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In credit risk models, it is usually assumed that the intensity processes contain all

the necessary information about the default times. This is indeed the case when the

appropriate immersion properties hold, so that one can compute the conditional law of

the default times in terms of the intensity processes. In this paper, we characterize the

immersion properties in terms of the terminal values of the compensators of the default

processes. We also give an example of a model in which the immersion property does not

hold, and the conditional law of the default times depend on the intensity and some other

process.

1 Introduction

Modeling of default events is one of the interesting problems of modern finance. In the usual

approach (see Lando [12]), the default times are constructed from given intensity processes

adapted to some reference filtration, which contains all the information observable from the

market. A more general approach was presented in Elliott, Jeanblanc and Yor [6]. The useful
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tool in that setting is the conditional law of the default times with respect to the given reference

filtration. Starting with a family of given regular conditional laws (see Jiao [10]), it is usually

possible to construct the default times (see Jeanblanc and Le Cam [8] and El Karoui, Jeanblanc

and Jiao [5]). However, in the literature, there are only very few examples of such explicit

conditional laws, except some trivial cases in which the immersion property holds. In those

and only in those cases, the conditional laws of the default times can be computed in terms of

the intensity processes (see El Karoui, Jeanblanc and Jiao [5]).

We recall that a filtration is said to be immersed in a larger one, whenever every martingale

with respect to the former filtration keeps the martingale property with respect to the latter one

(see, e.g. Mansuy and Yor [14; Chapter I]). For the first time, this situation was described in

Brémaud and Yor [3] and referred to as the (H)-hypothesis. In the credit risk setting, as it was

presented in Kusuoka [11], the given reference filtration is usually immersed in the filtration

progressively enlarged with the default filtration. The assumption of filtration immersions

under a particular equivalent martingale measure can be explained by the fact that the default

times are unknown, and the addition of the default times into the model does not lead to the

occurrence of arbitrage opportunities (see Jeanblanc and Le Cam [9]).

In reliability theory, where the reference filtration is trivial, Norros’ lemma states the fol-

lowing assertion. If the failure times are finite, and neither two of them can occur at the same

time, then the continuous compensator processes, evaluated at the failure times, are indepen-

dent random variables, having standard exponential law (see, e.g. Norros [15]). We extend

Norros’ lemma for the case of credit risk models in which the reference filtration is no longer

trivial. We prove that if the reference filtration is immersed into the filtrations progressively

enlarged by any particular default time, then the terminal values of the compensator processes

are independent of the observations. Moreover, we study the links between various immersion

properties and (conditional) independence. When some additional condition also holds, the

terminal values turn out to be conditionally independent with respect to the observations.

We introduce a model in which one asset is paying dividends with a rate, changing sponta-

neously from one fixed constant value to another one when some credit event occurs. Suppose

that this change is hidden in the structure of the underlying asset values under an equivalent

martingale measure. For simplicity of exposition, we consider a diffusion model for the asset
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value dynamics, and let the time of the credit event be exponentially distributed. We assume

that the reference filtration is generated by the market prices of the risky asset, and that the

time at which the credit event occurs is independent of the driving Brownian motion. In the

resulting reduced-form model, the conditional probabilities of the occurrence of the credit event

have the same form as the posterior probabilities of the occurrence of hidden changes in the

drift rates of observed Wiener processes (see Shiryaev [21; Chapter IV]). We also generalize the

model to a two-dimensional setting with constantly correlated driving Brownian motions.

The paper is organized as follows. In Section 2, we formulate a credit risk model with

two default times and recall the notion of filtration immersions. In Section 3, we present an

extension of Norros’ lemma in the case of several defaults under non-trivial reference filtrations.

In Section 4, we consider a diffusion model with random dividends and compute the conditional

law of the default times in an explicit form.

2 The model

In this section, we introduce a credit risk model with two default times, and recall the notion

of filtration immersions.

2.1 The setting

Let us suppose that on a probability space (Ω,G, P ) there exists a (nonnegative) finite random

default time τ . Let H = (Ht)t≥0 be the default process, associated with the default time τ and

defined by Ht = I(τ ≤ t), where I(·) denotes the indicator function, and let (Ht)t≥0 be its

natural filtration, so that Ht = σ(Hs | 0 ≤ s ≤ t), for all t ≥ 0. Let us denote by (Ft)t≥0 the

reference filtration, and define the filtrations (Gt)t≥0 by Gt = Ft ∨ Ht , for t ≥ 0. It is further

assumed that all the considered filtrations are right-continuous and completed by all the sets of

P -measure zero. Let G = (Gt)t≥0 be the conditional survival probability process of the default

time τ defined by Gt = P [τ > t | Ft] , for all t ≥ 0.

