CONTRACTIBILITY OF THE MAXIMAL IDEAL SPACE
OF ALGEBRAS OF MEASURES IN A HALF-SPACE

AMOL SASANE

ABSTRACT. Let HI™ be the canonical half space in R”, that is,
H™ = {(t1,...,tn) € R"\ {0} | V], [t; #Oand t; =ty =--- =t;_; = 0] = t; > 0} U {0}.

Let ./\/l(]HI["]) denote the Banach algebra of all complex Borel measures with support contained
in H[”], with the usual addition and scalar multiplication, and with convolution *, and the
norm being the total variation of . It is shown that the maximal ideal space X (M (HM))
of M(H[”]), equipped with the Gelfand topology, is contractible as a topological space. In
particular, it follows that M(H[”]) is a projective free ring. In fact, for all subalgebras R
of ./\/l(]HI["]) that satisfy a certain mild condition, it is shown that the maximal ideal space
X(R) of R is contractible. Several examples of such subalgebras are also given.
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1. INTRODUCTION

The aim of this paper is to show that the maximal ideal space X(R) of some Banach
subalgebras (possessing a certain mild property) of the convolution algebra M(HM) of all
complex Borel measures with support in the half space H™ | is contractible. It follows then
that such Banach algebras are projective free rings. All the notation and precise definitions
are explained below.

In particular, our result can be viewed as a two-fold generalization:

(1) of the result in [9], from the one dimensional case (of the half space [0,400) of R) to
the n-dimensional case (the half space HI™ of R™).

(2) of the result in [8], from the specific subalgebra of almost periodic measures of M(HM)
to all subalgebras of M(HI[™) satisfying a certain condition. (The result in [8] was
in turn a generalization of a one-dimensional result of A. Brudnyi [2] to the multi-
dimensional setting.)

Although the current result is a generalization of the result from the conference paper [9], it
does not follow automatically.

Definition 1.1. Let H ¢ R™ be the canonical half space defined by
HM = {(t1,...,t,) € R"\{0} | V), 1 =ta=---=1t;1 =0, t; #0] = t; > 0} U {0}.

M(HM) denotes the set of all complex Borel measures with support contained in H™.
Then M(HM) is a complex vector space with addition and scalar multiplication defined in
the pointwise manner as usual. The space M(HM) becomes a complex algebra if convolution
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of measures (denoted henceforth by x) is taken as the operation of multiplication in the
algebra. With the norm of p taken as the total variation of y, M(HIM™) is a Banach algebra.
Recall that the total variation ||| of p is defined by

lpll = sup > (B,

k=1
the supremum being taken over all partitions of HM™, that is over all countable collections
(Ep)ken of Borel subsets of HI™ such that Ej, () E,, = # whenever m # k and Uren Er = H",
The identity with respect to convolution in M(H™) is the Dirac measure 0y in R™ supported

at 0, given by
n |1 if 0€E,
50(E)_{0 if 0¢ F,

where F is any Borel subset of HI™.
Definition 1.2. For p € M(H™), define the measures p* € M(H¥), k =n,n—1,...,2,1,

inductively as follows. Set ul™ = u. Suppose u¥l € M(H®) has been defined. Then
plt=1 e M(HF-1) is defined by

plU(E) = p({0} x B),
where E is any Borel subset of H*—1I,
Given 6 € [0,1) and p € M(HH), the measure pg € M(HH ) is defined by

1) o (E) = /E (1 - 0)"dp(t),

where F is any Borel subset of HI*/. If = 1, and k > 1, then

= 0g @ plt,

while if k = 1, then set 3 = u({0})5;.
Notation 1.3. If R is a complex commutative unital Banach algebra, then X (R) denotes the
maximal ideal space of R. Thus X (R) is the set of all nonzero complex homomorphisms from

R to C. X(R) is endowed with the Gelfand topology, that is, the weak-* topology induced
from the dual space L(R;C) of the Banach space R.

If R is any Banach subalgebra of M(HM) which satisfies a mild assumption, namely Prop-
erty (P) in Theorem 1.5 below, then we will show that X (R) is contractible. The notion of
contractibility of a topological space is recalled below.

