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Abstract

Shin (2006) has argued that in order to understand the equilibrium
patterns of corporate disclosure, it is necessary for researchers to work
within an asset pricing model framework in which corporate disclo-
sures are endogenously determined. Furthermore, he argues that with-
out such a framework optimal disclosure strategies may seem counter-
intuitive. With this in mind, we generalize the Dye (1985) and Penno
(1997) upper tailed disclosure models, so that management�s strategic
disclosure behaviour can be shown to result in an optimal observable
disclosure intensity. We show why a higher equilibrium disclosure in-
tensity may need to be interpreted as implying management have less
precise forecasts of future �rm value (referred to in the title preci-
sion of management�s vision). The derived results call into question
the speci�cation of empirical studies which test whether �rms with
higher disclosure intensity will face a lower cost of capital. Working
within a generalized Dye-Penno framework this research shows why in
equilibrium the converse case applies.
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1 Introduction

Companies recognize that implementation of a news-disclosure strategy will
a¤ect market value. Simultaneously investors infer that observed disclosure
patterns are driven by company type: that is, investor responses (in terms
of trading behaviour, and therefore stock price) are guided by beliefs as to
the company�s type. In this respect some theoretical disclosure models are
not readily amenable to empirical investigation, because the key parameters
upon which equilibrium beliefs are based are not empirically observable. This
research o¤ers an equilibrium model of market response to news-disclosure
in a form readily amenable to empirical research design. Speci�cally, this
research establishes why in equilibrium investors may be assumed to act as
if they base beliefs upon the observed disclosure intensity of a company. As
the starting point for the theoretical modelling we draw upon Dye�s dis-
closure model and his theorem (see below for details) that in equilibrium,
when managers are ex-ante informationally partially-endowed, they will only
voluntarily disclose news that has been perfectly revealed to them if it is
su¢ ciently good �above an optimal (equilibrium) cuto¤. This is succinctly
described as the adoption of an upper-tailed disclosure strategy.
Until now the Dye framework has not been readily amenable to empirical

study. One of the di¢ culties is that an underlying parameter (probability
of receiving information which we describe as the information endowment)
is a latent variable that may vary between companies. Dye�s model posits a
distribution of company value dependent in part upon an exogenously given
information endowment faced by management. We generalize the setting and
specify endogenously howmanagement will optimally choose their informa-
tion endowment. Working within an optimized framework it then becomes
possible to show how the optimal disclosure strategy of a company implies
an observable disclosure intensity which can be used by outside investigators
(econometricians) to infer the underlying parameters of the company which
determine equilibrium valuation in the market. Many empirical disclosure
models are concerned with the link between cost of capital and disclosure
so, if the current research is to have relevance to those studies, it is neces-
sary to show how in this new model setting risk should be priced. With this
aim in mind, one important form of risk is incorporated into the Dye model:
noisy rather than certain signals of company value �using the idea of Penno
(1997) �as detailed below. The model developed here shows how investors
can infer managerial signal risk from observed disclosure intensity. We recall
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Penno�s original contribution: an �impossibility�result, that for speci�c as-
sumed functional forms (in particular the distributions of underlying values
and noises) the intensity of disclosure is invariant to signal risk (in which
case inferences would not be possible). It is shown here that more generally
this latter result e¤ectively rests upon the underlying investor risk aversion
(describable via a requirement of �rst-order stochastic dominance to be ex-
hibited by the distributions in terms of the underlying parameters). Thus,
for a wide class of distributions that includes the traditional log-normality
assumption for returns, inferences based upon observed disclosure intensity
can be made, because disclosure intensity and signal risk are monotonically
related.
Before commencing with the formal model a short discussion of the Easley

and O�Hara (2004) theoretical model, which is increasingly being used by
disclosure empiricists, is now presented in order to clarify the signi�cant
di¤erences in focus as between their model and the one presented here.
The comparison is best achieved by considering the two companion pa-

pers: Easley, O�Hara and Paperman (1998) and Easley, Kiefer and O�Hara
(2002) which operationalize the theoretical model. These papers develop a
multi-day microstructure model of trading between an uninformed, Bayesian,
risk-neutral, competitive market maker and two types of trader (informed or
uninformed) with unobservable type. On each day information, either no
news, good news or bad news, arrives randomly at the start of the day and
this is seen only by the traders. The traders can then trade several times in
that day. The market maker has a prior distribution over their information
set which enables her to update her beliefs given any trade of the day. She
can therefore set ex-ante (prior to trade) bid and ask prices to �immunize�
herself (albeit only in expectation) against risk. The opening bid-ask spread
(i.e. the bid-ask spread at the start of the day) is assumed to be proportional
to the probability of a trade being information based. This probability at
the start of the day, which has a very appealing formula, has become widely
known as the PIN.
In the empirical study the two papers show that there exists a positive

dependence of the bid-ask spread on the PIN, which is consistent with the
assumptions just outlined. This is taken to be evidence that PIN may be
used to explain asset returns. Asset pricing researchers have since increas-
ingly investigated the linkage between microstructure, accounting and asset
pricing.
However, one concern with PIN market micro-structure models is that
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they are being increasingly used arguably out of context �for example, in
corporate governance, where the primary asymmetry is between management
and investors.
It is perhaps worth stressing that PINmodels are based upon asymmetries

of information that exist between traders. As such these models do not
look at the traditional asymmetry between the two classes: management
and investors and so do not help understand how the enduring existence of
this later form of asymmetry drives disclosure practice. For this reason, the
current research turns to consider the Dye (1985) model because its focus is
upon exactly how this later asymmetry drives disclosure policy.
The paper is organized as follows. In section 2 the generalized Dye-

Penno model of voluntary disclosure is derived using the �rst lower partial
moment (fLPM) approach. In section 3 we develop the relationship between
the endogenized value of the partial information endowment parameter p
and the intensity of disclosure, denoted � . In Section 4 the derived link
between disclosure intensity � and information risk, measured by the signal
noise variance (denoted by �Y ), is presented. Section 5 studies how this
link depends upon the distributional assumptions underlying the model. In
section 6 we discuss empirical implementation and compare and contrast our
formulation to two recently introduced alternative approaches to empirical
implementation. Concluding comments are presented in section 7.

2 The Generalized Dye-Penno model

The Dye (1985) equilibrium model was developed to explain the seeming
contradiction between on the one hand the early disclosure unravelling the-
ory of Grossman and Hart (1980) and on the other hand claimed empirical
observation of companies choosing not to disclose information. Critically the
new modelling assumption introduced by Dye was that managers were only
informed about the underlying state of nature (company value) probabilisti-
cally. This introduced a new tension, not present in earlier models, since on
observing non-disclosure, investors needed to apply caution before assuming
non-disclosure was driven by bad news. In the Dye setting, the absence of
news could also be explained by management simply not having been in-
formed (as a realization of the probability law). The principal result in Dye
(1985) was to establish that the optimal management disclosure strategy was
an upper tailed strategy under which management disclosed only if observed
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news was su¢ ciently good (above an equilibrium cuto¤).
While the Dye model clearly contributed to understanding why non dis-

closure could happen in equilibrium, the model had a number of restrictive
assumptions that reduced its empirical applicability. In particular, when
managers were informed, they were perfectly informed as to the value of the
company. Thus if the valuation news was above the critical cuto¤, managers
would disclose this value and the challenge for investors to value the company
would no longer exist, since the manager�s information was under assumption
perfect1.
Penno (1997) introduced the most obvious generalization of the Dye