Hypothesis 2.1. Assume that the process G = (Gt)t≥0 is continuous and satisfies the

condition 0 < Gt ≤ 1, for all t ≥ 0.
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Note that the latter condition yields that τ is not an (Ft)t≥0 -stopping time. Being a

continuous (Ft)t≥0 -supermartingale, the process G admits the continuous compensator C =

(Ct)t≥0 such that C0 = 1 − G0 = 0 and G + C forms an (Ft)t≥0 -martingale. In the same

way, there exists a (Gt)t≥0 -predictable increasing process A = (At)t≥0 such that the process

M = (Mt)t≥0 defined by:

Mt = Ht − At (2.1)

is a (Gt)t≥0 -martingale. It is well known (see, e.g. [6]) that At = At∧τ and At I(t ≤ τ) =

Λt I(t ≤ τ), where Λ = (Λt)t≥0 is an (Ft)t≥0 -predictable continuous increasing process given

by:

Λt =

∫ t

0

dCs
Gs

(2.2)

for all t ≥ 0. It follows that the (Gt)t≥0 -compensator process A of the default time τ is

continuous (see, e.g. [1; Proposition 6.1.2]). Hence, the default time τ turns out to be a

(Gt)t≥0 -totally inaccessible stopping time (see, e.g. [18; Chapter VI, Section 13]). In the credit

risk literature, A is called the (Gt)t≥0 -intensity process, and Λ is called the (Ft)t≥0 -intensity

process of the default time τ .

2.2 Immersion properties

Let (F ′t)t≥0 and (F ′′t )t≥0 be two filtrations such that F ′t ⊆ F ′′t , for all t ≥ 0. The filtration

(F ′t)t≥0 is said to be immersed in the filtration (F ′′t )t≥0 if any (F ′t)t≥0 -martingale remains

an (F ′′t )t≥0 -martingale. This notion is also known in the literature as (H)-hypothesis for the

filtrations (F ′t)t≥0 and (F ′′t )t≥0 (see, e.g. [3] or [14; Chapter V, Section 4]) and is equivalent

to the conditional independence of F ′′t and F ′∞ with respect to F ′t . We recall that, in the

particular case where Gt = Ft ∨ Ht , the filtration (Ft)t≥0 is immersed in the filtration (Gt)t≥0

if and only if:

P [τ > t | Ft] = P [τ > t | F∞] (2.3)

holds true (see, e.g. [3] or [6]). Note that, in the case when (Ft)t≥0 is a trivial filtration (as it is

assumed in the models of reliability theory), the (H)-hypothesis holds for (Ft)t≥0 and (Gt)t≥0

automatically. Observe that when (2.3) holds, the process G turns out to be decreasing, so

that, because of the assumption of continuity of G , we have Ct = 1−Gt , for all t ≥ 0.
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In the case of two default times τi , i = 1, 2, we denote by H i = (H i
t)t≥0 the default

process, associated with the default time τi , and by (Hi
t)t≥0 its natural filtration. We define

the filtrations (Git)t≥0 by Git = Ft∨Hi
t , and (Gt)t≥0 by Gt = Ft∨H1

t ∨H2
t , for t ≥ 0. For every

i = 1, 2 fixed, let Gi = (Gi
t)t≥0 be the (Ft)t≥0 -conditional survival probability process of the

default time τi , defined by Gi
t = P [τi > t | Ft] , for all t ≥ 0. We also assume that Hypothesis

2.1 holds for i = 1, 2. We will further study the case where:

P [τi > t | Ft] = P [τi > t | G3−i
t ] (2.4)

holds true, which is equivalent to Git and G3−i
t are conditionally independent with respect to

Ft , for t ≥ 0 (see, e.g. [4]). Here, for i = 1 we have 3− i = 2, and for i = 2 we have 3− i = 1,

obviously. We also see that (Git)t≥0 is immersed in the filtration (Gt)t≥0 if and only if:

P [τi > t | G3−i
t ] = P [τi > t | G3−i

∞ ] (2.5)

holds true for t ≥ 0 and every i = 1, 2.

