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Abstract. Let E , E∗ be Hilbert spaces. Given a Hilbert space H of holomorphic functions
in a domain Ω in Cd, consider the multiplier space MH(E , E∗). It is shown that for “nice
enough” H, the following statements are equivalent for f ∈ MH(E , E∗):
(1) There exists a g ∈ MH(E∗, E) such that g(z)f(z) = IE for all z ∈ Ω.
(2) There exists a Hilbert space Ec and fc ∈ MH(Ec, E∗) such that

F (z) :=
[

f(z) fc(z)
]

: E ⊕ Ec → E∗

is invertible for every z ∈ Ω, that is, there exists a function G ∈ MH(E∗, E ⊕ Ec) such
that G(z)F (z) = IE⊕Ec

and F (z)G(z) = IE∗
for all z ∈ Ω.

Moreover, we characterize the spaces H for which (1) and (2) above are equivalent. Since this
characterization has a close relation with Beurling’s theorem for shift invariant subspaces of
H2, we call this property of H the weak Beurling property. We show that all reproducing
kernel Hilbert spaces with complete Nevanlinna-Pick kernels have the weak Beurling property.
This produces a large class of examples for which (1) and (2) are equivalent. We also give an
example of another space with the weak Beurling property.
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1. Introduction

The classical result of Tolokonnikov says that if E ⊂ E∗ are Hilbert spaces and dim E <∞,
then the following two statements are equivalent :

(1) (Left invertibility) There exists g ∈ H∞(D,L(E∗, E)) such that g(z)f(z) = IE for all
z ∈ D.

(2) (Completing to an isomorphism) There exists F ∈ H∞(D,L(E∗, E∗)) such that F |E = f

and F−1 ∈ H∞(D,L(E∗, E∗)).

Here H∞(E , E∗) denotes the Banach space of functions f : D → L(E , E∗) that are holomor-
phic and bounded, equipped with the supremum norm ‖f‖∞ := supz∈D

‖f(z)‖L(E,E∗). This
surprising fact has far reaching generalizations and has a relation to Nevanlinna-Pick kernels,
which is the content of this paper.

When E and E∗ are both finite dimensional, then this lemma simply says that the ring
H∞ (of scalar functions, with pointwise addition and multiplication) is a Hermite ring. For
background on Hermite rings, see [7]. For a proof of Tolokonnikov’s result, see [14] or [15].
Tolokonnikov’s Lemma was generalized to the case when E is not necessarily finite dimensional
by Sergei Treil in [16].
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For d ≥ 1, consider a domain Ω in Cd. Given a Banach space X, denote by O(Ω, X) the
vector space of holomorphic functions from Ω to X. Suppose H is a Hilbert space whose
elements are holomorphic functions on Ω and which contains the constant functions. There
is a natural way of identifying H ⊗ E with a Hilbert space H(E) which consists of E-valued
holomorphic functions on Ω. Let

(1) MH(E , E∗) = {ϕ ∈ O(Ω,L(E , E∗)) | ϕf ∈ H(E∗) for all f ∈ H(E)}.

A straightforward application of the closed graph theorem shows that for each ϕ ∈ M(E , E∗),
the induced multiplication operator Mϕ : H(E) → H(E∗), f 7→ ϕf is continuous. Equip
MH(E , E∗) with a norm by defining ‖ϕ‖ to be the operator norm ofMϕ. This makes MH(E , E∗)
a Banach space which we shall call the multiplier space.

Since throughout the paper all Hilbert spaces are assumed to be separable, we always
assume that in any Hilbert space an orthonormal basis is fixed, and so any operator A in
L(E , E∗) can be identified with its (possibly infinite) matrix. Thus besides the usual involution

A 7→ A∗ : L(E , E∗) → L(E∗, E)

(here A∗ is the adjoint of A), we also have the following operations:

A 7→ A⊤ (transpose of the matrix) and

A 7→ A (complex conjugation entrywise of the matrix).

So A⊤ = (A∗). Note that if ϕ ∈ MH(E , E∗), then ϕ⊤ defined by

ϕ⊤(z) = (ϕ(z))⊤ = (ϕ(z))∗, z ∈ Ω,

is holomorphic in Ω and ϕ⊤ ∈ MH(E∗, E).

Definition 1.1. A map f ∈ MH(E , E∗) is said to be left-invertible if there exists a function
g ∈ MH(E∗, E) such that g(z)f(z) = IE for all z ∈ Ω.

