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The free-boundary and the martingale approach are competitive methods of solving

discounted optimal stopping problems for one-dimensional time-homogeneous regular dif-

fusion processes on infinite time intervals. We provide a missing link showing the equiva-

lence of these approaches for a problem, where the optimal stopping time is equal to the

first exit time of the underlying process from a region restricted by two constant bound-

aries. We also consider several illustrating examples including the rational valuation of

the perpetual American strangle option.

1 Introduction

Optimal stopping problems have as objective to search for random times at which the under-

lying stochastic processes should be stopped, with the aim to optimize the expected values of

given reward functionals. The majority of explicitly solvable stopping problems in the field are
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essentially those for one-dimensional diffusion processes with infinite time horizon. The opti-

mal stopping times are then the first times when the underlying processes exit certain regions

restricted by constant boundaries. There exist two basic and competitive methods of finding

explicit expressions for the value functions and boundaries in such optimal stopping problems.

In common use is the free-boundary approach. There, an equivalent ordinary differential

free-boundary problem is formulated for the unknown value function and stopping boundaries.

Since such a free-boundary problem usually has a non-unique solution, it is often assumed that

the appropriate solution should satisfy certain additional conditions (e.g. smooth fit, normal

boundary, normal reflection, etc.). Then, by means of standard verification arguments from

stochastic analysis (e.g. change-of-variable formula, optional sampling theorem), it is shown

that the resulting solution of the free-boundary problem provides the solution of the initial

optimal stopping problem (see, e.g. Peskir and Shiryaev [14]).

In the martingale approach, the initial discounted reward process is decomposed into a

product of a positive martingale and a gain function of the current state of the underlying

diffusion process. It is shown that the optimization of the gain function over all admissible

stopping boundaries gives the value of the initial optimal stopping problem whenever the optimal

stopping time is finite almost surely, with respect to the probability measure constructed by

means of the positive martingale (see, e.g. Beibel and Lerche [1] and [2] as well as Lerche and

Urusov [11]). It can easily be verified, using the strong Markov property, that the solution

of the optimal stopping problem obtained by means of the martingale approach satisfies the

associated free-boundary problem. It can also be shown directly that the optimization of the

resulting gain function yields the smooth-fit condition for the value function at the optimal

stopping boundaries.

In the present paper, we show how the gain function and the positive martingale from the

reward decomposition, related to the martingale approach, can be explicitly identified from the

solution of the associated free-boundary problem. We will assume that the optimal stopping

time has a structure of the first time at which the underlying one-dimensional regular diffusion

process exits a region restricted by two constant boundaries. We illustrate our results on several

examples related to the rational valuation of perpetual American options.

The paper is organized as follows. In Section 2, we introduce the setting of an optimal stop-
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ping problem for a one-dimensional time-homogeneous regular diffusion process and formulate

an equivalent free-boundary problem. We derive a closed form solution of the latter problem

and decompose it into a form which is appropriate for the comparison of the two approaches.

In Section 3, we verify that the solution of the free-boundary problem provides the solution of

the initial optimal stopping problem with the reward function which coincides with that of the

martingale approach. In Section 4, we discuss several examples of optimal stopping problems for

one-dimensional diffusion processes arising from the rational valuation of perpetual American

options.

2 Preliminaries

In this section, we give a formulation of the optimal stopping problem for a one-dimensional

diffusion process and an equivalent ordinary differential free-boundary problem. We also provide

a decomposition of the reward function related to the martingale approach.

2.1. For a precise formulation of the problem, let us consider a probability space (Ω,F , P )

with a standard Brownian motion W = (Wt)t≥0. Let X = (Xt)t≥0 be a process solving the

stochastic differential equation

dXt = µ(Xt) dt+ σ(Xt) dWt (X0 = x) (2.1)

where the coefficients µ(x) and σ(x) are some Lipschitz continuous functions on (0,∞). The

latter assumption guarantees the existence of a pathwise unique solution of the equation in

(2.1), for a given starting point x > 0 (see, e.g. [8; Chapter V, Theorem 2.5]). It follows that

X is a regular diffusion process, in the sense of [9; Chapter XV], on its state space which is

assumed to be the positive half line (0,∞). Let us consider an optimal stopping problem with

the value function

V∗(x) = sup
τ
Ex
[
e−rτ H(Xτ )

]
(2.2)

where the supremum is taken over all stopping times τ , with respect to the natural filtration

(Ft)t≥0 of the process X. Here, H(x) is a payoff function, and Ex denotes the expectation

under the assumption that X0 = x, for some x > 0. Such optimal stopping problems have been
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considered in [13], [17] and [2] (see also [3; Theorem 3.19]) for regular diffusion processes with

general payoffs and infinite time horizon.