model. He amended the Dye model by relaxing the assumption of random ob-
servation of a true value and instead allowed for management to be informed
probabilistically with a noisy signal as to the future valuation (state of na-
ture). Thus in the Penno setting, on observation of a management disclosure,
investors needed to form an opinion as to the underlying noise process faced
by management before they could rationally process the disclosure. Intu-
itively, if investors believed that management�s good news information (that
lead to a disclosure) was very noisy they would be less inclined to increase
their valuation for the company as compared to the case were management�s
information was less noisy. Thus in this more realistic setting investors are
not assumed to take disclosures at face value; instead they also estimate the
precision of management�s signal of value. That is, when valuing a company,
investors are required not only to estimate the likelihood of non disclosure,
but also when there is disclosure, what precision should be assumed for that
disclosure2.
The particular appealing features of the Penno model were that: not

only did it introduce this greater realism for the investor valuation problem,
but also showed that the optimal disclosure strategy was simply a slightly
adjusted form of the Dye upper tailed disclosure strategy and the speci�c
cuto¤ value of the upper tail strategy shifted down.
The Penno model thus seemed a prime candidate for empirical investi-

gation. However, before attempting to implement an empirical procedure,
at issue now was how to model investors� inferences as to the precision of
managements information on valuation. This stage is a key modelling step

1Following Dye it is assumed that when managers disclose value they always do so
truthfully.

2This is analogous to the risk return tradeo¤ faced by portfolio investment strategists.
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and admits a range of possibilities. Motivated here by actual disclosure data,
we propose that the observed intensity of disclosure can be used by investors
to infer the precision of managements information. To proceed along this
modelling route next requires one to show how disclosure intensity is imbed-
ded in an equilibrium Dye-Penno model. However, unfortunately the �nal
proposition of Penno (1997) is starkly negative about such meaningful imbed-
ding of disclosure intensity. In particular Penno (page 280) concludes that
�contrary to the popular notion that higher quality information is accom-
panied by more voluntary disclosure, the paper has demonstrated that this
notion is, in general, not true.�Penno derives this result using a particular
assumption about the way the noisy signal received by management combines
with the underlying uncertainty of company valuation. A key contribution of
this research is to provide researchers with a means by which to assess how
restrictive the original Penno modelling was. This is achieved by close con-
sideration of how the predictions of the equilibrium disclosure model change
as the general distributional assumptions about the underlying information
sets vary.
Following from the above discussion this section is organized as follows.

Subsection 2.1 reviews the underlying Dye upper tailed disclosure calculus.
It is shown how the disclosure strategy is driven by the properties of what
we call the hemi-mean function, which is obtained by varying a parameter in
the well-established �rst lower partial moment used in �nancial risk manage-
ment. In subsection 2.2 it is shown how to endogenize management�s choice
of information-endowment parameter so that when ones refers to the proba-
bility that a manager is informed, it is an equilibrium choice rather than an
exogenous model assumption. Subsection 2.3 generalizes the Penno model to
an arbitrary distributional setting consistent with the preceding subsections.
The contribution of this subsection is to show that despite the arbitrary set-
ting investor�s inference of company valuation can be interpreted as though
a Kalman �ltration model applied; this provides a simple robust method for
developing intuition on how investors incorporate noisy management disclo-
sure into equilibrium investment valuation decisions. A brief subsection 2.4
connects in a simple fashion the (observable) disclosure intensity with the
optimized information-endowment parameter providing a basis for empirical
research design. Standard notions of stochastic dominance are recalled in
section 3 to identify distributions for which the Penno impossibility fails.
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2.1 Valuation under non-disclosure with Dye�s disclo-
sure calculus

In the Dye model there is a rational (equilibrium) reason why management
may not disclose information voluntarily (a relaxation of the unravelling par-
adigm). This necessitates a procedure (to be developed below) enabling
investors to value the company at other than the minimum (assuming bad
news) when they observe non-disclosure. We point out that the equation
identifying the disclosure cuto¤ is in fact a no-arbitrage condition. As there
is asymmetry of information, the manager has an alternative valuation of the
company under certain circumstances, which depends on the rules of trade
applied to managers.
When analyzing information �ows the Dye disclosure model assumes three

distinctive dates: ex-ante, interim and terminal dates. In the model a random
variable X relating to company valuation has density f(x) and associated
distribution function F (x) with an ex-ante expected value mX . Realizations
of the random variables are observed by management at the interim date
with a probability q: Management�s decision whether or not to disclose an
observed realization of company value x is a voluntary (strategic) decision.
Dye (1985) establishes that under continuity of f there will exist a unique
value x =  at which management will be indi¤erent between disclosure or
non-disclosure. Here  will be called the Dye cuto¤ . The indi¤erence point
is characterized by equality between a credibly disclosed value  and the
valuation formed by investors when they see non-disclosure (ND); or more
formally from E[XjND()] the computed expected value of the company
conditioned by the absence of disclosures below the value . That is, the
indi¤erence is described by the equation:

 = E[XjND()]: (1)

A particularly clear intuition for the equilibrium conditions is provided by
Jung &Kwon (1988) which we now adapt. When investors value the company
ex-ante they need to assign probabilities to the following three events; no
information received by management (which occurs with probability p = 1�
q), information is received by management but not disclosed (with probability
(1� p)F ()), information is received by management and is disclosed (with
probability (1�p)(1�F ())). Thus for (1) to hold for  requires the expected
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payo¤ from non disclosure to equal the payo¤ from disclosure:

[p+ (1� p)F ()]( �mX) = (1� p)(1� F ())( �mX)

p

(1� p)(mX � ) =

Z
x�
(mX � )dF (x)

using integration by parts gives

p

q
(mX � ) =

Z
x�

F (x)dx

=

Z
x�
( � x)dF (x) � HX() (2)

where HX() is the lower �rst partial moment well known in risk manage-
ment3. As this function is central to the Dye calculus in our analysis we
explicitly name it the hemi-mean. Intuitively one can see why a construct
from risk management arises since typically in �nancial risk management one
is concerned with protecting oneself from an expected payo¤ in the lower tail
of a distribution for instance following bad events. Similarly here the ex-ante
valuation of the company has to take account of the valuation implications
of a manager not making a disclosure (which occurs for all observed values
x < ). The appeal of this form lies in the separation of the odds ratio p=q
which characterizes management information technology on one side and on
the other a convex function HX containing all the information4 on the dis-
tribution of X.
It is important to note that equation (2), when written in the alternative

form
p( �mX) + qHX() = 0; (3)

yields
(p+ qF ())( �mX) + q[HX() + F ()(mX � )] = 0; (4)

expressing a non-arbitrage condition relative to the information structure of
the model, as we now show. That is, given a risk-neutral distribution FX of
future company value, the company is fairly priced initially at mX � since
with probability p+ qF () its value adjusts by �mX as it falls to  (in the

3See for example McNeil,Frey and Embrechts (2005).
4The Characterization Theorem in appendix A provides a precise statement of this.
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absence of disclosure) and (in the presence of disclosure) with probability q
its value rises on average by:Z
u�
(u�mX)dF (u) =

Z
u�
(mX � u)dF (u) = (mX � )F () +

Z
u�

F (u)du;