Definition 1.2. The Hilbert space H is said to have the weak Beurling property if for every
g ∈ MH(E∗, E) such that g⊤ ∈ MH(E , E∗) is left-invertible, there exists a Hilbert space Ec and
a function Θ ∈ MH(Ec, E∗) such that kerMg = ran MΘ.

The terminology of “weak Beurling” property is motivated by the terminology used by
Tolokonnikov in [15]. Our main result is the following:

Theorem 1.3. Let H be a Hilbert space. Then the following statements are equivalent:

(1) H satisfies the weak Beurling property.
(2) For every f ∈ MH(E , E∗), the following are equivalent:

(a) There exists a function g ∈ MH(E∗, E) such that g(z)f(z) = IE for all z ∈ Ω.
(b) There exists a Hilbert space Ec and a function fc ∈ MH(Ec, E∗) such that

F (z) :=
[
f(z) fc(z)

]
: E ⊕ Ec → E∗

is invertible for each z ∈ Ω, that is, there exists a function G ∈ MH(E∗, E ⊕ Ec)
such that such that G(z)F (z) = IE⊕Ec

and F (z)G(z) = IE∗ for all z ∈ Ω.
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Our result is a generalization of Tolokonnikov’s lemma because in the case when Ω is the
open unit disk D in the complex plane and H is the Hardy space H2, then H has the weak-
Beurling property by virtue of Beurling-Lax-Halmos theorem. In this case, MH(E , E∗) is
H∞(D, (E , E∗)).

Tolokonnikov’s Lemma for algebras of holomorphic functions is relevant in control theory,
where it plays an important role in the problem of stabilization of linear systems. Indeed,
Tolokonnikov’s Lemma implies that if a transfer function G has a right (or left) coprime factor-
ization, then G has a doubly coprime factorization, and the standard Youla parameterization
yields all stabilizing controllers for G. For background on the relevance of Tolokonnikov’s
Lemma in control theory and further details, we refer the reader to Vidyasagar [17].

The plan of the paper is the following. In Section 2, we prove the main result. In Section 3,
we show that any reproducing kernel Hilbert space with a complete Nevanlinna-Pick kernel
has the weak Beurling property. Section 4 shows that a weighted Hardy space of the half
plane has the weak Beurling property. Hence an application of our main result shows that
analogues of Tolokonnikov’s lemma hold for the multiplier algebras of these spaces.

2. Proof of Theorem 1.3

Proof. (1)⇒(2): That the statement (b) implies statement (a) is obvious. We prove (a)⇒(b)
below.

So suppose that f is left-invertible, that is, there exists a g ∈ MH(E∗, E) such that gf ≡ IE
on Ω. By assumption, we have that for the subspace

kerMg = {ϕ ∈ H(E) | g(z)ϕ(z) ≡ 0 on Ω},

there exists a Hilbert space Ec and a function Θ ∈ MH(Ec, E∗) such that kerMg = ran MΘ.
Define

F :=
[
f Θ

]
: E ⊕ Ec → E∗.

(Thus we take fc = Θ in (b).)
We now define for each z ∈ Ω, the operator Θ(z)−1 acting on ran Θ(z). Let z ∈ Ω, and

suppose that e∗ ∈ ran(Θ(z)) ⊂ E∗. Let (Θ(z))−1e∗ be the unique vector in ran(Θ(z))∗ ⊂ Ec

such that Θ(z)((Θ(z))−1e∗) = e∗.
For a vector e∗ ∈ E∗, let e∗ ∈ H(E∗) be the constant function taking the value e∗ everywhere

on Ω. It is clear that (1 − fg)e∗ ∈ kerMg. But kerMg = ran MΘ, and so there exists a
ψ ∈ H(Ec) such that

(1 − f(z)g(z))e∗ = Θ(z)ψ(z), z ∈ Ω.

This means that (1−f(z)g(z))e∗ ∈ ran(Θ(z)) for every z ∈ Ω, and so (Θ(z))−1(1−f(z)g(z))e∗
is well-defined.

