t1)dµ(t)

∣

∣

∣

∣

≤

(

max
t∈B∩H[k]

∣

∣(1 − θ)t1 − (1 − θ0)
t1

∣

∣

)

|µ|(B) + 2|µ|(H[k] \ B)

≤

(

max
t∈B∩H[k]

∣

∣(1 − θ)t1 − (1 − θ0)
t1

∣

∣

)

|µ|(H[k]) + 2ǫ.

But by the mean value theorem applied to the function θ 7→ (1 − θ)t1 ,

(1 − θ)t1 − (1 − θ0)
t1 = (θ − θ0) · t1 · (1 − c)t1−1 = (θ − θ0) · t1 ·

(1 − c)t1

1 − c
,

for some c (depending on t = t1, θ and θ0) in between θ and θ0. Since c lies between θ and
θ0, and since both θ and θ0 lie in [0, 1), and 0 ≤ t1 ≤ R, it follows that (1 − c)t1 ≤ 1 and

1

1 − c
≤ max

{

1

1 − θ
,

1

1 − θ0

}

.
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Thus using the above, and the fact that 0 ≤ t1 ≤ R,

max
t∈B∩H[k]

∣

∣(1 − θ)t1 − (1 − θ0)
t1

∣

∣ = max
t∈B∩H[k]

|θ − θ0| · |t1| · |(1 − c)t1 | ·
1

|1 − c|

≤ |θ − θ0| · R · 1 · max

{

1

1 − θ
,

1

1 − θ0

}

.

Hence

lim sup
θ→θ0

‖µθ − µθ0‖ ≤ lim sup
θ→θ0

((

max
t∈B∩H[k]

∣

∣(1 − θ)t1 − (1 − θ0)
t1

∣

∣

)

|µ|(H[k]) + 2ǫ

)

≤ lim sup
θ→θ0

(

|θ − θ0| · R · max

{

1

1 − θ
,

1

1 − θ0

}

· |µ|(H[k])

)

+ 2ǫ

= 0 · R ·
1

1 − θ0
|µ|(H[k]) + 2ǫ = 0 + 2ǫ = 2ǫ.

Since ǫ > 0 was arbitrary, it follows that lim sup
θ→θ0

‖µθ − µθ0‖ = 0. Also ‖µθ − µθ0‖ ≥ 0, and so

lim
θ→θ0

‖µθ − µθ0‖ = 0.

2◦ Now consider the case when θ0 = 1. Assume for the moment that k > 1 and µ[k−1] = 0.
We will show that lim

θ→1
µθ = 0 in M(H[k]). Given an ǫ > 0, first choose a r > 0 small enough

so that |µ|(B) < ǫ, where B = {t ∈ R
k | ‖t‖2 ≤ r}. (This is possible, since µ[k−1] = 0.) There

exists a Borel measurable function w such that dµθ(t) = e−iw(t)d|µθ|(t). Thus

‖µθ‖ = |µθ|(H
[k]) =

∫

H[k]
eiw(t)dµθ(t) =

∫

H[k]
eiw(t)(1 − θ)t1dµ(t) =

∣

∣

∣

∣

∫

H[k]
eiw(t)(1 − θ)t1dµ(t)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

B∩H[k]

eiw(t)(1 − θ)t1dµ(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

H[k]\B
eiw(t)(1 − θ)t1dµ(t)

∣

∣

∣

∣

≤ |µ|(B) + (1 − θ)r · |µ|(H[k] \ B) ≤ ǫ + (1 − θ)r · |µ|(H[k]).

Consequently, lim sup
θ→1

‖µθ −µθ0‖ ≤ ǫ. But ǫ > 0 was arbitrary, and so lim sup
θ→1

‖µθ‖ = 0. Since

‖µθ‖ ≥ 0, it follows that lim
θ→1

‖µθ‖ = 0.

If µk−1 6= 0, then define ν := µ − δ1
0 ⊗ µ[k−1] ∈ M(H[k]). It is clear that ν [k−1] = 0 and

νθ = µθ − δ1
0 ⊗ µ[k−1]. From the above, lim

θ→1
νθ = 0, and so lim

θ→1
µθ = δ1

0 ⊗ µ[k−1] = µ1 in

M(H[k]).

3◦ The case when θ0 = 1 and k = 1 is analogous to 2◦ above. �

Finally we prove that every Banach subalgebra R of M(H[n]) is semisimple.