(5)
appealing to some integration by parts. This no-arbitrage condition5 provides
one of the central distinguishing feature of the Dye model, di¤erentiating it
from other disclosure valuation models such as Verrecchia (1990).
The Dye equation has an interesting �reduced form�interpretation: the

term (mX�) measures the downgrade in company value, so that p(mX�)
represents the expected downgrade, conditional on the manager receiving no
information. Of course,  is a risk-shield (since values below  if seen, remain
are unreported), so, given the risk-shield enjoyed by the investors, the term
mX �  is the extent of the downgrade (loss).
Now, by (2),

p(mX � ) = qHX()
and so the term on the right can be interpreted as the balancing expected
upgrade (at the equilibrium ), conditional on the manager receiving infor-
mation. Inspection of the left-hand side of (5) shows the upgrade as an upper
partial moment, but from the expected upgrade term qHX() we have iden-
ti�ed a more compact element of the right-hand side of (5), namely the lower
partial moment HX(); as the equivalent measure of upgrade.
The expression p(mX�(p)); in which we have stressed the dependence of

 on p; has a further interpretation which makes our theory tractable. With
probability p the manager will know that no new information is available on
the company�s future value. Conditional on this absence of information the

5The mathematics of equilibrium existence for the Dye model can be interpreted as the
expected advantage over inferiors, as computed in the integral HX(:); rather than the mean
advantage over inferiors, de�ned to be HX(:)=F (:) by Begstrom and Bagnoli (2005). For
a survey of these concepts see Bergstrom and Bagnoli (2005). In view of its special role,
we term the lower partial momemt function more brie�y the hemi-mean function, and
thus prefer the notation H switching round Begstrom and Bagnoli�s notation (they use H
to denote the upper partial moment function). The mathematics of equilibrium existence
is thus much easier in the context of expected advantage, as too is the comparative statics
of the equilibrium location, which can draw freely on the log-concavity features developed
for the mean-advantage context of Bergstrom and Bagnoli (2005). We will see that in
fact a signi�cantly weaker notion su¢ ces, namely �-concavity, with � = �1; as de�ned by
Caplin and Nalebu¤ (1991a) �see Section 3 below.
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manager could, if permitted, buy the stock at the interim market price  and
liquidate the stock at the terminal date. The expected terminal value is mX

given the absence of information. Thus ex-ante the manager holds an option
with expected value (under the investors�risk neutral measure) equal to

p(mX � ): (6)

If the manager can receive a share of this value in remunerations, then the ex-
pression above becomes the manager�s objective function. This assumes that
the manager�s trade remains unobserved by the investors, as would be the
case in the Kyle (1985) one-shot market model. In sequential market mod-
els (with dates in between the interim and terminal dates) the manager�s
trading could become observable; the revised managerial opportunity set ne-
cessitates that optimal managerial behaviour uses a mixed strategy of buying
and selling in order to optimally preserve the manager�s private information.
One expects that the revised valuation of the manager�s option to trade is a
convex function of p; say v(p); with zero value at the endpoints p = 0 and
p = 1;just as is the case with p(mX � (p)); for which see Ostaszewski and
Gietzmann (2008). Our theory applies to such valuations; parsimoniously we
work with the p(mX � (p)); as it turns out to be a very tractable model.
The Dye equation identi�es how  should be selected by requiring a bal-

ance of expected upgrades with expected downgrades, but not how to select
p: In subsection 2.4 below we cast the problem of selecting p as a trade-o¤
between the downgrade term (risk shielding) and the upgrade term (value
enhancement), and explain the trade-o¤ in the formal setting of utility max-
imization. The trade-o¤ exists because of the countervailing e¤ects. The
objective of risk-shielding under non-disclosure prescribes the selection of a
cuto¤  (risk-shield) as large, and as close, as possible to � to ensure that
the value of the company does not fall below . To see the trade-o¤ with
enhanced valuation, consider that the extreme case  = � which implies
q = 0 with q = 0 the manager will never see any news � including �good�
news.(and there will never be any disclosures) that is the risk shield ensures
company value does not fall below  but in the limit as  ! � the higher
the risk shield the smaller the probability that management will be informed
of good news x were x > �: Analogously in the other extreme case of q = 1
there will be no risk shielding and  = 0 o¤ering no risk-shielding as full
�unraveling�occurs since this is the Grossman and Hart (1980) setting.
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2.2 Endogenous managerial information endowment

It is in this section where we di¤er from the Dye paradigm, in that the p
(or q) which was an exogenous datum for Dye, becomes a choice variable
for the manager. There are a number of routes for deducing the endogenous
solution of p; the technical optimization via elementary calculus approach
being one that is obvious and feasible, but not very insightful. It is suggested
here that the most intuitive route commences (for the reasons explained
immediately above) by regarding the manager as having to make a trade-
o¤ between risk shielding and enhanced valuation, achieved by assuming
that the manager makes the trade-o¤ in text-book fashion by reference to a
general utility function. Let U(x; y) describe managerial preference over the
risk-shielding loss, assessed as x = � �  when setting the cuto¤ at ; and
value enhancement, assessed as y = H(). We shall see in Section 3 another
advantage of this approach: it makes explicit the two lotteries (over x and
y) which determine the basis for stochastic dominance comparisons. We now
�nd that under these assumptions the utility function is uniquely determined
and has the following (standard) CES format: U(x; y) = (x�1 + y�1)�1, and
we therefore refer to it as the implied utility in order to stress that it is not
imposed but derived from the underlying payo¤ structure (6). To prove this,
suppose the manager chooses among the points in the opportunity set de�ned
by:

f(x; y) : 0 � x � �; y = H(�� x)g:
employing the general utility function U(x; y): Now in reduced form the Dye
cuto¤ condition (3) for expected indi¤erence between non-disclosure and dis-
closure is:

px = qy = (1� p)y or p(x+ y) = y; (7)

which yields p = y=(x+ y). So the manager�s maximization objective is now
p � x; hence eliminating p via (7)

U(x; y) = p � x = xy

x+ y
= (x�1 + y�1)�1;

�compare Caplin and Nalebu¤ (1991a), who consider generalized averages
such as this harmonic one. Note also that the contour U = c is a pair
of rectangular hyperbolas with centre of symmetry at x = y = c; and is
expressible as

(x� c)(y � c) = c2:
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Figure 1. The arbitrage line (blue), the
opportunity curve (red), and the
tangential utility contour (green).

Letting
� =

p

q

be de�ned as the odds ratio, the common tangency (illustrated in Figure 1)
of the utility contour and opportunity curve implies what we shall describe
repeatedly as the optimal odds equation as follows.
Since y = h(x) = H(�� x) implies h0(x) = �F (�� x); and as

Ux
Uy
=
y2

x2
;

the common tangency condition implies that

dh

dx
= �Ux

Uy
;

and, from Dye�s equation px = qy; we deduce6

F () = F (�� x) = y2

x2
=
p2

q2
= �2: (8)

6The optimal odds equation implies that � < 1; i.e. p < q; or, �nally, p < 1=2:
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2.3 The Penno extension with noisy signals

The Penno (1997) extension to the Dye model assumes that managers do not
see a realization of company value x; instead they see a noisy observation
(noisy signal) of the underlying value, or state, x: Thus, letting T denote
management�s observed noisy signal, it is assumed that a noise variable Y
with a general distribution, which is assumed for simplicity to be independent
of X; enters the observation process and the manager now formally observes
the garbled random variable T = T (X;Y ); for some given function T (:; :): The
manager thus computes an (updated) state estimate S; namely the expected
value of the company given the observed noisy signal T; i.e. the conditional
expected value of X given T . This is denote as:

