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Abstract

The identity linking the Tutte polynomial with the Potts model on a graph
implies the existence of a decomposition resembling that previously obtained
for the chromatic polynomial. Specifically, let {Gn} be a family of bracelets
in which the base graph has b vertices. Then the Tutte polynomial of Gn

can be written as a sum of terms, one for each partition π of a non-negative
integer ` ≤ b:

(x− 1)T (Gn; x, y) =
∑

π

mπ(x, y) tr(Nπ(x, y))n.

The matrices Nπ(x, y) are (essentially) the constituents of a ‘Potts transfer
matrix’, and their ‘multiplicities’ mπ(x, y) are obtained by substituting k =
(x− 1)(y− 1) in the expressions mπ(k) previously obtained in the chromatic
case. As an illustration, we shall give explicit calculations for bracelets in
which b is small, obtaining (for example) an exact formulae for the Tutte
polynomials of the quartic plane ladders.
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Tutte Polynomials of Bracelets

1. Introduction

The Tutte polynomial of a graph G is a two-variable polynomial T (G; x, y)
that provides a great deal of useful information about G. It has applications
to the study of colourings and flows on G [4], as well as reliability theory [7,
12], knot theory [14], and statistical physics [5, 6, 10].

A paper [1] published in 1972 discussed families of graphs {Gn} for which
the Tutte polynomials Tn = T (Gn; x, y) satisfy a linear recursion of the form

Tn+r + a1Tn+r−1 + · · · + arTn = 0,

where the ai are polynomials in x and y with integer coefficients. The families
were of the kind that we now call bracelets (see Section 2 for the definitions).
More examples of this kind were studied by D.A. Sands in his thesis [9],
but work on these lines soon ground to a halt. This was due partly to the
primitive state of computer algebra at the time, and partly to the fact that
the only theoretical method available was the deletion-contraction algorithm,
which is very inefficient.

However, around the same time it became clear [13] that the Tutte poly-
nomial is closely related to the ‘interaction models’ that occur in statistical
physics, and that tools from that field can be applied. One such tool is the
transfer matrix. Much later it transpired that, in the special case of the
chromatic polynomial, the transfer matrix could be analysed by applying the
theory of representations of the symmetric group, and this led to explicit
formulae for the chromatic polynomials of bracelets [3].

In this paper similar methods will be applied to the Tutte polynomial. The
key is the identity linking the Tutte polynomial with the Potts model on a
graph, which implies the existence of a decomposition resembling that used
in the chromatic case. Specifically, let {Gn} be a family of bracelets in which
the base graph has b vertices. Then the Tutte polynomial of Gn can be
written as a sum of terms, one for each partition π of a non-negative integer
` ≤ b:

(x− 1)T (Gn; x, y) =
∑

π

mπ(x, y) tr(Nπ(x, y))n.

The matrices Nπ(x, y) are (essentially) the constituents of a ‘Potts transfer
matrix’ (Section 2), and their ‘multiplicities’ mπ(x, y) are obtained by sub-
stituting k = (x− 1)(y − 1) in the expressions mπ(k) previously obtained in
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the chromatic case (Section 3). As an illustration, we shall give explicit cal-
culations for bracelets in which b is small, obtaining (for example) an exact
formulae for the Tutte polynomials of the quartic plane ladders.

2. The Potts transfer matrix

Let G be a connected graph with vertex set V and edge-set E. In the Potts
model on G we assign to each ‘state’ σ : V → {1, 2, . . . , k}, a weight defined
in terms of interactions iσ(e) (e ∈ E). Specifically, if e has vertices v and w,
then

iσ(e) =
{

1 if σ(v) = σ(w);
0 otherwise.

.

The partition function for the Potts model is defined to be

ZP (G; k, y) =
∑

σ:V→{1,...,k}

∏
e∈E

yiσ(e).