2.2. It follows from the general theory of optimal stopping for Markov processes (see, e.g.

[14; Chapter I, Section 2.2]) that the optimal stopping time in the problem (2.2) is given by

τ∗ = inf{t ≥ 0 |V∗(Xt) ≤ H(Xt)}. (2.3)

Throughout the paper, we assume that the payoff function H(x) is positive and convex, and we

search for an optimal stopping time τ∗ of the form

τ∗ = inf{t ≥ 0 |Xt /∈ (a∗, b∗)} (2.4)

for some numbers 0 < a∗ < b∗ <∞ to be determined.

2.3. By means of standard arguments (see, e.g. [8; Chapter V, Section 5.1]), it can be shown

that the infinitesimal operator L of the process X acts on an arbitrary twice continuously

differentiable locally bounded function F (x) according to the rule

(LF )(x) = µ(x)F ′(x) +
σ2(x)

2
F ′′(x) (2.5)

for all x > 0. In order to find explicit expressions for the unknown value function V∗(x) in

(2.2) and the unknown boundaries a∗ and b∗ in (2.4), we may use the results of general theory

of optimal stopping problems for continuous time Markov processes (see, e.g. [6] and [14;

Chapter IV, Section 8]). We formulate the associated free-boundary problem

(LV − rV )(x) = 0 for a < x < b (2.6)

V (a+) = H(a) and V (b−) = H(b) (instantaneous stopping) (2.7)

V (x) = H(x) for x < a and x > b (2.8)

V (x) > H(x) for a < x < b (2.9)

V ′(a+) = H ′(a) and V ′(b−) = H ′(b) (smooth fit) (2.10)

for some 0 < a < b < ∞ fixed. Note that the superharmonic characterization of [4] implies

that the value function in (2.2) is the smallest function satisfying the system in (2.6)–(2.9).

Such assumptions as well as the smooth-fit conditions in (2.10) are naturally used for the
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value functions at the optimal stopping boundaries for underlying regular diffusions (see [14;

Chapter IV, Section 9] for an extensive overview).

2.4. We will now look for functions which solve the stated free-boundary problem (2.6)–

(2.10). Let U+(x) and U−(x) be two independent positive solutions of the second order ordinary

differential equation in (2.6). Without loss of generality, we may assume that U+(x) is increasing

and U−(x) is decreasing on (0,∞). Note that the functions U+(x) and U−(x) can be represented

as moment generating functions of the first passage times of the process X on constant bound-

aries (see, e.g. [7; Chapter IV, Section 4.6] or [16; Chapter V, Section 46]). The general solution

of the second order equation in (2.6) is thus given by

V (x) = C+ U+(x) + C− U−(x) (2.11)

where C+ and C− are some arbitrary constants. Hence, applying the instantaneous-stopping

conditions from (2.7) to the function in (2.11), we get that the equalities

C+ U+(a) + C− U−(a) = H(a) (2.12)

C+ U+(b) + C− U−(b) = H(b) (2.13)

hold for some 0 < a < b < ∞. Solving the system of equations in (2.12)–(2.13), we obtain the

function

V (x; a, b) = C+(a, b)U+(x) + C−(a, b)U−(x) (2.14)

which satisfies the system in (2.6)–(2.7) when we put

C+(a, b) =
H(a)U−(b)−H(b)U−(a)

U+(a)U−(b)− U+(b)U−(a)
(2.15)

C−(a, b) =
H(b)U+(a)−H(a)U+(b)

U+(a)U−(b)− U+(b)U−(a)
(2.16)

for 0 < a < b < ∞. Therefore, applying the smooth-fit conditions from (2.10) to the function

in (2.14), we obtain the equalities

C+(a, b)U ′+(a) + C−(a, b)U ′−(a) = H ′(a) (2.17)

C+(a, b)U ′+(b) + C−(a, b)U ′−(b) = H ′(b) (2.18)

with C+(a, b) and C−(a, b) given by (2.15) and (2.16), respectively.
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2.5. It also follows from (2.14) that the function V (x; a, b) admits the representation

V (x; a, b) = G(a, b)
(
p(a, b)U+(x) + (1− p(a, b))U−(x)

)
(2.19)

for any a < x < b fixed, where the gain function G(a, b) is defined by

G(a, b) = C+(a, b) + C−(a, b). (2.20)

Then the function p(a, b) is given by

p(a, b) =
C+(a, b)

C+(a, b) + C−(a, b)
(2.21)

for 0 < a < b <∞. By means of straightforward computations, it is shown that the system of

equations in (2.17)–(2.18) is equivalent to the system

∂G

∂a
(a, b) = 0 and

∂G

∂b
(a, b) = 0. (2.22)

It means that solutions of the former system are critical points of the gain function G(a, b).