�X(T ) := E[XjT (X; Y )];

where
�X(t) := E[XjT (X; Y ) = t]

is the regression function. That is S = �X(T ) is the manager�s estimate of
X and is best in the sense of least squares. Note that

E[S] = E[E[XjT (X;Y )]] = E[X];

by the law of iterated expectation. (or, law of total expectation).
In order to understand how the introduction of noise modi�es investors

inferential process it is helpful to review what happens in a speci�c simple
setting. The well-known case (cf. Kyle (1985)) of X and Y normal (and
independent) with T = X + Y and mY = 0 is given by

S = �X(T ) = mX + �(T �mX); where � =
�2X

�2X + �
2
Y

; and so (9)

�2S = �2�2T =
�4X

�2X + �
2
Y

= ��2X : (10)

Thus, to borrow from the language of Kalman �ltering, � is the optimal
Kalman gain coe¢ cient used to update the ex-ante prediction mX ; given the
observed residual T � mX : (Here again optimal means �minimizing mean-
square error�.) It is important to notice that in the presence of more �2Y noise
the coe¢ cient is smaller and so the weight given to the residual correction
term is smaller. In the extreme, with very di¤use information the predictor
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is close to mX (hardly any updating / error correction) and so, with such
very little updating, the derived �2S is very low.
Having seen how the relative magnitude of �2Y noise in�uences investors

updating the next step is to consider the revised form of the optimal dis-
closure strategy. Supposing that the manager discloses according to a cuto¤
t for the observed signal T , following Penno�s approach one should identify
the indi¤erence point for the value of t (in the noisy signal domain) by the
equation

E[XjT (X; Y ) = t] = E[XjND(t)];
which we can write more compactly as

�X(t) = E[XjND(t)]: (11)

That is, comparing (1) and (11), the e¤ect of imposing noisy observation on
management is for the observed (with certainty) value x to be replaced by its
mean value �X(t); when the observation t is noisy. Thus a disclosure by the
manager is now of the estimated value for the state S. Given the disclosure
an updated distribution of future values for the company (in the Kyle setting)
is again a normal distribution, but with its mean the updated state estimate
and with a reduced updated variance ��2Y which may be regarded as having
been �risk-adjusted�.
Having concentrated on the simple Kyle setting in order to develop intu-

ition consider now the general setting. In general the best linear predictor7

is:

`(XjT ) = mX +
cov(X;T )

�2T
(T �mT ): (12)

Combining this with the lower partial moment reformulation one can see
how the risk-adjustment occurs in a general setting. First commence by
considering ��1X (:), the inverse of �X(:); which exists provided we assume
that �X is strictly increasing. We will denote the inverse by L: Thus L is
like T a mapping from an underlying value X to a noisy signal T: To �nd
the cuto¤ ; �rst �nd the (cumulative) distribution function of the random
variable S; that is given by:

FS(s) = FT (L(s));

in view of
S � s i¤ �X(T ) � s i¤ T � L(s):

7See for instance Roman (2004).
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Now �nd the solution xS to the canonical relationship (2) with X replaced
by S; as follows:

p

q
(mS�) = HS(); where HS() =

Z
z�

FS(z)dz; with mS = mX ;

Thus the disclosure cuto¤may be calculated in three steps. Firstly, construct
the cumulative distribution function of the (noisy) signal FT (:) from the
distributions FX and FY : Secondly, form the estimator distribution FS(:) =
FT (L(:)) for the estimator S = �X(T ): Finally, compute the Dye cuto¤ S
from the estimator distribution. In summary the manager announces8 the
estimate S provided a signal T has been received for which the estimator
satis�es S > S:
Thus, in the modi�ed Penno setting of optimal disclosure in which man-

agement receives a noisy signal, the optimal strategy is of the same canonical
form as the Dye cuto¤, but with an appropriate change of variables.

2.4 Endogenous optimal disclosure intensity

This subsection is dedicated to considering whether, given the observation of
a company�s disclosure intensity � ; de�ned as

� = q(1� F ());

investors can make rational inferences concerning the amount of noise (�2Y )
associated with management�s disclosures. One could proceed directly by
trying to identify the formula linking the two variables. However there is
a less cumbersome route. Since �2Y uniquely determines the cuto¤  (for
given �xed �2X); one can instead just consider how � is related to  as this is
su¢ cient to establish the existence of a closed form functional relationship.
It follows from the de�nition of � ; by simple arithmetic9, that

� = 1� � i¤ F () = �2:

But, the right hand-side condition is exactly the optimization condition
derived in the discussion of subsection 2.2 concerning management�s optimal
choice of information endowment bq = 1� bp: This can be summarized as:

8The cuto¤ t̂ used by the manager given the observed noisy signal T is computed by
the manager via t̂ = ��1X (xS):

91� F () = q+p
q

q�p
q = q2�p2

q2 :
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Optimal Intensity Theorem. The odds-ratio � = bp=bq and the intensity
of disclosure � sum to unity, i.e.

� + � = 1;

i¤ the value of p is selected optimally as in Subsection 2.2 above, i.e. p = p̂,
or, equivalently � = �̂ : In this case the corresponding Dye cuto¤, denoted ̂;
and the odds ratio �̂ are related according to the rule

�̂ =
p
F (̂): (13)

We stress that the simplicity of this formula is evidence of the tractability
of the valuation (6).

3 Monotonicity between disclosure intensity
� and signal noise �Y

We know from Penno�s closing proposition of his (1997) paper, that for the
special case of normally distributed underlying parameter and independently
normally distributed �additive�noise (with �2T = �

2
Y + �

2
X) the disclosure in-

tensity � is unrelated to signal noise �Y . At issue then is how general is the
possibility of such non-dependence. In general when a distribution FT is para-
metrized by a scalar � this has traditionally been interpreted as re�ecting the
relative �riskiness�and consideration of the family of distributions FT (x; �)
has been a topic of central concern for portfolio management research for
many years. A key construct for making comparisons within a given class
of distribution is an investigation of various forms of �stochastic dominance�
properties of the distributions. See H. Levy (1992) for an overview.
This section presents two types of results. First in subsection 1 a set of

general results which de�ne the class of distributions de�ned by stochastic
dominance criteria which admit monotonicity between disclosure intensity
and signal noise �Y . It is argued that the class of distributions that admit
monotonicity are in a meaningful sense reasonable, in particular since the
class identi�ed (wider than the log-concave ones) are such as are commonly
assumed in the related literature on stochastic dominance and investment
opportunities. After the general discussion of subsection one the analysis
turns to consider two speci�c distributions. First the normal distribution
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which does not admit monotonicity is investigated and then the log normal-
ity which does. Put simply this explains the �nal Penno proposition. He
assumed a restrictive class of distribution (normal distributions for both true
value and the �additive�noise) that does not satisfy a mild extension of tra-
ditional stochastic dominance criteria. Once one moves to a distributional
class satisfying the extended traditional criteria (and working, say with the
log-concave distributions) there exists a formal link between disclosure inten-
sity and signal noise, whereupon it is valid to assume in an empirical study
that investors may draw inferences regarding managerial signal noise from
observed disclosure intensity.