Clearly ZP is a polynomial function of the two parameters k and y. For
example, suppose G = K3, with V = {1, 2, 3} and E = {12, 13, 23}. Then
the interaction weight is y3 for k states, y for 3k(k − 1) states, and 1 for the
remaining k(k − 1)(k − 2) states. Hence

ZP (K3; k, y) = ky3 + 3k(k − 1)y + k(k − 1)(k − 2).

The result holds only for integer values of k, but we can consider ZP as a
polynomial in Z[k, y], given by the same formula. Now it turns out that if we
introduce a new indeterminate x defined by the substitution k = (x−1)(y−1),
then ZP (G; (x − 1)(y − 1), y) is divisible by (x − 1)(y − 1)|V | in Z[x, y] For
example,

ZP (K3; (x− 1)(y − 1), y)

= (x−1)(y−1)y3+3(x−1)(y−1)(xy−x−y)y+(x−1)(y−1)(xy−x−y)(xy−x−y−1)

= (x− 1)(y − 1)3(x2 + x + y).

The general result is established by a calculation that also identifies the
complementary factor as the Tutte polynomial T (G; x, y).

Theorem 1 The following identity holds in Z[x, y]:

(x− 1)(y − 1)|V |T (G; x, y) = ZP (G; (x− 1)(y − 1), y).

Proof This result is quite old [2, 13]; a recent and authoritative account
is given by Sokal [10]. ut
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A bracelet Gn is formed by taking n copies of a graph B and joining each
copy to the next by a set of links L (with n+1 = 1 by convention). For each
choice of B and L we get a family of graphs for which the transfer matrix
method is appropriate.

Let V be the vertex-set of the base graph B. Construct the graph J which
has two disjoint copies of V for its vertex-set, say V1 and V2, and the following
edges. The vertices in V1 are joined among themselves by edges as in B, the
vertices in V1 are joined to those in V2 by the links L, and the vertices in V2 are
not joined among themselves. Suppose J is ‘coloured’ by assigning to V1 the
state σ, and V2 the state τ . Then we say that an edge of J is monochromatic
if both its vertices receive the same colour. The matrix M = M(k, y) has
k|V | rows and columns, indexed by the ‘states’ σ, τ : V → {1, 2, . . . , k}. The
entries of M are given by

Mστ = yµ(σ,τ),

where µ(σ, τ) is the number of monochromatic edges, as defined above.

Theorem 2

ZP (Gn; k, y) = tr M(k, y)n.

Proof The proof is standard. A version directly applicable to the present
formulation can be found in [2, p.26]. ut

The essence of the transfer matrix method is that the eigenvalues of Mn are
the nth powers of the eigenvalues of M , so the spectrum of M determines
ZP (Gn; k, y) for all values of n. Furthermore, M commutes with the obvious
action of the symmetric group Symk on the states, and hence the spectral
decomposition of M can be deduced from the corresponding Symk-module.

3. The Specht decomposition

In this section b and k are fixed positive integers, and [b], [k] are sets of the
corresponding sizes (for convenience k > 2b).

Following the remark at the end of the previous section, we begin by con-
sidering certain modules determined by actions of the symmetric group. For
a partition π of an integer ` we write |π| = `, and denote the parts of π
by π1, π2, . . . , π`, where zeros are included as necessary. Let d(π) be the di-
mension of the irreducible representation of the symmetric group Sym` that
corresponds to π. There is an explicit formula for d(π) (the hook formula)
[8, p.124]. For k > 2|π|, let πk denote the partition of k formed from π
by adding a part k − |π|. The hook formula for d(πk) turns out to be a
polynomial function of k [3]: we write it as
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mπ(k) =
d(π)

|π|!

|π|∏
i=1

(k − |π| − πi + i).

For the partitions with |π| ≤ 3 the formulae are

m[0](k) = 1, m[1](k) = k−1, m[20](k) =
1

2
k(k−3), m[11](k) =

1

2
(k−1)(k−2),

m[300](k) =
1

6
k(k − 1)(k − 5), m[210](k) =

1

3
(k − 2)(k − 4)(k − 6),

m[111](k) =
1

6
(k − 1)(k − 2)(k − 3).