Define the linear transformation G(z) : E∗ → E ⊕ Ec (z ∈ Ω) as follows:

G(z)e∗ =

[

g(z)e∗

(Θ(z))−1(1 − f(z)g(z))e∗

]

.
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Then we have for e ∈ E and ec ∈ Ec that:

G(z)F (z)

[
e

ec

]

= G(z)(f(z)e+ Θ(z)ec)

=

[

g(z)f(z)e+ g(z)Θ(z)ec

(Θ(z))−1(I − f(z)g(z))f(z) + (Θ(z))−1(I − f(z)g(z))Θ(z)ec

]

=

[
IEe

IEc
ec

]

,

where we have used in the last step the fact that g(z)f(z) ≡ IE and g(z)Θ(z)ec = 0 (because
Θec ∈ ran MΘ = kerMg). Thus G(z)F (z) = IE⊕Ec

for all z ∈ Ω. Furthermore, for every
e∗ ∈ E∗, we obtain

F (z)G(z)e∗ = F (z)

[

g(z)e∗

(Θ(z))−1(1 − f(z)g(z))e∗

]

= f(z)g(z)e∗ + Θ(z)(Θ(z))−1(1 − f(z)g(z))e∗ = e∗ = IE∗e∗.

Hence F (z)G(z) = IE∗ for all z ∈ Ω.
The above calculations show that F (z) is one-to-one and onto, and hence F (z) has a

continuous inverse, which must be the linear transformation G(z). So G(z) ∈ L(E∗, E ⊕ Ec).
We now observe that z 7→ G(z) : Ω → L(E∗, E ⊕ Ec) is analytic. Indeed, by applying the

∂zi
operator on the relation G(z)F (z) ≡ IE⊕Ec

, we obtain that

0 = ∂zi
(GF ) = (∂zi

G)F +G∂zi
F = (∂zi

G)F +G0 = (∂zi
G)F,

and so (∂zi
G)F ≡ 0. By post-multiplying this relation by G, and using the fact that

F (z)G(z) ≡ IE∗ , we get ∂zi
G ≡ 0. Since the choice of i ∈ {1, . . . , d} was arbitrary, G is

holomorphic. Finally, since G is the inverse of a multiplier, it is a multiplier itself.

(2)⇒(1): Suppose that g ∈ MH(E∗, E) such that f := g⊤ ∈ MH(E , E∗) is left-invertible.
From the equivalence in (2), it follows that there exists a Hilbert space Ec and a function
fc ∈ MH(Ec, E∗) such that F given by

F (z) =
[
g⊤(z) fc(z)

]
: E ⊕ Ec → E∗ (z ∈ Ω)

is invertible, that is, there exists a function G ∈ MH(E∗, E ⊕ Ec) such that such that
G(z)F (z) = IE⊕Ec

and F (z)G(z) = IE∗ for all z ∈ Ω. We have

F⊤(z) =

[
g(z)
f⊤

c (z)

]

: E∗ → E ⊕ Ec.

From F (z)G(z) = IE∗ (z ∈ Ω), it follows that

(2) G⊤(z)F⊤(z) = IE∗ (z ∈ Ω).

Since G⊤ ∈ MH(E ⊕ Ec, E∗), we can write

G⊤(z) =
[
h(z) hc(z)

]
,
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where h ∈ MH(E , E∗), hc ∈ MH(Ec, E∗). We will show that kerMg = ran Mhc
. The equation

(2) gives
[
h(z) hc(z)

]
[

g(z)
f⊤

c (z)

]

= h(z)g(z) + hc(a)f
⊤
c (z) = IE∗ .

If ϕ ∈ kerMg, then we have

h(z) g(z)ϕ(z)
︸ ︷︷ ︸

=0

+hc(z)f
⊤
c (z)ϕ(z) = ϕ(z),

and so ϕ ∈ ran Mhc
. Hence kerMg ⊂ ran Mhc

.
Also,

G(z) =

[
h⊤(z)
h⊤c (z)

]

and so G(z)F (z) = IE⊕Ec
yields

[
h⊤(z)
h⊤c (z)

]
[
g⊤(z) fc(z)

]
= IE⊕Ec

.

In particular, h⊤c (z)g⊤(z) = 0, and so g(z)hc(z) = 0. Consquently, ran Mhc
⊂ kerMg.

Thus we have shown that kerMg = ran Mhc
, and this shows that H does have the weak

Beurling property. �

Remark 2.1.

(1) We have not made any assumptions on the dimensions of E and E∗. It is clear from
the left invertibility of f that we must have dim E ≤ dim E∗.