3 Extensions of Norros’ lemma

In this section, we study the link between filtration immersions and properties of the terminal

value of the compensator A . We begin with an assertion for a model with one default time. In

the case of a trivial reference filtration, part (i) was obtained in [15; Theorem 2.1]. In the case

of general reference filtration, the assertion of part (ii) and its inverse (see Remark 3.2 below)

can be found as an exercise in [14; page 99, Example 38]. We keep a proof of this result for

completeness.

Proposition 3.1. Let the process G = (Gt)t≥0 be continuous and such that G0 = 1. Then

the following conclusions hold:

(i) the variable Aτ , defined in (2.2), has standard exponential law (with parameter 1);

(ii) if (Ft)t≥0 is immersed in (Gt)t≥0 (i.e., if (2.3) holds for all t ≥ 0), then the variable

Aτ is independent of F∞ .
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Proof. (i) In this part, we reproduce the arguments from [15] for the reader convenience.

Consider the process L = (Lt)t≥0 , defined by:

Lt = (1 + z)Ht e−zAt (3.1)

for all t ≥ 0 and any z > 0 fixed. Then, applying the integration by parts formula, we get:

dLt = z e−zAt dMt (3.2)

where the process M , defined in (2.1), is a (Gt)t≥0 -martingale. Hence, by virtue of the assump-

tion that z > 0, it follows from (3.2) that L is also a (Gt)t≥0 -martingale, so that:

E
[
(1 + z)Ht e−zAt

∣∣Gs] = (1 + z)Hs e−zAs (3.3)

holds true, for all 0 ≤ s ≤ t . In view of the implied by z > 0 uniform integrability of L , we

may let t go to infinity in (3.3). Therefore, setting s equal to zero in (3.3) and using the fact

that A∞ = Aτ , we obtain:

E
[
(1 + z) e−zAτ

]
= 1 . (3.4)

This means that the Laplace transform of Aτ is the same as one of a standard exponential

variable and thus proves the claim. This property was also proved by Azéma.

(ii) Applying the change-of-variable formula, we get:

e−zAt = 1− z
∫ t

0

exp

(
−z
∫ s

0

I(τ > u)

Gu

dCu

)
I(τ > s)

Gs

dCs (3.5)

= 1− z
∫ t

0

exp

(
−z
∫ s

0

dCu
Gu

)
I(τ > s)

Gs

dCs

= 1− z
∫ t

0

e−zΛs
I(τ > s)

Gs

dCs

for all t ≥ 0 and any z > 0 fixed. Then, taking conditional expectations under Ft from

both parts of expression (3.5) and applying Fubini’s theorem, we obtain from the immersion of

(Ft)t≥0 in (Gt)t≥0 that:

E[e−zAt | Ft] = 1− z
∫ t

0

E

[
e−zΛs

I(τ > s)

Gs

∣∣∣Ft] dCs (3.6)

= 1− z
∫ t

0

e−zΛs
P [τ > s | Ft]

Gs

dCs

= 1− z
∫ t

0

e−zΛs dCs
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for all t ≥ 0. Hence, using the fact that the immersion of (Ft)t≥0 in (Gt)t≥0 implies that the

process G is decreasing, and thus Ct = 1−Gt and Λt = − lnGt , we see from (3.6) that:

E
[
e−zAt | Ft

]
= 1 +

z

1 + z

(
(Gt)

1+z − (G0)1+z
)

(3.7)

holds true, for all t ≥ 0. Therefore, letting t go to infinity and using the assumption G0 = 1,

as well as the fact that G∞ = 0 (P -a.s.), we have:

E
[
e−zAτ | F∞

]
=

1

1 + z
(3.8)

that signifies the desired assertion. Note that a similar result was obtained by N. El Karoui

(private communication), by means of the time-change technique and under the assumption of

the strict decrease of the process G . �

Remark 3.2. To show that an assertion inverse to part (ii) of Proposition 3.1 holds, we

observe the assumption of continuity of Gi yields that the process Ai is continuous too. Then,

the default time τi can be obviously represented in the form:

τ = inf{t ≥ 0 |At ≥ Aiτi} . (3.9)

Hence, if Aτ is independent of F∞ , we obtain:

P [τ > t | Ft] = P [Aτ > At | Ft] = P [Aτ > At | F∞] = P [τ > t | F∞] (3.10)

for all t ≥ 0, so that, condition (2.3) holds, signifying that (Ft)t≥0 is immersed in (Gt)t≥0 (see

also [14; page 99, Example 38]).