Definition 1.4. A topological space X is said to be contractible if there exists a continuous
map H : X x[0,1] — X and an z¢p € X such that for all z € X, H(z,0) = z and H(z,1) = xy.
Our main result is the following:
Theorem 1.5. Suppose that R is a Banach subalgebra of M(HM) satisfying the property
(P) Forall p€ Rand all 6 € [0,1), pg, i @pul ", ... 2 eull eR.
Then the maximal ideal space X(R) equipped with the Gelfand topology is contractible.

In particular, by a result proved in [3], the above implies that R is a projective free ring.
The definition of a projective free ring is given below.
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Definition 1.6. A commutative ring R with identity is said to be projective free if every
finitely generated projective R-module is free. Recall that if M is an R-module, then

(1) M is free if M = R? for some integer d > 0;

(2) M is projective if there is an R-module N and an integer d > 0 such that M @& N = R,
In terms of matrices (with entries from R), the ring R is projective free iff for every square
matrix P satisfying P2 = P, there exists an invertible matrix G such that

-1 | Ik 0|,
aro =[5 0],

see [4, Proposition 2.6].

For example, it can be seen from the matricial definition that any field F is projective
free, since matrices P satisfying P? = P are diagonalizable over F. Quillen and Suslin
independently proved, that the polynomial ring over a projective free ring is again projective
free (see [5]), and so in particular, the polynomial ring F[z1,. .., x,] is projective free, settling
Serre’s conjecture from 1955. In the context of Banach algebras, the following result was
shown recently [3, Corollary 1.4.(1)]:

Proposition 1.7. Let R be a semisimple complex commutative unital Banach algebra. If the
mazximal ideal space X(R) (equipped with the Gelfand topology) of the Banach algebra R is
contractible, then R is a projective free ring.

Recall that a commutative unital Banach algebra is said to be semisimple if its radical
(that is, the intersection of all maximal ideals) is 0.

Proposition 1.8. Fvery Banach subalgebra R of M(H["]) is semisimple.

This will be proved at the end of Section 2. In light of Proposition 1.7, the main result
given in Theorem 1.5 then implies the following.

Corollary 1.9. Let R be a Banach subalgebra of M(HM) satisfying the property (P) from
Theorem 1.5. Then R is projective free.

At the end of this article, we give examples of subalgebras R of M(H!™) which satisfy the
property (P), which include several well-known classical convolution algebras of measures.
Thus we have (with the notation explained in Section 4):

Corollary 1.10. Let R be one of the Banach algebras L'(H™) + C83, AHM), APWE or
AP3:. Then the maximal ideal space X(R) is contractible. In particular, R is projective free.

The motivation for investigating whether or not convolution algebras of measures are pro-
jective free rings also arises from control theory, in the problem of stabilization of linear
systems, since if R is a projective free ring, then every stabilizable plant with a transfer func-
tion over the field of fractions of R has a doubly coprime factorization. The reader is referred
to [7], [3] for details.

The proof of Theorem 1.5 is given in Section 3, while examples are given in Section 4. But
first, a few technical results used in the sequel are proved in Section 2.

2. PRELIMINARIES

In this section, a few auxiliary facts needed to prove the main result are shown.

Lemma 2.1. Let p € M(H¥). Then
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(1) po € M(HM).

(2) [luall < llpell-
(3) (05)g = Ok for all @ € [0,1] and allk =1,...,n

Proof. (1) and (3) follow immediately from the definitions. The inequality in (2) is shown
below. Note that ||pg|| = sup > |pe(E;)|, the supremum being taken over all partitions (E;);en
of HI¥. There exists a Borel measurable function w such that d|u|(t) = e ®du(t). So

e = | [ a-orauw| = | [ 0= o Oau
- / e—iw<t><1—e>“d|u|<t>'§ / 1|l () = |1l (E).
E; L;
Hence 3 |yo(E:)| < 3 11l (E:) = [l (HH) = ||u]. 0

Lemma 2.2. If p,v € M(HF) and k > 1, then (u* v)F = plFl 5 pIF,

Proof. Let E C HI¥ be a Borel set. Then
(e E) = (uen)(0) x B)= [ u(({0) x B) - (1)
{0}xE
= [ o) x (B - )an(r)
{0}xE
= [ WFUE = () = () ).
E

This completes the proof. ]
Lemma 2.3. If y,v € M(HF) where k > 1, then (6§ @ p¥) x (6§ @ vF) = 63 @ (¥ * vlk]).