In the case when dim E∗ < +∞, this implies that dim E < +∞. Thus in this case,
f can be identified with a finite (tall) matrix-valued holomorphic function. In fact,
the pointwise invertibility of F (z) shows that dim E + dim Ec = dim E∗. This can be
expressed succintly by saying that MH(C,C) is a Hermite ring. See [7].

(2) In [15], it was shown that:

Proposition 2.2. If R is a commutative unital Banach algebra, then the following
are equivalent:
(a) R satisfies the weak Lax-Halmos property, that is, for every k, n ∈ N with k < n,

and for every g ∈ Rk×n such that g⊤ ∈ Rn×k is left-invertible, there exists a
Θ ∈ Rn×(n−k) such that kerMg = ran MΘ. (Here for a matrix ϕ ∈ Rp×q, by
Mϕ, we mean the map v 7→ Mϕ := ϕv : Rq → Rp, given simply by matrix
multiplication by the matrix ϕ.)

(b) For every f ∈ Rn×k (k < n), the following are equivalent:
(i) There exists a matrix g ∈ Rk×n such that gf = I.
(ii) There exists a matrix fc ∈ Rn×(n−k) such that F :=

[
f fc

]
is invertible

in Rn×n, that is, there exists a matrix G ∈ Rn×n such that GF = FG = I.

Thus in light of our main result, we have the following corollary:

Corollary 2.3. The Banach algebra MH(C,C) has the weak Lax-Halmos property iff
H has the weak Beurling property.
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Hence our contribution in this paper can be tied to the above abstract result Propo-
sition 2.2 of Tolokonnikov in the case when the Banach algebra R is a multiplier algebra
MH(C,C) on a Hilbert space H. Note that in this latter case, we can consider infinite
matrices f ∈ MH(E , E∗) and their matrix completion problems, as opposed to the
finite matrices considered in Tolokonnikov’s abstract result, so our main result is a
generalization of Tolokonnikov’s result.

3. Spaces with Nevanlinna-Pick kernel

So far we considered Hilbert spaces of holomorphic functions without explicit consideration
of kernels. Let k(z, w) be a positive definite kernel in Ω which is a holomorphic function in
z and an anti-holomorphic function in w, and let Hk be the corresponding Hilbert space of
holomorphic function on Ω. The aim of this section is to show that there are many reproducing
kernel Hilbert spaces with the weak Beurling property. A kernel k is called irreducible if

(1) the functions kω, ω ∈ Ω are independent, and
(2) k(x, y) is never zero for all x, y ∈ Ω with x 6= y.

All the reproducing kernels will be assumed to be irreducible.
The Nevanlinna-Pick problem for the reproducing kernel Hilbert space Hk is the following.

Given w1, . . . , wn ∈ Ω and numbers λ1, . . . , λn, is there a ϕ ∈ MHk
of norm at most one which

interpolates the data, i.e., satisfies ϕ(wi) = λi for i = 1, . . . , n? If Tw,λ is the operator on the
n-dimensional space spanned by kw1

, . . . , kwn
which sends kwi

→ λ̄ikwi
, then using the fact

that M∗
ϕkw = ϕ(w)kw, it is easy to see that a necessary condition to solve the Nevanlinna-Pick

problem is that ‖ Tw,λ ‖≤ 1.

Definition 3.1. The kernel k is called a Nevanlinna-Pick kernel if the condition ‖ Tw,λ ‖≤ 1
for every n and {w1, . . . , wn} and {λ1, . . . , λn} is also sufficient to solve the Nevanlinna-Pick
Problem.

Let ν be a natural number. Let {e1, . . . , eν} be a basis for C
ν . Given n points w1, . . . , wn

in Ω and n matrices Λ1, . . . ,Λn of order ν × ν, the matrix Nevanlinna Pick problem is that
of finding ϕ ∈ MHk

(Cν ,Cν) of norm at most 1 which satisfies ϕ(wi) = Λi for i = 1, . . . , n.
Again because of

M∗
ϕ(kz ⊗ v) = kz ⊗ ϕ(z)∗v, z ∈ Ω, v ∈ C

ν ,

a necessary condition for solvability of the matrix Nevanlinna-Pick problem is that the oper-
ator Tw,Λ sending

kzi
⊗ ej → kzi

⊗ Λ∗
i ej

is a contraction.