3 Main result

In this section, we formulate and prove the main result of the paper. It builds a missing link

between the free-boundary and the martingale approach of [1] and [2].

Theorem 3.1 Let the process X be a unique pathwise solution of the stochastic differential

equation in (2.1). Assume that the payoff function H(x) is positive and convex, and that the

optimal stopping time τ∗ has the structure (2.4), where the couple a∗ and b∗ is a solution of the

system of equations in (2.17)–(2.18). Then, the value function of the optimal stopping problem

in (2.2) has the form

V∗(x) =

V (x; a∗, b∗), if a∗ < x < b∗

H(x), if x ≤ a∗ or x ≥ b∗

(3.1)

where V (x; a, b) is given by (2.19). Moreover, the function V (x; a∗, b∗) admits the representation

V (x; a∗, b∗) = G(a∗, b∗)Ex
[
M∗

τ∗

]
(3.2)
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for a∗ < x < b∗, where the process M∗ = (M∗
t )t≥0 defined by

M∗
t = e−r(τ∗∧t)

(
p(a∗, b∗)U+(Xτ∗∧t) + (1− p(a∗, b∗))U−(Xτ∗∧t)

)
(3.3)

is a uniformly integrable martingale, and the functions G(a, b) and p(a, b) are given by (2.20)

and (2.21), respectively.

Proof: In order to verify the assertions stated above, it remains to show that the function

defined in (3.1) coincides with the value function in (2.2), and that the stopping time τ∗ from

(2.4) is optimal with the boundaries a∗ and b∗ specified above. For this, let us denote by V (x)

the right-hand side of the expression in (3.1). Since the functions U+(x) and U−(x) are twice

continuously differentiable as solutions of the second order differential equation in (2.6), taking

into account the smooth-fit conditions in (2.10), we may conclude that the derivative V ′(x)

is of bounded variation on the closed interval [a∗, b∗]. It thus follows from the assumption of

convexity of H(x) that V (x) can be represented as a difference of two convex functions on

(0,∞). Hence, applying a generalized Itô’s formula (see, e.g. [8; Chapter III, Section 3.7] or

[15; Chapter IV, Theorem 70]), we get

e−rt V (Xt) = V (x) +Mt (3.4)

+

∫ t

0

e−rs (LV − rV )(Xs) I(Xs 6= a∗, Xs 6= b∗, Xs 6= ci, i ∈ N) ds

+
∑
i∈N

1

2

∫ t

0

e−rs
(
V ′(ci+)− V ′(ci−)

)
I(Xs = ci) d`

i
s

for all t ≥ 0, where the process M = (Mt)t≥0 defined by

Mt =

∫ t

0

e−rs V ′(Xs)σ(Xs) I(Xs 6= a∗, Xs 6= b∗, Xs 6= ci, i ∈ N) dWs (3.5)

is a local martingale with respect to Px. This is a probability measure under which the process

X starts at x > 0. Here, the process `i = (`it)t≥0 defined by

`it = Px − lim
ε↓0

1

2ε

∫ t

0

I(ci − ε < Xs < ci + ε)σ2(Xs) ds (3.6)

is the local time of the process X at the point ci > 0, i ∈ N, at which the derivative H ′(x)

can have a discontinuity, and I(·) denotes the indicator function. We also observe that the
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assumption of convexity of H(x) implies the fact that H ′(x) is increasing on (0,∞), so that,

the sum in the last line of (3.4) forms an increasing process.

Suppose that at some x′ > 0, x′ 6= ci, i ∈ N, such that x′ < a∗ or x′ > b∗, we have

(LH − rH)(x′) > 0. Then, there exists some ε > 0 such that x′ + ε < a∗ or x′ − ε > b∗ and

(LH−rH)(x) ≥ ε holds, for all x ∈ (x′−ε, x′+ε). Using the fact that the process in the last line

of (3.4) is increasing, we obtain that the first time when the process X exits the neighborhood

(x′− ε, x′+ ε) is optimal in (2.2). However, this contradicts the assumption about the structure

of the optimal stopping time in (2.4). We may therefore conclude that (LH− rH)(x) ≤ 0 holds

for any 0 < x < a∗ and x > b∗ such that x 6= ci, i ∈ N. Suppose now that V (x′′) ≤ H(x′′) at

some x′′ ∈ (a∗, b∗). It thus follows from (2.3) that the process X started at x′′ should be stopped

instantly. Hence, the resulting contradiction with the assumption of the structure of the optimal

stopping time in (2.4) shows that the inequality V (x) > H(x) should hold for a∗ < x < b∗.