Proof. (The notation Fy is used for the Fourier transform of u: (Fu)(w) = [e™tdu(t),
w € R). For w; € R and w € R¥,

F((& © p™) + (85 @ M) (wi,0) = (F(65 © nM)(wr,w) - (F(5 © ) (wr,w)

= 1 (FpM)(w) -1 (FM) () = (Ful) () - (FrH)(w)
(FM 5 ) () = 1- (F(uM + M) (w)
(Fog) (wr) - (F(u 5 vM)) (w)
= (F(&5 @ (M 5 1)) (w1, w)
Taking the inverse Fourier transform, the claim follows. U

Proposition 2.4. If u,v € M(H), then for all 6 € [0,1], (u*v)g = pg * vp.

Proof. Let us first suppose that § € [0,1). If F is a Borel subset of H, then

(s 0)o(B) = [ (1= 0)dGun ) //+E — 07 dpu( o) (7).

o, reHlk
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On the other hand,

(1o« w0)(E) = /&MuAETmWw»/;MM<ﬁg;41mﬂww@)dwv>

oeHl¥l
_ / [j e (1= 07 du(o)dv(r).

O',TGH[k]

Now consider the case when 8 = 1. If & = 1, the claim follows immediately, since
()1 = (pxv) ({015 = p({0}) - ({018 = (1({0})8) * (¥({0})35) = a1 * v1.
If kK > 1, then
pa vy = (85 @ pl ) s (35 @ 1) = 65 @ (u T ) = 6 @ ()P = ()
This completes the proof. ]

The following result says that for a fixed p € M(H), the map 6 — pg : [0,1] — M (HH)
is continuous.

Proposition 2.5. If u € M(HF) and 6y € [0,1], then gling tg = fug, in M(HIE).
—Vo
Proof. 1° Consider first the case when 6y € [0,1). Given an € > 0, first choose an R > 0 large

enough so that |u|(B) < ¢, where B = {t € R* | ||t|ls < R}. Let # € [0,1). There exists a
Borel measurable function w such that d(ug — pg,)(t) = e ™ d|ug — g, |(t). Thus

Hw—%nzuwwwwm=@ﬁmww—wmw

/ (g — MGO)(’f)‘ =
Hl*]

L e =0 (= g
HlF]
Hence

g — pooll <

[ Oy 100 duto)| +
BNHL¥]

[ 00 (160 o)
H

¥\ B

= <te%1r?§[k1 (1= 0)" — (1= 60)" |> |1l (B) + 2|l (HF\ B)

< (s, 1000 = 1= 000 ) ol + 2.

But by the mean value theorem applied to the function 6 — (1 — ),

(1—c)
1—c '’

(1—60) —(1 =0 =0 —6p)-t1-(1—c)" " =(0—6) -t -

for some ¢ (depending on t = ¢;, 6 and 6y) in between 6 and 6. Since c lies between 6 and
6o, and since both @ and 6y lie in [0,1), and 0 < ¢; < R, it follows that (1 —¢)"* <1 and

1 - 1 1
—_— max§ ——, ————— (.
1—c™ 1—971—90
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Thus using the above, and the fact that 0 < t; < R,

max [(1—6)" —(1—600)"| = max [0—6 |t1] |(1—c)"]-
(B [A-0)" (=6 = max, 10 —6o| - [r] |1~ )" |- 7
1 1
< 10—6| R-1- — .
< 10—6]-R maX{l—H’l—Ho}
Hence
limsup ||jug — pa, || < limsup<< max |(1—9)t1—(1—90)t1|>]ul(H[k})+2e>
0—0o 0—0q te BNHI¥]

1 1
< 3 — . . - . [k}

1
= 0-R-———|p|(H™) 4+ 2¢ = 04 2¢ = 2e.
1— 6,

Since € > 0 was arbitrary, it follows that limsup ||pg — pe, || = 0. Also || — e, || > 0, and so

60—0p
li — =0.
i [l — g |
2° Now consider the case when 6y = 1. Assume for the moment that & > 1 and plF=1 = 0.
We will show that giH} o = 0 in M(H¥!). Given an e > 0, first choose a r > 0 small enough
so that |u|(B) < €, where B = {t € R* | ||t||2 < r}. (This is possible, since u*~1) =0.) There

exists a Borel measurable function w such that dpug(t) = e=*®d|ug|(t). Thus

lusl = ol = / 0 dyg (1) = / O (1~ 0)1 dpu(t) = / O (1 0)" dy (1)
HlF] HIF] HK]

<

/ eiw(t)(l . H)tld,u(t)‘ + / eiw(t)(l _ H)tldu(t)‘
BHIK) HIF\B

< [ul(B) + (1= 0) - [ul (B \ B) < e+ (1 — )" - 1Y),
Consequently, lim sup || g — 16, || < €. But € > 0 was arbitrary, and so limsup ||ug|| = 0. Since
6—1 —

lleg|| > 0, it follows that gin} || = 0.