Definition 3.2. The kernel k is called a complete Nevanlinna-Pick kernel if ‖ Tw,Λ ‖≤ 1 for
all ν and all n and {w1, . . . , wn} and {Λ1, . . . ,Λn} is a sufficient condition to solve the matrix
Nevanlinna-Pick problem.

Examples of spaces with complete Nevanlinna-Pick kernels are
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(1) Drury-Arveson space. This space, denoted by H2
d is defined to be the Hilbert space of

holomorphic functions on the Euclidean unit ball in Cd with reproducing kernel

(1 − 〈z, w〉)−1.

For more on the space H2
d and the multipliers, see the seminal paper of Arveson [3].

The space H2
d was first used by Drury [6] who generalized von Neumann’s inequality to

operator tuples. This kernel is universal among the complete Nevanlinna Pick kernels,
see [1].

(2) Weighted ℓ2 spaces. Consider a weight sequence (wn)n≥0 satisfying

w2
n+1 ≥ wnwn+2

and the space of functions f(z) =
∑

n≥0

anz
n on D with

‖f‖2 :=
∑

n≥0

|an|
2wn <∞.

Thus Dirichlet space is a special case, corresponding to wn = n+1. These spaces have
complete NP kernels.

(3) Dirichlet type spaces. Let µ be a finite positive measure supported in D. Define

D(µ) =

{

f

∣
∣
∣
∣

f is holomorphic in D and
‖f‖2 := ‖f‖2

H2 +
∫

D
|f ′(ζ)|2Uµ(ζ)dm2(ζ) <∞

}

where dm2 is the normalized Lebesgue area measure in D, and Uµ is defined as

Uµ(ζ) =

∫

D

log

∣
∣
∣
∣

1 − zζ

ζ − z

∣
∣
∣
∣

2
dµ(z)

1 − |z|2
+

∫

T

1 − |ζ |2

ζ − z|2
dµ(z), ζ ∈ D.

These spaces were introduced by Richter [11] and Aleman [2] and were shown to have
complete Nevanlinna-Pick kernel by Shimorin [13].

(4) Weighted Sobolev spaces. Given positive functions w0 ∈ C[x0, x1] and w1 ∈ C1[x0, x1],
consider the space

W 1
2 = {f : [x0, x1] → C | f is absolutely continuous with |f ′|2 integrable }

with the norm

‖f‖2 :=

∫ x1

x0

|f(x)|2w0(x)dx+

∫ x1

x0

|f ′(x)|2w1(x)dx.

Then W 1
2 with this norm has a complete NP kernel.

The object of study in this section is the multiplier space MHk
(E , E∗), as defined in (1),

with H replaced by Hk.

Theorem 3.3. If k is an irreducible complete Nevanlinna-Pick kernel, then Hk satisfies the
weak Beurling property.
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Proof. First note that Agler and McCarthy showed that any irreducible complete Nevanlinna-
Pick kernel k satisfies the following. Choose a base point w. Then there is a positive definite
kernel b on Ω such that |b(y, x)| < k(w,w) and

k(y, x)k(w,w)− k(y, w)k(w, x) = b(y, x)k(y, x), for all x, y ∈ Ω.

In fact, this is a characterization, see [1]. Suppose

b(y, x) =
∑

j

bj(y)bj(x).

Now let g ∈ MHk
(E∗, E). The subspace kerMg is invariant under multiplication by bj , that

is, ME∗
bj

kerMg ⊂ kerMg, j = 1, . . . , d. McCullough and Trent showed in [8] that for such

an invariant subspace, there exists a Hilbert space Ec and a Θ ∈ MHk
(Ec, E∗) such that the

subspace is the range of the operator of multiplication by Θ, i.e., kerMg = ran MΘ. Thus the
weak Beurling property is satisfied. �

In light of Theorem 1.3, we obtain the following corollary:

Corollary 3.4. If k is a complete Nevanlinna-Pick kernel and if f ∈ MHk
(E , E∗), then the

following statements are equivalent:

(1) There exists a function g ∈ MHk
(E∗, E) such that g(z)f(z) = IE for all z ∈ Ω.

(2) There exists a Hilbert space Ec and a function fc ∈ MHk
(Ec, E∗) such that

F (z) :=
[
f(z) fc(z)

]
: E ⊕ Ec → E∗,

is invertible for every z ∈ Ω, that is, there exists a function G ∈ MHk
(E∗, E ⊕Ec) such

that such that G(z)F (z) = IE⊕Ec
and F (z)G(z) = IE∗ for all z ∈ Ω.