Getting these arguments together with the fact proved above that the function V (x) and

the boundaries a∗ and b∗ satisfy the system (2.6)–(2.10), we conclude that (LV − rV )(x) ≤ 0

holds, for any x > 0 such that x 6= a∗, x 6= b∗, x 6= ci, i ∈ N, as well as V (x) ≥ H(x) holds,

for all x > 0. It follows from the regularity of the diffusion process in (2.1) that the time spent

by X at the points a∗, b∗ and ci, i ∈ N, is of Lebesgue measure zero, and thus, the indicators

appearing in the integrals in the second line of (3.4) and in (3.5) can be ignored. Hence, the

expression in (3.4) and the structure of the stopping time in (2.4) yield that the inequalities

e−r(τ∗∧τ)H(Xτ∗∧τ ) ≤ e−r(τ∗∧τ) V (Xτ∗∧τ ) ≤ V (x) +Mτ∗∧τ (3.7)

hold for any stopping time τ of the process X started at x > 0.

Let (τn)n∈N be an arbitrary localizing sequence of stopping times for the process M . Taking

in (3.7) the expectation with respect to the measure Px, by means of the optional sampling

theorem (see, e.g. [8; Chapter I, Theorem 3.22]), we get that the inequalities

Ex
[
e−r(τ∗∧τ∧τn)H(Xτ∗∧τ∧τn)

]
≤ Ex

[
e−r(τ∗∧τ∧τn) V (Xτ∗∧τ∧τn)

]
(3.8)

≤ V (x) + Ex [Mτ∗∧τ∧τn ] = V (x)

hold for all x > 0. Hence, letting n go to infinity and using Fatou’s lemma, we obtain

Ex
[
e−r(τ∗∧τ)H(Xτ∗∧τ )

]
≤ Ex

[
e−r(τ∗∧τ) V (Xτ∗∧τ )

]
≤ V (x) (3.9)
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for any stopping time τ and all x > 0. By virtue of the structure of the stopping time in (2.4),

it is readily seen that the equalities in (3.9) hold when 0 < x < a∗ or x > b∗.

It remains to show that the equalities are attained in (3.9) when τ∗ replaces τ , for a∗ < x < b∗.

By virtue of the fact that the function V (x; a∗, b∗) and the boundaries a∗ and b∗ satisfies the

conditions in (2.6) and (2.7), it follows from the expression in (3.4) and the structure of the

stopping time in (2.4) that the equalities

e−r(τ∗∧τn) V (Xτ∗∧τn ; a∗, b∗) = G(a∗, b∗)M
∗
τ∗∧τn = V (x) +Mτ∗∧τn (3.10)

hold for all a∗ < x < b∗ and any localizing sequence (τn)n∈N of M , where the process M∗ is

defined in (3.3). Observe that the assumption of convexity of H(x) also yields the property

Ex

[
sup
t≥0

e−r(τ∗∧t)H(Xτ∗∧t)
]
<∞ (3.11)

for all a∗ < x < b∗. Hence, letting n go to infinity and taking into account the fact that

the variable e−rτ∗ H(Xτ∗) is equal to zero on the set {τ∗ = ∞}, we can apply the Lebesgue

dominated convergence theorem for (3.10) to obtain the equalities

Ex
[
e−rτ∗ H(Xτ∗)

]
= Ex

[
e−rτ∗ V (Xτ∗ ; a∗, b∗)

]
= G(a∗, b∗)Ex

[
M∗

τ∗

]
= V (x) (3.12)

for all a∗ < x < b∗, which together with the expressions in (3.9) imply the fact that V (x)

coincides with the value function in (2.2). Note that these arguments also yield the expression

in (3.2) as well as the fact that M∗ from (3.3) is a uniformly integrable martingale. �

Remark 3.2 The assertion of Theorem 3.1 implies the fact that the function G(a, b) defined in

(2.20) attains a local maximum at the couple a∗ and b∗. In order to prove this claim, we observe

that, for every x∗ ∈ (a∗, b∗) fixed, we may put U+(x∗) = U−(x∗) = 1, without loss of generality,

since the functions U+(x) and U−(x) were chosen as arbitrary independent solutions of the

second order differential equation in (2.6). Suppose now that there exist a′ ∈ (a∗−ε, a∗+ε) and

b′ ∈ (b∗−ε, b∗+ε) such that G(a′, b′) > G(a∗, b∗) holds, for some ε > 0 with a∗+ε < x∗ < b∗−ε.