Let us now formulate and prove the appropriate result for the two defaults setting.

Proposition 3.3. Let the processes Gi = (Gi
t)t≥0 , i = 1, 2, be continuous and such that

Gi
0 = 1, and assume that P [τ1 = τ2] = 0 is satisfied. Then the following conclusions hold:

(i) if (Git)t≥0 , i = 1, 2, are immersed in (Gt)t≥0 (i.e., if (2.5) holds for all t ≥ 0), then the

variables Aiτi , i = 1, 2, are independent;

(ii) if (2.3) and (2.4) hold for all t ≥ 0, then the variables Aiτi , i = 1, 2, are conditionally

independent with respect to F∞ .

Proof. (i) Observe that condition (2.5) yields that the process Li from (3.1) is also a

(Gt)t≥0 -martingale. Then, following the arguments from [15] and applying the implied by
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P [τ1 = τ2] = 0 orthogonality of the pure jump processes Li , i = 1, 2, we obtain:

E
[
(1 + z1)H

1
t e−z1A

1
t (1 + z2)H

2
t e−z2A

2
t

∣∣Gs] = (1 + z1)H
1
s e−z1A

1
s (1 + z2)H

2
s e−z2A

2
s (3.11)

for all 0 ≤ s ≤ t . Hence, letting t go to infinity and setting s equal to zero in (3.11), we get:

E
[
(1 + z1) e−z1A

1
τ1 (1 + z2) e−z2A

2
τ2

]
= 1 (3.12)

from where, upon recalling (3.4), we see that:

E
[
e−z1A

1
τ1 e−z2A

2
τ2

]
= E

[
e−z1A

1
τ1

]
E
[
e−z2A

2
τ2

]
(3.13)

thus proving the claim.

(ii) Using the arguments from the part (ii) of Proposition 3.1 above, we see that (3.5)

implies:

e−z1A
1
t e−z2A

2
t = 1− z1

∫ t

0

e−z1Λ1
u
I(τ1 > u)

G1
u

dC1
u − z2

∫ t

0

e−z2Λ2
v
I(τ2 > v)

G2
v

dC2
v (3.14)

+ z1z2

∫ t

0

∫ t

0

e−z1Λ1
u e−z2Λ2

v
I(τ1 > u, τ2 > v)

G1
uG

2
v

dC1
u dC

2
v

for all t ≥ 0. Then, taking conditional expectations under Ft from both parts of the expression

in (3.14) and applying Fubini’s theorem, we have:

E
[
e−z1A

1
t e−z2A

2
t | Ft

]
= 1− z1

∫ t

0

e−z1Λ1
u dC1

u − z2

∫ t

0

e−z2Λ2
v dC2

v (3.15)

+ z1z2

∫ t

0

∫ t

0

e−z1Λ1
u e−z2Λ2

v
P [τ1 > u, τ2 > v | Ft]

G1
uG

2
v

dC1
u dC

2
v

for all t ≥ 0. Observe that from assumptions (2.3) and (2.4) it follows that:

P [τi > u, τ3−i > v | Ft] = P [τi > u | Ft]P [τ3−i > v | Ft] (3.16)

= P [τi > u | Fu]P [τ3−i > v | Fv] = Gi
uG

3−i
v

holds true, for all 0 ≤ u, v ≤ t and every i = 1, 2. Hence, using (3.7) and the fact that

assumption (2.3) yields that the process Gi is decreasing, we get from (3.15)-(3.16) that:

E
[
e−z1A

1
t e−z2A

2
t | Ft

]
=

(
1 +

z1

1 + z1

(
(G1

t )
1+z1 − (G1

0)1+z1
))

(3.17)

×
(

1 +
z2

1 + z2

(
(G2

t )
1+z2 − (G2

0)1+z2
))
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for all t ≥ 0. Therefore, letting t go to infinity and using the assumption Gi
0 = 1 as well as

the fact that Gi
∞ = 0 (P -a.s.), we obtain from uniform integrability of Li , i = 1, 2, that:

E
[
e−z1A

1
τ1 e−z2A

2
τ2 | F∞

]
=

1

1 + z1

1

1 + z2

(3.18)

from where, upon recalling (3.8), we conclude that:

E
[
e−z1A

1
τ1 e−z2A

2
τ2 | F∞

]
= E

[
e−z1A

1
τ1 | F∞

]
E
[
e−z2A

2
τ2 | F∞

]
(3.19)

that signifies the desired assertion. �

4 Some examples

In this section, we introduce a model of a financial market with random dividends, in which the

dividend rates change their constant values when some unpredictable credit events occur. This

model is a two-dimensional extension of the one considered in [19] (see also [21; Chapter IV,

Section 4] or [16; Chapter VI, Section 22]) with the aim of solving the problem of detecting a

change in the drift rate of an observed Wiener process.