Let ι : [b] → [k] be an injection and consider the action ι 7→ αι of Symk on the
vector space generated by such injections. In the work on the chromatic case
[3] it was shown that the resulting module has e(b, π) constituents (Specht
modules) of dimension mπ(k), where

e(b, π) =

(
b

|π|

)
d(π).

Let S(b, r) denote the number of partitions of a set of size b into r parts (the
Stirling number of the second kind).

Theorem 3 The module defined by the action of Symk on the vector space
generated by all functions [b] → [k] has e∗(b, π) constituents of dimension
mπ(k), where

e∗(b, π) =
b∑

r=1

S(b, r)

(
r

|π|

)
d(π).

Proof The proof depends on an elementary decomposition of the space of
functions (see, for example, [11, p.35]).

Let V (b, k), U(b, k) be the modules generated by the injections [b] → [k] and
the functions [b] → [k] respectively. A function σ : [b] → [k] takes exactly r
distinct values, for some 1 ≤ r ≤ b, and so determines a partition of [b] into
r parts. The set of all functions that induce a given partition generates a
submodule isomorphic to V (r, k). Hence, for 1 ≤ r ≤ b, U(b, k) has S(b, r)
submodules V (r, k), and each of these has e(r, π) constituents of dimension
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mπ(k). (The constituents depend on r, but not the partition.) It follows
from the decomposition of V quoted above that U(b, k) has

b∑
r=1

S(b, r)e(r, π) =
b∑

r=1

S(b, r)

(
r

|π|

)
d(π)

constituents of dimension mπ(k). ut
Our main result is now at hand. Given a permutation α ∈ Symk, let R(α)
be the matrix representing the action of α on U(b, k), that is

R(α)στ =
{

1 if ασ = τ ,
0 otherwise.

It is clear that the transfer matrix M = M(k, y) satisfies MR(α) = R(α)M ,
for all α in Symk. In other words, M belongs to the commutant algebra of
the module U(b, k). An important result [8, Theorem 1.7.8] tells us that the
constituents of the commutant algebra correspond to those of the module,
but with the dimensions and multiplicities switched. It follows that M(k, y)
has mπ(k) constituents Mπ(k, y) for each π with |π| ≤ b, where Mπ(k, y) is
a matrix of size e∗(b, π).

When we substitute k = (x−1)(y−1) in M(k, y) and apply Theorems 1 and
2, powers of y − 1 arise. In fact, for each constituent Mπ(k, y) we can write

Mπ((x− 1)(y − 1), y) = (y − 1)bNπ(x, y),

where Nπ(x, y) is a matrix of size e∗(b, π) with entries in Z[x, y].

Theorem 4 Let {Gn} be a family of bracelets with the base graph having
b vertices. Then the Tutte polynomials of the graphs Gn can be written in
the form of a sum over all integer-partitions π with |π| ≤ b:

(x− 1)T (Gn; x, y) =
∑

π

mπ(x, y) tr(Nπ(x, y))n.

Here mπ(x, y) is a polynomial function of k = (x− 1)(y − 1) and Nπ(x, y) is
a matrix of size e∗(b, π) with entries in the ring Z[x, y]. ut

For b = 2, 3, the dimensions of the relevant matrices are

π [0] [1] [20] [11] [300] [210] [111]
d(π) 1 1 1 1 1 2 1

e∗(2, π) 2 3 1 1 − − −
e∗(3, π) 5 10 6 6 1 2 1
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4. The case |V | = 2

It follows from the theory given above that, for any family of bracelets in
which the base graph B has vertex-set V = {1, 2}, the matrix M = M(k, y)
has

1 constituent of dimension 2,
k − 1 isomorphic constituents of dimension 3,
k(k − 3)/2 isomorphic constituents of dimension 1,
(k − 1)(k − 2)/2 isomorphic constituents of dimension 1.