In this case, it follows from the expression in (2.19) that V (x∗; a
′, b′) > V (x∗; a∗, b∗) holds. This

contradicts the assertion of Theorem 3.1 stating that τ∗ of the type (2.4) is optimal. Therefore,

we have that V (x∗; a, b) ≤ V (x∗; a∗, b∗) holds for all a ∈ (a∗ − ε, a∗ + ε) and b ∈ (b∗ − ε, b∗ + ε),
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thus proving the claim. Note again that, since a∗ and b∗ is a couple solving the smooth-fit

equations in (2.17)–(2.18), it is then automatically a critical point of the function G(a, b).

Remark 3.3 It follows from [19; Chapter VIII, Proposition 1.13] that there exists a probability

measure Q being locally equivalent to P on the filtration (Ft)t≥0 and such that its density process

is given by
dQ

dP

∣∣∣
Ft

=
M∗

t

E[M∗
t ]

(3.13)

for all t ≥ 0, so that, the restrictions Q | Fτ∗ and P | Fτ∗ are equivalent on the set {τ∗ < ∞}.

By virtue of the fact that e−rτ∗ H(Xτ∗) is equal to zero on the set {τ∗ =∞}, we see from (3.10)

that M∗
∞ is also zero on {τ∗ =∞}. We may therefore conclude from (3.2) that the expressions

V (x; a∗, b∗) = G(a∗, b∗)Ex
[
M∗

τ∗ I(τ∗ <∞) +M∗
τ∗ I(τ∗ =∞)

]
(3.14)

= G(a∗, b∗)Qx(τ∗ <∞)

hold, for a∗ < x < b∗, where Qx denotes the appropriate probability measure under which the

process X starts at x > 0.

Remark 3.4 Note that the assertion of Theorem 3.1 remains valid also for the case, where the

optimal stopping time is the first hitting time of only one constant boundary. In other words,

for an appropriate function H(x), we should assume from the beginning that either a∗ ≡ 0 or

b∗ ≡ ∞ in (2.4), so that, for the expressions in (2.19)–(2.21), we have G(0, b) ≡ C+(0, b) and

p(0, b) ≡ 1, or G(a,∞) ≡ C−(a,∞) and p(a,∞) ≡ 0, respectively.

Remark 3.5 Assuming the uniqueness of the stopping boundaries a∗ and b∗ as solutions of

the system in (2.17)–(2.18), also for the one-sided cases where either a∗ = 0 or b∗ = ∞, we

can compare and identify the outcomes of both approaches. In that case, the value of G(a∗, b∗)

from (3.3) is equal to C∗ in [1; Theorem 4] and [2; Theorem 3], while the process M∗ from (3.3)

coincides with the martingale M from [1; Subsection 2.3] and [2; Section 3] under x = 1. Hence,

the value of p(a∗, b∗) from (2.21) coincides with p∗ from [1; Subsection 2.3] or [2; Section 3]. It

therefore follows that the result of [1; Lemma 1] naturally yields

G(a∗, b∗) = sup
a≤1

Gp∗(a) = sup
b≥1

Gp∗(b) (3.15)

where Gp(x) = H(x)/[pU+(x) + (1− p)U−(x)], x > 0.
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4 Some examples

In this section, we consider several examples of optimal stopping problems related to the rational

valuation of perpetual American options. For the most of the examples below, we assume that

µ(x) = (r − δ)x and σ(x) = θx, x > 0, for some 0 < δ < r and θ > 0.

Example 4.1 (Perpetual American put and call.) Let us first consider the function H(x)

= (L − x)+, x > 0, where L > 0 is a given constant (see [12] and [1; Subsection 2.1]). In this

case, the assertion of Theorem 3.1 holds with p(a,∞) ≡ 0, M∗
t = e−r(τ∗∧t)X

γ−
τ∗∧t, where

γ− =
1

2
− r − δ

θ2
−

√(
1

2
− r − δ

θ2

)2

+
2r

θ2
(4.1)

and the gain function G(a,∞) ≡ C−(a,∞) = (L− a)+/aγ− which attains its unique maximum

value at

ã =
γ−L

γ− − 1
. (4.2)

This is the unique (left) optimal stopping boundary for the process X.

We also consider the function H(x) = (x −K)+, x > 0, where K > 0 is a given constant.

In this case, the assertion of Theorem 3.1 holds with p(0, b) ≡ 1, M∗
t = e−r(τ∗∧t)X

γ+
τ∗∧t, where

γ+ =
1

2
− r − δ

θ2
+

√(
1

2
− r − δ

θ2

)2

+
2r

θ2
(4.3)

and the gain function G(0, b) ≡ C+(0, b) = (b−K)+/bγ+ which attains its unique maximum

value at

b̃ =
γ+K

γ+ − 1
. (4.4)

This is the unique (right) optimal stopping boundary for the process X.

Example 4.2 (Perpetual American strangle option.) Let us now consider the function

H(x) = (L−x)+∨(x−K)+, x > 0, where 0 < L < K are given constants (see [1; Subsection 2.4]).