If up_1 # 0, then define v := p — 6} @ plF~1 € M(HF). Tt is clear that v/*~1) = 0 and
vg = g — 0§ ® pF=1. From the above, gini vy = 0, and so gini te = 6 ® pF=1 = 4y in

M(HIF],
3° The case when 6y = 1 and k = 1 is analogous to 2° above. ]

Finally we prove that every Banach subalgebra R of M(HM) is semisimple.
Proof of Proposition 1.8. If s € C, Re(s) >0, and k € {1,...,n}, then @[Sk}, given by

o) = e~ du(t)  (p€R),

/{t | t=(0,7)ERF x H[n—F]}

is an element of X (R), and so the kernel of oM is a maximal ideal in R. But if & (u) =0
for all s and all k, then y is zero on H™. So the radical of R is 0. g
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3. CONTRACTIBILITY OF X (R)
In this section we will prove our main result.

Proof of Theorem 1.5. Define H : X(R) x [0,1] — X (R) as follows. If § € [0,1], ® € X(R)
and p € R, then

D (finp) 0<h<i

(H(®,0)(1n) = B(sk @ ul" ") Ecpabtl b1 n—1,

S~

O(u({01)dy) = p({0}) =1

We show that H is well-defined. From the definition, H(®,1) € X(R) for all & € X(R). If
6 € [0,1), then the linearity of H(®,0) : R — C is obvious. Continuity of H(®,#) follows from
the fact that ® is continuous and ||ug|| < ||| for 8 € [0,1]. That H(®,0) is multiplicative
is a consequence of Proposition 2.4, and the fact that ® respects multiplication. Finally
(H(®,0))(38) = D((6)s) = D(5E) — L.

It is obvious that H(-,0) is the identity map and H(-,1) is a constant map.

Finally, we show below that H is continuous. Since X (M (H™)) is equipped with the
Gelfand topology, we just have to prove that for every convergent net (®;,0;);c; with limit
(®,0) in X(M(HM)) x [0,1], there holds that (H(®;,6;))(u) — (H(®,0))(1). We have

|(H (®3,0:)) (1) — (H (2, 0)) ()| < |(H (i, 0:)) (1) — (H (P4, 0)) ()| + [(H (@3, 0) — (H(®,0)) (1)l

and from the definition of H, it is immediate that |(H(®;,0) — (H(®,0))(n)] — 0. So it
remains to show that |(H(®;,60;))(p) — (H(®;,60))(u)] — 0. There is no loss of generality in

assuming that all the 6;’s belong to one of the intervals [0, %) ) [%, %) ) e ["T_l, 1). But
then Proposition 2.5 yields the desired result: for example if 6; € [%, k;’;l) and 0 = k;’;l, then
n—k n—k—
[(H(@,03)) (1) = (H(®@,0)) ()] = @4(5F @ plip ™) = 8 @ (3 @ pln=H=1))
< N ®ll - 1651 - Nl pnoi—r — 65 @ pF 1)
< 11 gk — 65 @ p"F ) — 0.

This completes the proof. ]

Our definition of the map H is based on the following consideration, in the case of n = 1,
when HI" = HIY = [0, +00). The result given below can be thought of as a generalization of
the Riemann-Lebesgue Lemma for functions f, € L'(0,+oco) (that the limit as s — 400 of
the Laplace transform of f, is 0):

“+oo
Proposition 3.1. If p € M(HMY), then lim e Stdu(t) = u({0}).