3.1 Stochastic dominance, noise and disclosure lotter-
ies

For clarity we commence the discussion under the assumption we are in a
Dye setting and then extend the analysis to the noisy observation setting of
Penno. We begin by recalling from the end of subsection 2.3 that the manager
may be regarded as facing trade-o¤s resulting from an equilibrium choice of
the cuto¤ : (That is, although q is actually selected by the manager, we
here think of the corresponding  = (q); as being selected.) We repeat
for convenience: given a ; if that  were selected, the manager trades o¤
two countervailing e¤ects: risk-shielding versus enhanced valuation. The
objective of risk-shielding under non-disclosure prescribes the selection of a
cuto¤  (risk-shield) as large, and as close, as possible to � to ensure that
the value of the company does not fall below . To see the trade-o¤ with
enhanced valuation, consider that the extreme case  = � implies q = 0,
which signi�es that the manager will never see any news � including �good�
news.(and there will never be any disclosures). Likewise, enhanced valuation
as represented by the expected value of the company under disclosure, which
would be maximized by having q = 1: But q = 1 o¤ers no risk-shielding
� full �unraveling�occurs. We recall here that the enhanced value may be
interpreted as H() as explained in subsection 2.1
These considerations lead us to studying the relationship between two

functions: H()=(��); i.e. a gain-to-loss ratio, and
p
F (); which identi�es

the optimized odds when the cuto¤ corresponds to an optimal selection of
information-endowment by the manager. Up until now we have been working
as if �; the standard deviation of the distribution of company value, F did
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not vary. We now make explicit the possibility of such variation and note
this complicates our earlier explanation of �countervailing e¤ects�.
In the Penno disclosure setting, if there are two companies (with �1 <

�2) and each manager announces the company�s value has been estimated
to be identically Xest in both cases, investors will prefer the �rst company
with lower � by risk aversion. To understand how investors� attitude to
risk aversion will determine relative valuations in the disclosure setting we
employ �rst order stochastic dominance (FSD, for short). From the above
discussion of countervailing e¤ects we see that the equilibrium conditions
are determined by pairs of lotteries: one lottery representing risk-shielding
the other value enhancement. The lottery pair is characterized by the two
variables: the cuto¤  and the signal noise �: Our comparison of pairs of
lotteries is one where risk aversion matters, as it does in the standard mean-
variance portfolio analysis. Hence the two functions earlier identi�ed must
explicitly display dependence on � :

�(; �) =
p
F (; �); (optimized odds)

�(; �) : =
H(; �)

��  (gain-to-loss).

Recall that � = � is the Dye no-arbitrage equation (4) and � = � is the
optimized odds equation (13) which endogenizes the manager�s information
endowment p̂;and both equations must hold simultaneously at an equilibrium.
Because both of these functions are increasing, we may regard them as

inducing lottery pairs, that is they may be viewed as distributions (after
rescaling �) of two random variables, respectively Z� and Z�; that de�ne a
pair of lotteries in both of which success (interpreted as disclosure of a value
above ) corresponds to the events Z� >  or resp. Z� > : The interpreta-
tion in terms of disclosure is valid when  is selected as the manager�s cuto¤
disclosure strategy (which necessarily requires that  satis�es � = �): Of
course, the word �failure�corresponds to the company being downgraded to
a value of  following non-disclosure.
Trade-o¤s between single lotteries (equivalently, between the success cut-

o¤and the spread) are traditional analyzed using FSD. Recall that in Markowitz�
portfolio theory rankings are made between vectors (�; �) on the basis of the
natural order in respect of � and its inverse in respect of �: (�More � to less
is preferred, and less � to more is preferred.�)
Here the added complication is we have pairs of lotteries. So it is natural

to extend FSD when ranking � lotteries and similarly with � lotteries �see
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(i) and (ii) in the De�nition below. In general there need not be any further
opportunity to compare lotteries. But suppose, for a �xed � for some reason
the � lotteries o¤er greater chance of success than do � lotteries for all 
large enough (above some threshold determined by �) as in (iii) below.
Under these circumstances, given an initial lottery pair with � = �0 and

with  at the corresponding threshold 0 suppose that �;  are increased
above these initial values, we consider what comparisons may be made be-
tween lotteries de�ned by parameter pairs (; �): Speci�cally, consider a suc-
cession of steps of simultaneously reducing � (starting from � = �V > �0;
say) and increasing  (starting from 0; say) so as to hold the chance of fail-
ure in the � lottery constant. To re�ect consistent risk-aversion one would
expect at each step a compensation in the � lottery (in terms of an increased
chance of success, i.e. lower � value). Likewise, for a succession of steps in
which � is held �xed would require compensation in the � lottery (in terms
of an increased chance of success, i.e. lower � value).
As we can see in the illustration of Figure 2 this passage between the

lotteries of triangle PML in the (�;�)-plane presents a clockwise orientation
for the triangle. That �gure is consistent with our narrative if and only the
directions of increasing �;  contours are as indicated, that is to say the
transformation (; �) 7! (�;�) is orientation preserving. That is what the
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de�nitions below formalize.

γ =
 γ 0

γ =
 γ 1

σ = σ

σ = σ

Λ

Π

M
L

P

σ = σ

V

H

0

Figure 2. � and � contours. The orientation on the points P, M,
L signi�es preferences of risk-averse agents over corresponding

lotteries for appropriate ; � values as indicated..

Lottery de�nition. Let �(; �) and �(; �) be two distributions parame-
trized by � > 0. Suppose that for some � we have:
(i) �(; �1) < �(; �2); for all  < �; and 0 < �1 < �2,
(ii) �(; �1) < �(; �2); for all  < �; and 0 < �1 < �2,
(iii) for each �; there is a unique ̂(�); such that �(; �) < �(; �); for all

 with ̂(�) <  < �.
We say that the two families of distributions f�(; �); �(; �)g exhibit

joint stochastic dominance, if the mapping (; �) ! (�; �) is orientation
preserving, equivalently its Jacobian determinant is (strictly) positive, i.e.

@(�; �)

@(; �)
:=

���� � ��
� ��

���� > 0:
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Strong First Degree Stochastic Dominance: We say that the single
family of distributions F (x; �) has strong �rst degree stochastic dominance
if F (x; �1) � F (x; �2) whenever 0 < �1 < �2 (i.e. �rst degree stochastic
dominance obtains), and in addition the transformation (; �) ! (�; �) is
orientation preserving, or equivalently, the Jacobian

d(�; �)

d(; �)
=

�
� ��
� ��

�
has positive determinant, where �; � are de�ned from F as � =

p
F and

� = H=(�� ) with H =
R
F (z; �)dz; the hemi-mean function.

Monotonicity Theorem for disclosure intensity � and signal noise �
In any region of a model in which the state estimator distributions FS are
strongly dominant relative to �S; the intensity of disclosure �S is decreas-
ing in �S (and so increasing in �Y given a �xed �X):

The intuition for this result is as follows. The higher the signal noise �Y
the more an investor has to be compensated for the risk that a given disclo-
sure is imprecise (in the limit becoming spurious), hence management need
to compensate investors by increasing the probability (intensity) of disclo-
sure. To summarize then if the distributional assumption for the valuation
random variable admits strong dominance then investors can infer that the
management of companies with higher observed disclosure intensity � are
facing greater signal noise �Y :
In the following two subsections we then consider speci�c distributions,

�rst the class of scale and location preserving distributions which include
the normal which do not satisfy the monotonicity theorem and then the log
normal distribution which does.