In this case, the assertion of Theorem 3.1 holds with U−(x) = xγ− and U+(x) = xγ+ , where

γ− and γ+ are given by (4.1) and (4.3), respectively, and the gain function G(a, b) admits the

representation

G(a, b) =
(b−K)(aγ+ − aγ−)− (L− a)(bγ+ − bγ−)

aγ+bγ− − bγ+aγ−
. (4.5)
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It attains its maximum value at the couple a∗ and b∗ being the unique solution of the system in

(2.17)–(2.18) with

C+(a, b) =
(L− a)bγ− − (b−K)aγ−

aγ+bγ− − bγ+aγ−
(4.6)

C−(a, b) =
(b−K)aγ+ − (L− a)bγ+

aγ+bγ− − bγ+aγ−
(4.7)

so that, the function p(a, b) takes the form

p(a, b) =
(L− a)bγ− − (b−K)aγ−

(b−K)(aγ+ − aγ−)− (L− a)(bγ+ − bγ−)
(4.8)

for some 0 < a < L < K < b <∞. We also note that the value of G(a∗, b∗) coincides with the

value of C∗ in [1; Subsection 2.4] when 0 < L < 1 < K, under x = 1.

In order to prove that the system of equations in (2.17)–(2.18) with (4.6)–(4.7) admits a

unique solution a∗ and b∗, we see that the former admits the representation

[γ−(L− a) + a]
( b
a

)γ+
− [γ+(L− a) + a]

( b
a

)γ−
= (γ− − γ+)(b−K) (4.9)

[γ−(b−K)− b]
(a
b

)γ+
− [γ+(b−K)− b]

(a
b

)γ−
= (γ− − γ+)(L− a) (4.10)

which is equivalent to( b
a

)γ+
=
γ−(b−K)− b
γ−(L− a) + a

and
( b
a

)γ−
=
γ+(b−K)− b
γ+(L− a) + a

(4.11)

or in another form

(γ− − 1)a− γ−L
aγ+

=
(1− γ−)b+ γ−K

bγ+
(4.12)

(1− γ+)a+ γ+L

aγ−
=

(γ+ − 1)b− γ+K

bγ−
(4.13)

for some 0 < a < L < K < b <∞.

In order to show the existence and uniqueness of a solution of the system of equations

in (4.12)–(4.13), we use the idea of proof of the existence and uniqueness of solutions of the

systems of equations in (4.73)–(4.74) from [20; Chapter IV, Section 2] and (3.16)–(3.17) from

[5; Section 3]. Let us introduce the functions

I+(a) =
(γ− − 1)a− γ−L

aγ+
and I−(a) =

(1− γ+)a+ γ+L

aγ−
(4.14)

J+(b) =
(1− γ−)b+ γ−K

bγ+
and J−(b) =

(γ+ − 1)b− γ+K

bγ−
(4.15)
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hold for all 0 < a < L < K < b < ∞. Observe that, for the derivatives of the functions in

(4.14)–(4.15), the expressions

I ′+(a) = −(γ+ − 1)(γ− − 1)a− γ+γ−L

aγ++1
≡ −(γ+ − 1)(γ− − 1)(a− L)

aγ++1
< 0 (4.16)

I ′−(a) =
(γ+ − 1)(γ− − 1)a− γ+γ−L

aγ−+1
≡ (γ+ − 1)(γ− − 1)(a− L)

aγ−+1
> 0 (4.17)

J ′+(b) =
(γ+ − 1)(γ− − 1)b− γ+γ−K

bγ++1
≡ (γ+ − 1)(γ− − 1)(b−K)

bγ++1
< 0 (4.18)

J ′−(b) = −(γ+ − 1)(γ− − 1)b− γ+γ−K

bγ−+1
≡ −(γ+ − 1)(γ− − 1)(b−K)

bγ−+1
> 0 (4.19)

hold for all 0 < a < L < K < b <∞ with

L =
γ+γ−L

(γ+ − 1)(γ− − 1)
≡ rL

δ
and K =

γ+γ−K

(γ+ − 1)(γ− − 1)
≡ rK

δ
. (4.20)

Hence, the function I+(a) decreases on the interval (0, L) with I+(0+) = ∞ and I+(L) =

γ−L/[(γ+ − 1)L
γ++1

] < 0, so that, the range of its values is given by the interval (I+(L),∞).

The function J+(b) decreases on the interval (K,∞) with J+(K) = −γ−K/[(γ+− 1)K
γ++1

] > 0

and J+(∞) = 0, so that, the range of its values is given by the interval (0, J+(K)). The function

I−(a) increases on the interval (0, L) with I−(0+) = 0 and I−(L) = −γ+L/[(γ−− 1)L
γ−+1

] > 0,

so that, the range of its values is given by the interval (0, I−(L)). The function J−(b) increases

on the interval (K,∞), so that, the range of its values is given by the interval (J−(K),∞).