4.1 A one-dimensional model with random dividends

Let W = (Wt)t≥0 be a Brownian motion defined on the probability space (Ω,G, P ), and τ a

random time, independent of W and such that P [τ > t] = e−λt , for all t ≥ 0 and some λ > 0

fixed. We define X = (Xt)t≥0 as the process:

Xt = x exp

((
r − σ2

2
− δ0

)
t− (δ1 − δ0)(t− τ)+ + σWt

)
(4.1)

where r ≥ 0, and x , σ , δj are some given strictly positive constants, for every j = 0, 1. It is

easily shown that the process X solves the stochastic differential equation:

dXt = Xt

(
r − δ1 + (δ1 − δ0) I(τ > t)

)
dt+Xt σ dWt (4.2)

Let us assume that the process X describes the risk-neutral dynamics of the value of a dividend

paying asset, and τ is a random time at which some credit event occurs, leading to a change

of the dividend rate. In more details, the asset pays dividends at the rate δ0 until the time τ
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at which the credit event occurs and the dividend rate is changed to δ1 . Here, r is the interest

rate of a riskless banking account, and σ is the volatility coefficient.

Let us denote by (Ft)t≥0 the natural filtration of the process X , that is Ft = σ(Xs | 0 ≤

s ≤ t), for all t ≥ 0. By means of standard arguments (see, e.g. [21; Chapter IV, Section 4]),

it is shown that the process X admits the following representation on its own filtration:

dXt = Xt

(
r − δ1 + (δ1 − δ0)Gt

)
dt+Xt σ dW t (4.3)

(see also [13; Chapter IX]). Here, G = (Gt)t≥0 is the survival probability process given by

Gt = P [τ > t | Ft] , for all t ≥ 0, and the innovation process W = (W t)t≥0 defined by:

W t = Wt +
δ1 − δ0

σ

∫ t

0

(
I(τ > s)−Gs

)
ds (4.4)

is a standard Brownian motion, according to P. Lévy’s characterization theorem (see, e.g.

[17; Chapter IV, Theorem 3.6]). It is easily shown using the arguments based on the notion

of strong solutions of stochastic differential equations (see, e.g. [13; Chapter IV]) that the

natural filtration of W coincides with (Ft)t≥0 . It follows from [13; Chapter IX] (see also [21;

Chapter IV, Section 4]) that the process G solves the stochastic differential equation:

dGt = −λGt dt+
δ1 − δ0

σ
Gt(1−Gt) dW t (4.5)

with G0 = 1.

Observe that the process (eλtGt)t≥0 admits the representation:

d(eλtGt) =
δ1 − δ0

σ
eλtGt(1−Gt) dW t (4.6)

and thus, it is an (Ft)t≥0 -martingale (to establish the true martingale property, note that the

process (Gt(1−Gt))t≥0 is bounded). The equality (4.5) provides the Doob-Meyer decomposition

of the super-martingale G , while Gt = (Gt e
λt) e−λt gives its multiplicative decomposition.

From these decompositions, it follows that the (Ft)t≥0 -intensity process of τ is λt .

Remark 4.1. We observe from (4.5) that the conditional survival probability G is not an

increasing process, and we thus conclude that the filtration (Ft)t≥0 is not immersed in (Gt)t≥0 .

In particular, W is not a Brownian motion in the filtration (Gt)t≥0 , which is equal to the

filtration generated by W and H . Indeed, observing the process X after the random time τ

provides information on the conditional law of τ .
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4.2 The conditional laws in the one-dimensional model

From the definition of the conditional survival probability Gt = P [τ > t | Ft] and the fact that

(Gt e
λt)t≥0 is a martingale, it follows that the conditional probability process can be expressed

as:

P [τ > u | Ft] = E[P [τ > u | Fu] | Ft] = E[Gu e
λu | Ft] e−λu = Gt e

λt e−λu (4.7)

for 0 ≤ t < u .