3.2 The normal distribution and the class of location
and scale distributions

We begin by considering a location and scale class of models which includes
the Penno (1997) normal model setting. This class of models have many
favourable features, in particular a straightforward representation of the Dye
cuto¤. Unfortunately, an important disadvantage when pursuing inferences
from voluntary disclosure behaviour (disclosure intensity) in this case is a
lack of dependence on the signal noise �Y
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With inter-company comparisons in mind, we begin with a standardiza-
tion exercise.
Standardization Theorem. Let �(x) be an arbitrary zero-mean, unit-
variance, cumulative distribution de�ned on R. For the following location
and scale family of distributions �(x��

�
), with mean � and variance �2; the

Dye cuto¤ (�; �; �) satis�es

(�; �; �) = �� ��(�); where � = p

q

and where
�(�) = �(0; 1; �)

is the cuto¤, when standardizing to zero mean and unit variance, and is a
function only of the odds-ratio. The standardized cuto¤ �(�) is a convex and
decreasing function of � and satis�es

� = H�(��)=�;

where H�(x) =
R x
�1�(t)dt is the corresponding lower partial moment.

The �rst consequence of the standardization result is a simple but highly
signi�cant result.

Corollary 1. For the location and scale family above and for a �xed odds-
ratio � = p=q, the cuto¤ for the observed noisy signal (�; �; �) = �� ��(�)
recedes away from the mean at a constant rate �(�); as the precision is reduced
(noise �Y is increased).

The Theorem and Corollary taken together greatly aid development of
intuition as follows. The Corollary identi�es the statics of the cuto¤ for
changes in the location and scale parameters. Thus, working within the
Dye framework (i.e. when endowed, the manager has perfect information
� receives a clean/non-noisy signal), if the companies in a given industry
have value distributions in a common scale and location family, Corollary
1 demonstrates that, following non-disclosure, the value of the company is
reduced to a cuto¤value that distinguishes between companies with the same
mean � (expected return), but di¤erent variances �2. Holding � constant,
companies with higher variance are subject to greater downgrade in value.
Next in the step from the clean signal X of the Dye model to the noisy

signal T of the Penno model, there is in general also a change of distribution:
from HX to HS; where S = �X(T ) is the regression (best estimate) of the
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underlying value X given T: But, it may happen that S has the same prob-
ability law as X; apart from a change in scale and location, in which case it
is usual to say that the laws of S and X are of the same type. In this case,
provided mX = mT (unbiased signal), the cuto¤ as identi�ed in Corollary 1
varies, merely by an adjustment from � = �X to � = �T :
Also using our notation, in Penno�s model we have T (X; Y ) = X + Y

(as in Kyle) and so the regression function is a¢ ne as in (12), and hence HS
is indeed in the scale and location family of X: Thus in Penno�s model it is
as though the noisy signal T was clean albeit with an adjusted variance (or,
more properly, as though the noisy signal was the estimator).
Furthermore, the Standardization Theorem evidently includes as a spe-

cial case the standard normal distribution and thus elucidates the following
observation in Penno (1997). Using our notation, Penno asserts that �the
threshold T increases as information quality (precision) �Y increases�(i.e.
as ��1 := �2Y decreases). Indeed, this is clear from substituting �T for �;
where �2T = �

2
X + �

2
Y ; since X; Y are assumed independent.

Finally, it is possible to state a more general form of the �nal Penno
proposition of (1997).
Corollary 2. For the location and scale family above, the manager max-

imizes the value of

p(�� T (�; �; �)) = p�T(0; 1; �) with � = p=(1� p):

over p by a choice of p = bp that is independent of �T :
Having shown immediately how tractable the Penno type model is, the

next result identi�es the limitation in Penno�s setting: the voluntary disclo-
sure intensity is constant across companies, precisely because the regressor
S = �X(T ) has a distribution in the same scale and location family as X and
with identical locations (means) of S and T:

Invariance Theorem. (cf. Penno, Proposition 1). If X and S have distri-
bution/law of the same type (their distributions are equivalent under a change
of Location and Scale), then the theoretical intensity of voluntary disclosure
is invariant under changes in scale, equivalently in precision. Speci�cally it
takes the form

�̂ := (1� p̂)(1� �(�(b�)) = 1�q�(�(b�));
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where �(�) satis�es
� = H�(��)=�;

and H�(x) =
R x
�1�(t)dt is the lower partial moment of an arbitrary distri-

bution � with mean zero and unit variance.

Thus in a normal model setting, such as that in Penno (1997), the optimal
level p̂ of information endowment is independent of the noise parameter �Y
although the cuto¤ ̂(�; �T ) still varies (a¢ nely) with �Y :10

Arguing from intuition, one may expect that �̂ is proportional to q̂ with
a constant of proportionality approximately (1 � �(mX)); on the grounds
that the cuto¤  is not far below the mean. It is also natural to expect the
optimally selected q̂(�) to be decreasing in �; on the grounds that a better
estimate when information is more error-prone may be gained from a larger
number of observations. Indeed, Penno (1997) posits functional forms for
this behaviour. Thus one expects that inferior companies (those with lower
�) to have higher �̂ : This, as we cite in the introduction, is reported as a
paradox, �contrary to the popular notion that higher-quality information
is accompanied by more voluntary disclosure, the paper has demonstrated
that this notion is, in general, not true.� (p. 280). In fact as we have
shown this result is in accord with Shin�s comments (see abstract) on how
some disclosure strategies may seem unintuitive unless disclosure decisions
are taken in equilibrium. This analysis shows clearly why the more risky
companies, those where management face more noisy signals, in equilibrium
have a higher disclosure intensity.

3.3 Log-normal models

In this subsection we work with a distributional assumption that both satis-
�es strong �rst degree dominance and is the traditional modelling assumption
for securities (company equity value), namely the log-normal distribution.
The model is de�ned by specifying the underlying company value X as

X = mXe
U� 1

2
�2U ;

10Furthermore, if there is a cost attached to the precision �Y = 1=�2Y there is scope
for variation in p̂ against the cost C(�). Thus, one may derive the relationship between
p̂ or q̂ and the optimized value of ��Y �much as one derives indirect pro�t against (opti-
mized) output in microeconomics. This insight may be used to study Penno�s proposed
dependence of q(�) on � �see Penno�s equation (A1) �by comparison with q̂(�).
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with U a normal zero-mean random variable with variance �2U : The noisy
signal is modelled multiplicatively as T = T (X;Y ) = XY with

Y = eV�
1
2
�2V ;

a random variable independent of X; so that V is independent of U and is
normal zero-mean with variance �2V : Hence,

T = mXe
W� 1

2
�2W

where W = U + V is normal zero-mean with variance

�2W = �2U + �
2
V :

Thus the observed signal T is again a log-normal variable, but with an ad-
justed variance. It is straightforward to show that the estimator, S = �X(T );
is also a log-normal variable, in fact a simple power function transform of T .
This leads to:

Intensity Invertibility Theorem In the log-normal model the value of
the optimal level p̂ of information endowment (as well as the cuto¤ ) are
identi�able from the intensity � .