It thus follows from (4.12) that, for each b ∈ (K,∞), there exists a unique number a ∈ (â, ã)

with ã given by (4.2) and such that â is uniquely determined by the equation I+(â) = J+(K).

It also follows from (4.13) that, for each a ∈ (0, L), there exists a unique number b ∈ (̃b, b̂)

with b̃ given by (4.4) and such that b̂ is uniquely determined by the equation I−(L) = J−(̂b).

We may therefore conclude that the equations in (4.12) and (4.13) uniquely define the function

b+(a) on (â, ã) with the range (K,∞), and the function b−(a) on (0, L) with the range (̃b, b̂),

respectively. This fact directly implies that, for each point a ∈ (â, ã), there exist unique values

b+(a) and b−(a) belonging to (̃b, b̂), that together with the inequalities K < b−(0) ≡ b̃ < b−(L) <

∞ ≡ b+(ã) guarantees the existence of exactly one intersection point with coordinates a∗ and

b∗ of the curves associated with the functions b+(a) and b−(a) on the interval (â, ã) such that

b̃ < b+(a∗) ≡ b−(a∗) ≡ b∗ < b̂. This completes the proof of the claim.
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Example 4.3 (Perpetual American bear and bull spreads.) Let us consider the func-

tion H(x) = (L − x)+ ∧ (L − K), x > 0, where 0 < K < L are given constants. In this

case, the assertion of Theorem 3.1 holds with p(a,∞) ≡ 0, M∗
t = e−r(τ∗∧t)X

γ−
τ∗∧t, and the gain

function G(a,∞) ≡ C−(a,∞) = [(L− a)+ ∧ (L−K)]/aγ− which attains its unique maximum

value at a∗ = ã ∨ K. This is the unique (left) optimal stopping boundary for the process X,

with ã given by (4.2).

We also consider the function H(x) = (x−K)+∧(L−K), x > 0, where 0 < K < L are given

constants. In this case, the assertion of Theorem 3.1 holds with p(0, b) ≡ 1, M∗
t = e−r(τ∗∧t)X

γ+
τ∗∧t,

and the gain function G(0, b) ≡ C+(0, b) = [(b−K)+ ∧ (L−K)]/bγ+ which attains its unique

maximum value at b∗ = b̃ ∧ L. This is the unique (right) optimal stopping boundary for the

process X, with b̃ given by (4.4).

Example 4.4 (Perpetual American barrier down-and-out put and up-and-out call.)

Let us consider the function H(x) = (L − x)+I(x > K), x > 0, where 0 < K < L are given

constants. In this case, in (2.19) we have p(a,∞) ≡ 0, U−(x) = xγ− , and the gain function

G(a,∞) ≡ C−(a,∞) = [(L− a)+I(a > K)]/aγ− which attains its unique maximum at a∗ = ã

whenever ã > K, being the unique (left) optimal stopping boundary for the process X. There

exists no optimal stopping time otherwise.

We also consider the function H(x) = (x − K)+I(x < L), x > 0, where 0 < K < L are

given constants. In this case, in (2.19) we have p(0, b) ≡ 1, U+(x) = xγ+ , and the gain function

G(0, b) ≡ C+(0, b) = [(b−K)+I(b < L)]/bγ+ which attains its unique maximum at b∗ = b̃

whenever b̃ < L, being the unique (right) optimal stopping boundary for the process X. There

exists no optimal stopping time otherwise.

Example 4.5 (Perpetual American integral call option with floating strike.)

Suppose now that µ(x) = 1 − ρx and σ(x) = θx, x > 0, and H(x) = (x −K)+, where K > 0

and 0 < r < ρ are some given constants (see [10]). In this case, the assertion of Theorem 3.1

holds with p(0, b) ≡ 1 and the function

U+(x) =

∫ ∞
0

exp

(
−2z

θ2

)
z−(β−+1)(1 + xz)β+ dz (4.21)
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where

β± =
1

2
+
ρ

θ2
±

√(
1

2
+
ρ

θ2

)2

+
2r

θ2
(4.22)

and the gain function G(0, b) ≡ C+(0, b) = (b−K)+/U+(b), which attains its unique maximum

value at some b∗ on the interval (K,∞), with U+(b) given by (4.21).

Example 4.6 (Perpetual American lookback call option with floating strike.)