4. The multiplier algebra of the weighted Hardy space

In this section we prove that the multiplier algebra of a certain control theoretically moti-
vated weighted Hardy space has the weak Beurling property.

Consider the Sobolev space1

W 2,n(0,∞) = {w : (0,∞) → C | w,w′, w′′, . . . , w(n) ∈ L2(0,∞)}.

Let H2,n denote the space of Fourier transforms of all elements from W 2,n(0,∞), equipped
with the norm

‖F‖H2,n := ‖y 7→ (1 + y2)
n
2F (iy)‖L2, F ∈ H2,n.

Then H2,n is a Hilbert space with the norm above induced by an inner product. Clearly
H2,n := H2,0 is the classical Hardy space of the half plane C+ := {s ∈ C | Re(s) > 0}.

Proposition 4.1. f ∈ H2(E) iff F := ϕf ∈ H2,n(E), where ϕ ∈ H∞ is the outer function
given by

(3) ϕ(s) = exp

(
1

π

∫ ∞

−∞

ys+ i

y + is
k(iy)

dy

1 + y2

)

, s ∈ C+,

1In control engineering, one thinks of this as a signal space of signals with finite energy and such that the
first n derivatives of these signals also have finite energy.
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and k(iy) := log 1

(1+y2)
n
2

, y ∈ R.

Proof. Since
∫ ∞

−∞

|k(iy)|
dy

1 + y2
=

∫ ∞

−∞

n

2

log(1 + y2)

1 + y2
dy = nπ log 2 < +∞,

it follows that (3) defines an outer function. Moreover,

log |ϕ(iy)| = k(iy) a.e.,

and so |ϕ(iy)| =
1

(1 + y2)
n
2

a.e.

If f ∈ H2, then F := ϕ · f satisfies

‖F‖2
H2,n =

∫

R

(1 + y2)n 1

(1 + y2)n
|f(iy)|2dy = ‖f‖2

H2 < +∞,

and so F ∈ H2,n.
Conversely, if F ∈ H2,n, then f := 1

ϕ
F satisfies

‖f‖2
H2 =

∫

R

|f(iy)|2dy =

∫

R

(1 + y2)n|F (iy)|2dy = ‖F‖2
H2,n < +∞.

This completes the proof. �

We now prove an analog of the Beurling-Lax-Halmos Theorem for H2,n(E).

Theorem 4.2. Let E be a Hilbert space. Suppose that S is a nonzero subspace of H2,n(E) that
is invariant under Me−λs for all λ ≥ 0. Then there exists a Hilbert space Ec and a function Θ
such that

(1) Θ is a L(Ec, E)-valued function that is holomorphic in C+, and
(2) S = MΘH

2,n(E).

Proof. This follows immediately from the classical Beurling-Lax-Halmos Theorem for H2 and
Proposition 4.1 above. �

It follows now that H2,n possesses the weak Beurling property.

Theorem 4.3. H2,n satisfies the weak Beurling property.

Proof. Clearly kerMg = {ϕ ∈ H2,n(E) | g(z)ϕ(z) ≡ 0 on C+} is invariant under pointwise
multiplication by the functions s 7→ e−λs for all λ ≥ 0, that is, ME∗

e−λs kerMg ⊂ kerMg. Thus
by the Beurling-Lax-Halmos type result proved above, namely Theorem 4.2, there exists a
Hilbert space Ec and a Θ ∈ M(Ec, E∗) such that kerMg = ran MΘ. �

From Theorem 1.3, we obtain:

Corollary 4.4. The following statements are equivalent for a function f ∈ MH2,n(E , E∗):

(1) There exists a g ∈ MH2,n(E∗, E) such that g(s)f(s) = IE for all s ∈ C+.
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(2) There exists a Hilbert space Ec and a function fc ∈ MH2,n(Ec, E∗) such that

F (s) :=
[
f(s) fc(s)

]
: E ⊕ Ec → E∗,

is invertible for every s ∈ C+, that is, there exists a function G ∈ MH2,n(E∗, E ⊕ Ec)
such that such that G(s)F (s) = IE⊕Ec

and F (s)G(s) = IE∗ for all s ∈ C+.
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