Proof of Proposition 1.8. If s ∈ C, Re(s) ≥ 0, and k ∈ {1, . . . , n}, then Φ
[k]
s , given by

Φ[k]
s (µ) =

∫

{t | t=(0,τ)∈Rk×H[n−k]}
e−stkdµ(t) (µ ∈ R),

is an element of X(R), and so the kernel of Φ
[k]
s is a maximal ideal in R. But if Φ

[k]
s (µ) = 0

for all s and all k, then µ is zero on H
[n]. So the radical of R is 0. �
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3. Contractibility of X(R)

In this section we will prove our main result.

Proof of Theorem 1.5. Define H : X(R) × [0, 1] → X(R) as follows. If θ ∈ [0, 1], Φ ∈ X(R)
and µ ∈ R, then

(H(Φ, θ))(µ) =























Φ(µnθ) 0 ≤ θ < 1
n
,

Φ(δk
0 ⊗ µ

[n−k]
nθ−k) k

n
≤ θ < k+1

n
, k = 1, . . . , n − 1,

Φ(µ({0})δn
0 ) = µ({0}) θ = 1.

We show that H is well-defined. From the definition, H(Φ, 1) ∈ X(R) for all Φ ∈ X(R). If
θ ∈ [0, 1), then the linearity of H(Φ, θ) : R → C is obvious. Continuity of H(Φ, θ) follows from
the fact that Φ is continuous and ‖µθ‖ ≤ ‖µ‖ for θ ∈ [0, 1]. That H(Φ, θ) is multiplicative
is a consequence of Proposition 2.4, and the fact that Φ respects multiplication. Finally
(H(Φ, θ))(δn

0 ) = Φ((δn
0 )θ) = Φ(δn

0 ) = 1.
It is obvious that H(·, 0) is the identity map and H(·, 1) is a constant map.

Finally, we show below that H is continuous. Since X(M(H[n])) is equipped with the
Gelfand topology, we just have to prove that for every convergent net (Φi, θi)i∈I with limit

(Φ, θ) in X(M(H[n])) × [0, 1], there holds that (H(Φi, θi))(µ) → (H(Φ, θ))(µ). We have

|(H(Φi, θi))(µ)− (H(Φ, θ))(µ)| ≤ |(H(Φi, θi))(µ)− (H(Φi, θ))(µ)|+ |(H(Φi, θ)− (H(Φ, θ))(µ)|,

and from the definition of H, it is immediate that |(H(Φi, θ) − (H(Φ, θ))(µ)| → 0. So it
remains to show that |(H(Φi, θi))(µ) − (H(Φi, θ))(µ)| → 0. There is no loss of generality in
assuming that all the θi’s belong to one of the intervals

[

0, 1
n

)

,
[

1
n
, 2

n

)

, . . . ,
[

n−1
n

, 1
)

. But

then Proposition 2.5 yields the desired result: for example if θi ∈ [ k
n
, k+1

n
) and θ = k+1

n
, then

|(H(Φi, θi))(µ) − (H(Φi, θ))(µ)| = |Φi(δ
k
0 ⊗ µ

[n−k]
nθi−k − δk

0 ⊗ (δ1
0 ⊗ µ[n−k−1]))|

≤ ‖Φi‖ · ‖δ
k
0‖ · ‖µnθi−k − δ1

0 ⊗ µ[n−k−1]‖

≤ 1 · 1 · ‖µnθi−k − δ1
0 ⊗ µ[n−k−1]‖ → 0.

This completes the proof. �

Our definition of the map H is based on the following consideration, in the case of n = 1,
when H

[n] = H
[1] = [0,+∞). The result given below can be thought of as a generalization of

the Riemann-Lebesgue Lemma for functions fa ∈ L1(0,+∞) (that the limit as s → +∞ of
the Laplace transform of fa is 0):

Proposition 3.1. If µ ∈ M(H[1]), then lim
s→+∞

∫ +∞

0
e−stdµ(t) = µ({0}).

The set X(M(H[1])) contains the half plane C≥0 := {s ∈ C | Re(s) ≥ 0} in the sense that

each s ∈ C≥0, gives rise to the corresponding complex homomorphism Φs : M(H[1]) → C,
given simply by point evaluation of the Laplace transform of µ at s:

µ 7→ Φs(µ) =

∫ +∞

0
e−stdµ(t), µ ∈ M(H[1]).
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If we imagine s tending to +∞ along the real axis we see from Proposition 3.1, that Φs starts
looking more and more like the complex homomorphism Φ+∞ given by

µ 7→ Φ+∞(µ) := µ({0}), µ ∈ M(H[1]).