The log-normal model is reasonably tractable as an analytic tool, since
all relevant random variables are from the same family. (It is a log-scale
model rather than a location and scale family, because of the non-linearity
of the logarithm.) A key result is the Regressor Functional Form proposition
below. However we �rst identify the usual disclosure functions within the
log-normal setting.
The clean (Dye) signal cuto¤ for X (had that been the observed signal)

is given by
x̂ = mX � b; (14)

where b = b(�; �U) is the solution to the equation
�(1� b) = HLN(b; �U); (15)

where HLN denotes the hemi-mean function for the log-normal and is given
by:

HLN(; �) = z � �N
�
log() + 1

2
�2

�

�
� �N

�
log()� 1

2
�2

�

�
:
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To aid intuition recall (2) and note that the hemi-mean on its right-hand side
may be interpreted as the valuation of a call-option struck at the money on
the mean mX , hence the familiar appearance of the Black-Scholes formula,
here without the factor mX which cancels against the same factor on the
left-hand side �(mX �mX � b) = mX�(1� b) where � = p

q
:

It is straightforward to show that the conditional expectation estimator
(leading readily to the regression function) is given by

Xest = S = mX exp

�
�W � 1

2
�2�2W

�
= mX exp

�
�W � 1

2
��2V

�
:

So the cuto¤ for the estimator Xest is given by

x̂est = mX � best;
where best = b(�; ��W ) is the solution to the equation

�(1� ) = HLN(; ��W ):

Note that there is a double adjustment here: the variance �2U is replaced by
the observed signal variance �2W and is then downgraded by the factor � :

� =
pV =pU

1 + pV =pU
< 1:

In summary we have:

Regressor Functional Form. If T = XY and X; Y are independent log-
normally distributed random variables, then the regression function is concave
and follows a power law:

�X(t) = E[XjT = t] = e
1
2
�(1��)�2WmX (t=mX)

� ;

where X = mXe
U� 1

2
�2U and Y = eV�

1
2
�2V (with U , V independent normal

zero-mean variates) and

� =
�2U

�2U + �
2
V

=
pU

pU + pV
; and �2W = �2U + �

2
V :

Given a power format, the value of � is easily guessed, whereupon the
constant of proportionality may be computed using the fact that E[�X(T )] =
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mX (by the �law of total probability�) �see below. Thus the inverse regression
function L(x) is convex and is given by:

L(x) = mXe
� 1
2
(1��)�2W (x=mX)

1=�:

Corollary. The random variable Xest = S = E[XjT ] has mean mX and is
log-normal with representation:

mX exp

�
�W � 1

2
�2�2W

�
= mX exp

�
�W � 1

2
��2U

�
;

where W is zero-mean normal with variance

�2W = �2U + �
2
V :

Log-normal disclosure intensity: The disclosure intensity in the log-
normal model is given by:

�̂ = q̂(��W )
�
1� �LN(ẑest; ��W )

�
= 1� p̂(��W )=q̂(��W );

where �LN(; �) = �N

�
log() + 1

2
�2

�

�
;

and �N is the standard normal distribution.

An illustrative example graph of �̂ against precision as measured by �, as
de�ned in equation (10), is o¤ered in Figure 3.
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Figure 3. The theoretical intensity �̂ of
voluntary disclosure as a function of �.
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4 Empirical analysis with disclosure intensity

A recent paper in this area is the work of Cousin and de Launois (2006). In
their work they consider traditional competing models of conditional volatil-
ity; the GARCH speci�cation and a Markov Switching two state market
model. The innovative feature they introduce is that they argue that infor-
mation arrival a¤ects stock return volatility. That is, from our perspective
they are arguing that news intensity a¤ects conditional volatility; so, for in-
stance, in the GARCH framework the speci�cation of conditional variance is
given by:

�2i;t = !i + �i"
2
i;t�1 + �i�

2
i;t�1 + �iNi;t (16)

where the new term Ni;t is a proxy11 for the number of company i speci�c
news events announced to the stock market per interval t: Their main ob-
jective is to compare and contrast the performance of this adjusted GARCH
model to a two state Markov Switching Regression (MSR) model where now
the disclosure intensity determines the probability that a company under
consideration is either12 in a low or high volatility regime.
What is of particular interest for us is that they assume disclosure inten-

sity is an important empirical explanatory variable for conditional volatility
as modelled theoretically in our framework. In the GARCH framework their
empirical �ndings are consistent with our theoretical predictions in that the
conditional volatility is increasing in disclosure intensity and in the MSR
framework the probability of being in the high volatility state is increasing
in disclosure intensity. Thus their empirical tests appear to be broadly in line
with our theoretical predictions. However, before coming to this conclusion
we believe it is important to raise an important note of caution. Of critical
importance is how Cousin and de Launois measure disclosure intensity. As
Table 1 makes clear they simply record the frequencies of Factiva disclosures
by category. However, if one just records all the raw empirical disclosure
intensities for companies this does not capture the essential features of our
generalised Dye-Penno model for the following reason. The theoretical model
is of voluntary disclosures, that is the model concerns only those news wires
corresponding to management receiving information about future events that

11They measure the variable by identifying the frequency of a subset of �rm news releases
on Factiva.
12To be more precise the disclosure intensity in part determines whether the state regime

dummy variable Di;t is above or below a threshold that the �rm is in the high volatility
regime.

28



a¤ect their voluntary ability to issue the news wires and thus indicate value
above the Dye cuto¤. Companies in addition are required under regulatory
provisions to make mandatory disclosures. Thus the raw data on disclo-
sure intensities is a mix of disclosure �types�, whereas the theory only speaks
to the �above Dye cuto¤�voluntary disclosures. Thus, when working with
raw disclosure intensity data an essential step is to implement an estimation
procedure for separating out the voluntary Dye type disclosures.
With this empirical issue in mind one procedure could be to exploit the

distributional assumptions of the model and then the Dye cuto¤ can be
shown to be close to the mean (just below) and one can use this to validate
an empirical approach which measures dimensionless relative intensity, i.e.
excess relative to the mean in proportion to standard deviation. Looking
at disclosure intensities above the mean rate (�high rates�) abstracts away
from mandatory good news disclosures that happen on a regular basis. Thus
restricting attention only to high intensity disclosure periods, we need to
distinguish between those that approximate to good news (voluntary dis-
closures) and those that approximate to bad news (mandatory disclosures),
typically driven by regulations put in place to protect investors from delay
of bad news disclosure. In order to identify which are good news and which
are bad news disclosures when there is no standard �message space�for vol-
untary disclosures, it is suggested here that one could identify good news
disclosures as those that give rise to an increase in analysts�consensus fore-
casts and so exclude those that give rise to a decline in analysts�consensus
forecasts for the company.
In contrast recent research by Rogers, Schrand and Verrecchia (2008)