S§——+00 0

The set X (M(HM)) contains the half plane C-, := {s € C | Re(s) > 0} in the sense that
each s € C,,, gives rise to the corresponding complex homomorphism ®; : M(Hm) — C,
given simply by point evaluation of the Laplace transform of u at s:

“+oo
i D (p) = / e~ tdu(t), pe M(HM).
0
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If we imagine s tending to +oo along the real axis we see from Proposition 3.1, that g starts
looking more and more like the complex homomorphism ®_ . given by

p @ (n) = p({0}), peM@EM).
So we may define H(®s,0) = ®,_j,4(1_g), Which would suggest that at least the part C.,

of X(M(HM)) is contractible to @, ... But we see that we can view the action of H(®s,0)
defined above as follows:

+o0 +o0
(H(®0,0)) (1) = By 1og1a) (1) = /0 e~ (s los -0t g, (1) — /0 e~ (1-0)du(t) = B4(v),

where v is the measure such that dv(t) = (1 — 0)'du(t). This motivates the definition of sy
given in (1), and the definition of H in the proof of Theorem 1.5.

4. EXAMPLES

As specific examples of R in Theorem 1.5, we have the following:

4.1. The algebra L' (H™)4Csp. Consider the Banach subalgebra L' (H™)+Cd3 of M(HIM),
consisting of all complex Borel measures of the type i, + adfy, where p, is absolutely contin-
uous (with respect to the Lebesgue measure) and o € C. It can be checked that this Banach
subalgebra of M(H™) has the property (P) in the statement of Theorem 1.5.

4.2. The algebra A(H!™). The Banach subalgebra A(H™) of M(HM) consists of all com-
plex Borel measures that do not have a singular non-atomic part. Then it can be verified
that A(H™) also possesses the property (P). (So in the case when n = 1, we recover the main
result in [10], but this time without recourse to the explicit description of the maximal ideal
space.)

4.3. Algebras of almost periodic functions. The algebra AP™ of complex valued (uni-
formly) almost periodic functions is, by definition, the smallest closed subalgebra of L>°(R")
(with all operations defined pointwise), that contains all the functions ey (z) := ™). Here
the variable z = (z1,...,2,), the parameter A = (A1,...,\,) € R", and (A, z) := >, _; A\pZy.
For any f € AP", its Bohr-Fourier series is defined by the formal sum ), fretde) (x € R™),

where
fr:= lim ;/ TN (z)de, A eR"
N—oo (ZN)n [~ N,N]» ’ ’
and the sum Y, fre'™® is taken over the set o(f) := {\ € R™ | fy # 0}, called the Bohr-
Fourier spectrum of f. The Bohr-Fourier spectrum of every f € AP™ is at most a countable
set.

The almost periodic Wiener algebra APW™ is defined as the set of all AP" such that
the Bohr-Fourier series ), frefN) of f converges absolutely. The almost periodic Wiener
algebra is a Banach algebra with pointwise operations and the norm [|f|| := > ycpn |fA|- Let
A be a nonempty subset of R™. Denote

APx = {fe€AP"|o(f) C A}
APWE = {fe APW™|o(f) C Al.

If A is an additive subset of R", then APY (respectively APW}) is a Banach subalgebra of
AP" (respectively APW™). Moreover, if 0 € A, then APR and APW} are also unital.
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Let ¥ ¢ H™ be an additive semigroup (if \,u € X, then A + p € X) and suppose 0 € 3.
The Banach algebra APW is isomorphic to the following Banach subalgebra R of M (HI™):

R= { > KN ‘ D he't e prg}.
A A

In the above, 0f()) € M(HM) denotes the Dirac measure supported at A € H™, that is,

@@ ={ 5§

where E is any Borel subset of HI™. It can be seen that the subalgebra R has the property
(P). Thus the maximal ideal space of APW3 is contractible. The maximal ideal spaces of
AP and APW3} are homeomorphic as topological spaces; see for example [1, Theorem 3.1].
So the maximal ideal space of AP is contractible as well. So we recover the main result
from [8]. (In [8], instead of the canonical half space HI™, more general half spaces S were
considered. There a subset S of R was called a half space in R™ if it satisfied the properties
SU(=S)=R", SN(=S5)={0}, z+ye Sforal z,y € S, ax € S forall z € S and a > 0.
However, it was shown in [8, Proposition 1.2] that any such half space S is of the form ZHM
for an invertible matrix Z € R™*™.)

Summarizing the results of this section, we have shown Corollary 1.10 as a particular
consequence of our main result Theorem 1.5.
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