So we may define H(Φs, θ) = Φs−log(1−θ), which would suggest that at least the part C≥0

of X(M(H[1])) is contractible to Φ+∞. But we see that we can view the action of H(Φs, θ)
defined above as follows:

(H(Φs, θ))(µ) = Φs−log(1−θ)(µ) =

∫ +∞

0
e−(s−log(1−θ))tdµ(t) =

∫ +∞

0
e−st(1−θ)tdµ(t) = Φs(ν),

where ν is the measure such that dν(t) = (1 − θ)tdµ(t). This motivates the definition of µθ

given in (1), and the definition of H in the proof of Theorem 1.5.

4. Examples

As specific examples of R in Theorem 1.5, we have the following:

4.1. The algebra L1(H[n])+Cδn
0 . Consider the Banach subalgebra L1(H[n])+Cδn

0 of M(H[n]),
consisting of all complex Borel measures of the type µa + αδn

0 , where µa is absolutely contin-
uous (with respect to the Lebesgue measure) and α ∈ C. It can be checked that this Banach

subalgebra of M(H[n]) has the property (P) in the statement of Theorem 1.5.

4.2. The algebra A(H[n]). The Banach subalgebra A(H[n]) of M(H[n]) consists of all com-
plex Borel measures that do not have a singular non-atomic part. Then it can be verified
that A(H[n]) also possesses the property (P). (So in the case when n = 1, we recover the main
result in [10], but this time without recourse to the explicit description of the maximal ideal
space.)

4.3. Algebras of almost periodic functions. The algebra APn of complex valued (uni-
formly) almost periodic functions is, by definition, the smallest closed subalgebra of L∞(Rn)

(with all operations defined pointwise), that contains all the functions eλ(x) := ei〈λ,x〉. Here
the variable x = (x1, . . . , xn), the parameter λ = (λ1, . . . , λn) ∈ R

n, and 〈λ, x〉 :=
∑n

k=1 λkxk.

For any f ∈ APn, its Bohr-Fourier series is defined by the formal sum
∑

λ fλei〈λ,x〉 (x ∈ R
n),

where

fλ := lim
N→∞

1

(2N)n

∫

[−N,N ]n
e−i〈λ,x〉a(x)dx, λ ∈ R

n,

and the sum
∑

λ fλei〈λ,x〉 is taken over the set σ(f) := {λ ∈ R
n | fλ 6= 0}, called the Bohr-

Fourier spectrum of f . The Bohr-Fourier spectrum of every f ∈ APn is at most a countable
set.

The almost periodic Wiener algebra APW n is defined as the set of all APn such that
the Bohr-Fourier series

∑

λ fλei〈λ,x〉 of f converges absolutely. The almost periodic Wiener
algebra is a Banach algebra with pointwise operations and the norm ‖f‖ :=

∑

λ∈Rn |fλ|. Let
∆ be a nonempty subset of R

n. Denote

APn
∆ = {f ∈ APn | σ(f) ⊂ ∆}

APW n
∆ = {f ∈ APW n | σ(f) ⊂ ∆}.

If ∆ is an additive subset of R
n, then APn

∆ (respectively APW n
∆) is a Banach subalgebra of

APn (respectively APW n). Moreover, if 0 ∈ ∆, then APn
∆ and APW n

∆ are also unital.
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Let Σ ⊂ H
[n] be an additive semigroup (if λ, µ ∈ Σ, then λ + µ ∈ Σ) and suppose 0 ∈ Σ.

The Banach algebra APW n
Σ is isomorphic to the following Banach subalgebra R of M(H[n]):

R =

{

∑

λ

fλδn
0 (λ)

∣

∣

∣

∣

∑

λ

fλei〈λ,x〉 ∈ APW n
Σ

}

.

In the above, δn
0 (λ) ∈ M(H[n]) denotes the Dirac measure supported at λ ∈ H

[n], that is,

(δn
0 (λ))(E) =

{

1 if λ ∈ E,

0 if λ 6∈ E,

where E is any Borel subset of H
[n]. It can be seen that the subalgebra R has the property

(P). Thus the maximal ideal space of APW n
Σ is contractible. The maximal ideal spaces of

APn
Σ and APW n

Σ are homeomorphic as topological spaces; see for example [1, Theorem 3.1].
So the maximal ideal space of APn

Σ is contractible as well. So we recover the main result

from [8]. (In [8], instead of the canonical half space H
[n], more general half spaces S were

considered. There a subset S of R
n was called a half space in R

n if it satisfied the properties
S ∪ (−S) = R

n, S ∩ (−S) = {0}, x + y ∈ S for all x, y ∈ S, αx ∈ S for all x ∈ S and α ≥ 0.

However, it was shown in [8, Proposition 1.2] that any such half space S is of the form ZH
[n]

for an invertible matrix Z ∈ R
n×n.)

Summarizing the results of this section, we have shown Corollary 1.10 as a particular
consequence of our main result Theorem 1.5.
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