(RSV) use an EGARCH model which allows them to estimate the condi-
tional variance when modelled as one of two functions depending on the
sign of the return shock. The intuition behind this asymmetric modelling
assumption is that �bad news�seems to have a more pronounced e¤ect on
conditional volatility than has �good news�. For many companies there is
a strong negative correlation between the current stock returns and future
volatility. The tendency for conditional volatility to decline when returns
rise (following good news) and rise when returns fall (following bad news)
is typically referred to in behavioural �nance as the leverage e¤ect. RSV
propose that when companies follow a strategy of reporting good news and
withholding bad news this can be described as �strategic disclosure�. In a
setting where good news is taken at face value, bad news below the cuto¤
threshold has to be inferred by investors, and it is this di¤erence in the in-
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ferential process that leads to the asymmetric responses in the market. To
see this in the limiting case of full disclosure remove the leverage (asymmet-
ric) e¤ect whereupon current changes in valuation (impounded in returns)
would always be associated with recent news arrival rather than the need for
investors to make inferences following non-disclosure. Rather than look at
actual disclosures, RSV instead develop two hypotheses about the leverage
e¤ect. The �rst is that the leverage e¤ect is stronger for companies about
which there is less private information; that feature is assumed to increase
the threshold level of disclosure (implying a lower disclosure intensity). The
second is that the leverage e¤ect will be weaker when increased litigation
risk a¤ects a company�s propensity to adopt a �strategic disclosure�strategy.
RSV report interesting results; however, our research on disclosure intensity
suggests an alternative empirical implementation. Speci�cally, they use the
variable PUBINFO as a measure of private information. That measure cap-
tures the extent to which information is likely not to be private, because on
their analysis, if company returns move together then, ceteris paribus, homo-
geneity subsists in that sector of industry; so there is less private information
when results of company operations are similar. Thus, they do not actually
measure disclosure intensities. Accordingly, on the view that our model may
have wider empirical applicability than the special two-case scenario investi-
gated by RSV, we suggest that an EGARCH model variant of the standard
GARCH model, redesigned so as to refer to disclosure intensities in (16), may
also be worth investigating.

5 Conclusion

We have shown that in equilibrium the managers of companies facing higher
signal noise will rationally increase their disclosure intensity. That is, work-
ing back from observed disclosure intensity, investors can infer that ceteris
paribus high intensity disclosing companies are more risky, as management�s
truthfully disclosed estimates have larger standard deviations associated with
them (for instance, because the managers are subject to greater noise in their
operating environments). This theory, based on generalizations of the estab-
lished Dye-Penno models, suggests both new empirical testing procedures
and also critically a di¤erent direction in assumed causation. The theory
shows why one should not base empirical hypotheses on an a priori assump-
tion that �better�companies make more voluntary disclosures, since we have
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shown that it is in fact the companies with the most poorly informed man-
agement (facing highest noise) which will in equilibrium disclose with the
greatest intensity.
The research is subject to a number of caveats. We abide by the assump-

tions of the Dye model in regard to truthful disclosure and the inability of
credible disclosure of absence of information. The model is essentially a sin-
gle period project model in which success in one period does not in�uence
successes in later periods. That is, multi-period project dependence (and re-
lated disclosure) is not modelled. This is clearly a topic for future research.
Furthermore mangers here make disclosures according to their own optimal
cuto¤ rather than mimicking a di¤erent manager type; any other behaviour
would require an alternative model.
We note that the model is robust to changes in the valuation model (6)

to other (di¤erentiable) concave valuations (see subsection 2.1): a small per-
turbation of that value function is re�ected in small perturbations elsewhere
in our analysis.
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7 Appendix: Newswire vs. disclosure inten-
sity (empirics)

Here we suggest how to model an empirical link between disclosure intensity
and the intensity with which companies issue newswires.
Having established that the disclosure intensity is a theoretically valid

construct upon which to base empirical study, a number of cautionary re-
marks need to be stressed before actual empirical implementation is at-
tempted. If one just recorded all the raw empirical disclosure intensities for
�rms this would not capture the essential features of the disclosure model for
the following reason. The theoretical model is of voluntary disclosures, that
is its logical connection is only with newswires corresponding to management
receiving information about future events which a¤ect their voluntary ability
to issue the newswires (and so to indicate value above the Dye cuto¤). In
addition �rms are required under regulatory provisions to make mandatory
disclosures. Thus the raw data on disclosures is a mix of several disclosure
�types�, whereas the theory only speaks to the �above Dye cuto¤�voluntary
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disclosures. Thus when working with raw disclosure intensity data an es-
sential step is to implement an estimation procedure for separating out the
voluntary Dye type disclosures.
With this empirical issue in mind it is straightforward to check that under

various distributional assumptions the Dye cuto¤ is close to the mean (just
below) and use this to validate an empirical approach which measures di-
mensionless relative intensity, i.e. excess relative to the mean in proportion
to standard deviation. We shall derive such a quantity below.
First, turning to the issue ofmandatory disclosures, an important element

of the empirical investigation is how to separate out when a disclosure is
voluntary (as in the Dye model) or alternatively mandatory. Since we will
be looking at disclosure intensities above the mean rate (�high rates�) we will
be abstracting away from mandatory good news disclosures that happens on
a regular basis. Thus restricting attention only to high intensity disclosure
periods, we need to distinguish between those that approximate to good news
(voluntary disclosures) and those that approximate to bad news (mandatory
disclosures), typically driven by regulations put in place to protect investors
from delay of bad news disclosure.
In order to identify which are good news and which are bad news disclo-

sures, when there is no standard �message space�for voluntary disclosures,
it is suggested here that we identify good news disclosures as those that give
rise to an increase in analysts�consensus forecasts and so exclude those that
give rise to a decline in analysts�consensus forecasts for the �rm.
Our basis for modelling is the assumption that the number of a �rm�s

newswire releases in any unit period of time takes the form

N = NV +NM ;

where the two independent random variables are NV ; relating to voluntary
disclosure, and NM , relating to mandatory disclosure are Poisson random
variables. For each, we assume that the Poisson rate of disclosure is depen-
dent on the information-endowment of management. The state of endowment
is modelled as

! = (e; t; z)

where: e 2 fu; ig is the manager�s endowment type (uninformed/informed),
t = x � y is a realization of T (X; Y ) = XY; as in subsection 2.3 above,
and z is a realization of an independently distributed random variable Z;
which represents those aspects of the �rm which are governed by mandatory
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disclosure requirements. It is assumed in both cases that when the Poisson
rate of disclosure, �, is non-constant, then it is a¢ nely related to observed
signals. Thus the disclosure intensity follows one of two state-dependent
regimes (according as disclosure does or does not occur) as shown below:

�V =

�
�t+ �; if e = i & t � ; (Disclosure)
� + �; if e = i & t < ; or if e = u: (Non-Disclosure)

Thus �V follows the same constant regime in the non-disclosure region in the
outcome space fu; ig�R+ of the voluntary random variable. We propose to
treat the mandatory variable in a similar fashion: we presume that there is a
lower-threshold (fall in value) for the variable Z, namely � (which precipitates
intensive disclosure activity), whose value we model exogenously. Thus �M
follows one of two (state-dependent) regimes:

�M =

�
a� bz if z < �;

a� b� = � if z � �;

with a; b > 0: For both random variables, we thus use the probability assign-
ments

P [N = n] = e��
�n

n!
;

conditional on the state which determines �explicitly (as above). So, condi-
tional on � being constant (depending on regime), we have

E[N ] =
X
n

ne��
�n

n!
= �:

We refer to the region where e = i, t � ; z � � as the Good News region.
We note that the unconditional mean of N is simply:

E[N ] = E[NV ] + E[NM ];

and furthermore point out that expectations can be computed by condition-
ing on the various regimes. For example,

E[NV ] = E[E[NV jND] + E[NV jD]];

and similarly for NM :
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Now, if one conditions on good news GN , the Poisson rate of N = NV +
NM is �t+ � + �: So, using bars to denote such conditional expectations, we
have

�N = � �T + � + �;

�� = ���T :

Thus, for any given realization N; we compute the score statistic N� to be

N� =
N � �N

��
=
T � �T

��T
;

so that the score statistic N� (in the Good News region) is independent of
the signalling parameters �; �; �:We call this the �good news count�statistic
of the �rm and suggest that this be the basis for empirical analysis.
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