Let us consider the process X solving the stochastic differential equation

dXt = −ρXt dt+ θ Xt dWt + I(Xt = 1) dNt (X0 = x) (4.23)

where N = (Nt)t≥0 is an increasing process changing its value only when X started at x > 1

arrives at the point 1 being the instantaneously reflecting boundary, and 0 < r < ρ are some

given constants (see [18], [21; Chapter VIII, Section 2d] or [2; Section 4.3]). Let us consider

H(x) = (x−K)+, x > 1, with some K > 0. In this case, in (2.19) we have p(0, b) ≡ γ−/(γ−−γ+),

U−(x) = xγ− and U+(x) = xγ+ , where γ− and γ+ are given by (4.1) and (4.3), and the gain

function G(0, b) = (b − K)+/[p(0, b)bγ+ + (1 − p(0, b))bγ− ] attains its maximum at some point

b∗ on the interval (K,∞). Note that, in this setting, the maximization of the gain function is

equivalent to the condition

V ′(1+) = 0 (normal reflection) (4.24)

for the value function of the appropriate optimal stopping problem, instead of the smooth-fit

condition in (2.10).

Example 4.7 (Perpetual spread option stopping game.) Let us finally consider a stop-

ping game with the value function

V∗(x) = inf
η

sup
τ
Ex

[
e−r(η∧τ)

(
H1(Xη) I(η < τ) +H2(Xτ ) I(τ ≤ η)

)]
(4.25)

= sup
τ

inf
η
Ex

[
e−r(η∧τ)

(
H1(Xη) I(η < τ) +H2(Xτ ) I(τ ≤ η)

)]
where Hi(x) = (x − Li) I(Li ≤ x < Ki) + (Ki − Li) I(x ≥ Ki), x > 0, i = 1, 2, are payoff

functions with some constants Li and Ki such that 0 < Li < Ki, as well as L1 < L2, K1 < K2
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and K1 − L1 = K2 − L2. It is shown in [5] that the value function in (4.25) takes the form

V∗(x) =


H1(x), if 0 < x ≤ a∗

V (x; a∗, b∗), if a∗ < x < b∗

H2(x), if x ≥ b∗

(4.26)

and the optimal stopping times τ∗ and η∗ in (4.25) have the form

η∗ = inf{t ≥ 0 |Xt ≤ a∗} (4.27)

τ∗ = inf{t ≥ 0 |Xt ≥ b∗} (4.28)

for some numbers 0 < L1 ≤ a∗ < b∗ ≤ K2 <∞ to be determined.

Adopting the schema of arguments applied above to the stopping game in (4.25), we obtain

that in (2.19) the gain function G(a, b) admits the representation

G(a, b) =
(b− L2)(a

γ+ − aγ−)− (a− L1)(b
γ+ − bγ−)

aγ+bγ− − bγ+aγ−
. (4.29)

It attains its saddle value at the couple a∗ = a∨L1 and b∗ = b∧K2 with a ∈ [L1, L1(r/δ)) and

b ∈ (L2(r/δ), K2], being a unique solution of the system of equations in (2.17)–(2.18), whenever

it exists (see [5; Section 3]). Then, we have

C+(a, b) =
(a− L1)b

γ− − (b− L2)a
γ−

aγ+bγ− − bγ+aγ−
(4.30)

C−(a, b) =
(b− L2)a

γ+ − (a− L1)b
γ+

aγ+bγ− − bγ+aγ−
(4.31)

so that, the function p(a, b) takes the form

p(a, b) =
(a− L1)b

γ− − (b− L2)a
γ−

(b− L2)(aγ+ − aγ−)− (a− L1)(bγ+ − bγ−)
(4.32)

for some 0 < L1 ≤ a < b ≤ K2 <∞.
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[7] Itô, K. and McKean, H. P. (1965). Diffusion Processes and Their Sample Paths.

Springer, Berlin.

[8] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus.

(Second Edition) Springer, New York.

[9] Karlin, S. and Taylor, H. M. (1981). A Second Course in Stochastic Processes.

Academic Press, London – New York.

[10] Kramkov, D. O. and Mordecki, E. (1994). Integral opton. Theory of Probability

and Its Applications 39(1) (201–211).

[11] Lerche, H. R. and Urusov, M. (2007). Optimal stopping via measure transforma-

tion: The Beibel–Lerche approach. Stochastics 3–4 (275–291).

17



[12] McKean, H. P. (1965). Appendix: A free boundary problem for the heat equation

arising from a problem of mathematical economics. Industrial Management Review 6

(32–39).

[13] Mucci, A. G. (1978). Existence and explicit determination of optimal stopping times.

Stochastic Processes and Their Applications 8 (33–58).

[14] Peskir, G. and Shiryaev, A. N. (2006). Optimal Stopping and Free-Boundary Prob-

lems. Birkhäuser, Basel.
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