The constituents are represented by matrices which depend on the linking
set L, although their sizes 2,3,1,1, and their multiplicities do not.

We shall work out the details for the cases B = K2, L = {11, 22} and
L = {11, 12, 22}, when the bracelets are the cubic and quartic plane ladders
CPLn and QPLn respectively. The theory of Specht modules provides stan-
dard bases for the various constituents, but we can use any bases that arise
naturally. For example, for the 2-dimensional constituent we define vectors
u,v as follows:

uσ = 1 for all σ, vσ =
{

1 if σ1 = σ2;
0 otherwise.

.

Lemma 4.1 For CPLn the action of M on the vectors u,v is given by

Mu = (y + k − 1)2u + (y + k − 1)2(y − 1)v

Mv = (2y + k − 2)u + (y2 + y + k − 2)(y − 1)v.

Proof We have

(Mu)σ =
∑

τ

Mστuτ =
∑

τ

Mστ .

Given σ, there is one τ for which τ1 = σ1 and τ2 = σ2 both hold, 2(k− 1) τ ’s
for which exactly one of τ1 = σ1, τ2 = σ2 holds, and (k − 1)2 τ ’s for which
neither equation holds. If σ1 = σ2, these three cases give Mστ = y3, y2, y
respectively, while if σ1 6= σ2, the values are Mστ = y2, y, 1 respectively.
Hence

Mu = y(y + k − 1)2v + (y + k − 1)2(u− v)

= (y + k − 1)2u + (y + k − 1)2(y − 1)v.

The equation for Mv is obtained in a similar way. ut
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Substituting k = (x− 1)(y − 1) in the coefficients obtained above we find

y+k−1 = x(y−1), 2y+k−2 = (x+1)(y−1), y2+y+k−2 = (x+y+1)(y−1).

Thus if v∗ = (y − 1)v the action of M on the subspace 〈u,v∗〉 is given by
the matrix (y − 1)2N[0] where

N[0] =

(
x2 x2

x + 1 x + y + 1

)
.

Next, the 3-dimensional constituent, which corresponds to the partition [1].
For each i ∈ {1, 2, . . . , k} define vectors ri, si, ti as follows:

ri
σ =

{
1 if σ1 = i
0 otherwise,

si
σ =

{
1 if σ2 = i
0 otherwise,

ti
σ =

{
1 if σ1 = σ2 = i
0 otherwise.

Lemma 4.2 For CPLn the action of M on the vectors ri, si, ti is given by

Mri = (y− 1)(y + k− 1)ri +(y− 1)2(y + k− 1)ti +(y + k− 1)(u+(y− 1)v).

Msi = (y− 1)(y + k− 1)si +(y− 1)2(y + k− 1)ti +(y + k− 1)(u+(y− 1)v).

Mti = (y−1)ri+(y−1)si+(y−1)2(y+2)ti+u+(y−1)v.

Proof For convenience, when τ1 = a and τ2 = b we write τ = (ab), and
Mστ = M(σ, (ab)). With this notation we have

(Mri)σ =
k∑

j=1

M(σ, (ij)).

There are five cases for this sum of k terms.

(1) If σ1 = i, σ2 6= i, one term is y2 and the remaining k − 1 terms are y.

(2) If σ1 6= i, σ2 = i, one term is y and the rest are 1.

(3) If σ1 = σ2 = i, one term is y3 and the rest are y2.

(4) If σ1 = σ2 6= i one term is y2 and the rest are y.

(5) If σ1, σ2 and i are all different, one term is y and the rest are 1.

Hence

Mri = y(y+k−1)(ri−ti)+(y+k−1)(si−ti)+y2(y+k−1)ti+y(y+k−1)(v−ti)
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+(y + k − 1)(u− v − ri − si + 2ti).

Rearranging, we get the equation in the statement of the lemma.

The equation for Msi follows by symmetry. For Mti we have

(Mti)σ = M(σ, (ii)).

The values of this term in the five cases listed above are, respectively: y, y, y3, y, 1.
Hence

Mti = y(ri − ti) + y(si − ti) + y3ti + y(v − ti) + (u− v − ri − si + 2ti),

which reduces to the stated equation. ut
Lemma 4.2 shows that, in the action of M on ri, si and (t∗)i = (y− 1)ti, the
coefficients of those vectors are given by the matrix

(y − 1)

 y + k − 1 0 (y + k − 1)
0 y + k − 1 (y + k − 1)

y − 1 y − 1 (y − 1)(y + 2)

 .

Changing the basis by adding suitable multiples of u and v∗ we obtain a
subspace on which the action of M is represented by the matrix given above.
On substituting k = (x− 1)(y − 1) we obtain (y − 1)2N[1], where

N[1] =

 x 0 x
0 x x
1 1 y + 2

 .

Note that there are k such representations, one for each value of i. However,
their ‘sum’ is zero, and so there are only k − 1 linearly independent ones, in
accordance with the fact that m[1](k) = k − 1.

The 1-dimensional representations are derived from the action of M on the
vectors eij, where

(eij)σ =

{
1 if σ1 = i, σ2 = j;
0 otherwise;

(i 6= j).

A simple calculation gives the equation

Meij = (y − 1)2eij + terms in the vectors defined above.

This leads to k(k − 1) representations with matrix [(y − 1)2]. The represen-
tations corresponding to [20] and [11] are the same, and taking into account
the linear dependencies we obtain a total of

m[20](k) + m[11](k) = k2 − 3k + 1
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independent representations. Since N[20] and N[11] are both equal to the
matrix [1], there is a ‘constant’ term δ(x, y), obtained by substituting k =
(x− 1)(y − 1) in k2 − 3k + 1.

The Tutte polynomial for CPLn is therefore

(x− 1)T (CPLn; x, y) = tr (N[0])
n + (xy − x− y)tr (N[1])

n + δ(x, y),

where N[0], N[1] are the matrices displayed above, and

δ(x, y) = x2y2 − 2x2y − 2xy2 + x2 + xy + y2 + x + y − 1.

For any bracelet with b = 2, the decomposition of M(k, y) takes the same
form as for CPLn, and we can use the bases given above. For example, when
L = {11, 12, 22} we get the quartic plane ladders QPLn.

Lemma 4.3 For QPLn, the action of M on the vectors u, v, ri, si, ti is
given by

Mu = (2y2 +(3k− 4)y + k2− 3k +2)u+(y− 1)(y + k− 1)(y2 + y + k− 2)v,

Mv = (y2 + y + k − 2)u + (y − 1)(y3 + y2 + k − 2)v;

Mri = (y − 1)(2y + k − 2)ri + (y − 1)2(y2 + y + k − 2)ti

+(2y + k − 2)u + (y − 1)(y2 + y + k − 2)v,

Msi = (y− 1)(y +k− 1)ri +(y− 1)(y +k− 1)si +(y− 1)2(y +2)(y +k− 1)ti

+(y + k − 1)(u + (y − 1)(y + k − 1)v),

Mti = (y2 − 1)ri + (y − 1)si + (y − 1)2(y2 − y + 2)ti + u + (y − 1)v. ut

Applying the same reductions as for CPLn, the result is as follows.

Theorem 5 The Tutte polynomials for the graphs QPLn are given by

(x− 1)T (QPLn; x, y) = tr(N[0])
n + (xy − x− y) tr(N[1])

n + δ,

where N[0], N[1], and δ are

N[0] =

(
x + x2 x(1 + x + y)

1 + x + y 1 + x + 2y + y2

)
, N[1] =

 1 + x 0 1 + x + y
x x 2x + xy

1 + y 1 2 + 2y + y2

 ,

δ = x2y2 − 2x2y − 2xy2 + x2 + xy + y2 + x + y − 1.

ut
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