From the standard arguments in [20; Chapter IV, Section 4] (which are compressed in [21;

Chapter IV, Section 4]), resulting from the application of Bayes’ formula, it follows that the

conditional probability process can be expressed as:

P [τ > u | Ft] = 1− Yu∧t
Yt

+
Zu∧t
Yt

e−λu (4.8)

for t, u ≥ 0. Here, the process Y = (Yt)t≥0 is defined by:

Yt = λ

∫ t

0

Zs e
−λs ds+ Zt e

−λt (4.9)

and the process Z = (Zt)t≥0 is given by:

Zt = exp

(
δ1 − δ0

σ2

(
ln
Xt

x
− 2r − δ1 − δ0 − σ2

2
t
))

(4.10)

for all t ≥ 0. In particular, from (4.9), we deduce that the process (Zt/Yt)t≥0 , is equal to

(eλtGt)t≥0 , hence is an (Ft)t≥0 -martingale. Moreover, by tedious computations, we see that

the process (1/Yt)t≥0 , or its equivalent (eλtGt/Zt)t≥0 , admits the representation:

d
( 1

Yt

)
= d
(eλtGt

Zt

)
= −δ1 − δ0

σ

eλtGt

Yt
dW t (4.11)

and thus, it is also an (Ft)t≥0 -martingale. Hence, one checks that for fixed u , the expression

in (4.9) defines an (Ft)t≥0 -martingale.

We also get the representation:

P [τ > u | Ft] =

∫ ∞
u

αt(s) ds (4.12)

where the density αt(s) is given by:

αt(s) = λ
Zs∧t
Yt

e−λs (4.13)
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and hence, by the definition of the process Y in (4.9), we have:∫ ∞
0

αt(s) ds = 1 (4.14)

as expected. Thus, we get an example of model with an explicit form of the density αt(s) (see

[8] and [5]).

Remark 4.2. This model shows that we can construct two random times with constant

intensity λ , associated with the given Brownian motion W . One by using the usual construction

as τ = θ , where θ is an exponential random variable with parameter λ , independent of W ,

another one as a random time with density αt(s) given by (4.13) with respect to W (see [8]).

Note that, in this case, the process X satisfying (4.3) admits a (quite complicated) closed form

representation by virtue of the expressions in (4.8)-(4.10) as:

dXt = Xt

(
a+

bXν
t

λe(α+λ)t
∫ t

0
Xν
s e
−(α+λ)sds+Xν

t

)
dt+ σXt dW t (4.15)

in which coefficients a , b , ν and α are given in terms of δi , i = 0, 1. It is quite remarkable

that, in both models, the prices of defaultable zero-coupon bonds turn out to be the same.

Indeed, in the second construction the price of a defaultable zero-coupon bond is:

P [τ > T | Gt] =
I(t < τ)

Gt

P [τ > T | Ft] =
I(t < τ)

Gt

Gte
−λT eλt = I(t < τ)e−λ(T−t) (4.16)

for 0 ≤ t ≤ T , which is exactly the price obtained in the first construction. The same remark

can be done for payoffs of the form h(τ) where h is a deterministic function

E[h(τ)I(t < τ ≤ T ) | Gt] =
I(t < τ)

Gt

E[h(τ)I(t < τ ≤ T ) | Ft] (4.17)

=
I(t < τ)

Gt

∫ T

t

h(s)αt(s) ds = I(t < τ)

∫ T

t

h(s)e−λ(s−t) ds

for 0 ≤ t ≤ T (see [2; Corollary 2.2] for the computation of the price of the same payoff in the

first construction). However, for payoffs of the form F (XT )I(T < τ), we obtain:

E[F (XT )I(T < τ) | Gt] =
I(t < τ)

Gt

E[F (XT )I(T < τ) | Ft] =
I(t < τ)

Gt

E[F (XT )GT | Ft] (4.18)

and to complete these calculations, we shall need the joint marginal density of (Y, Z). This can

be derived by means of the arguments from [7; Section 4] (see also [16; Chapter VI, Section 22])

using the given law of a geometric Brownian motion and its integral.
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4.3 A two-dimensional model with random dividends

Suppose that on the initial probability space (Ω,G, P ) the random times τi , i = 1, 2, are

independent, and P [τi > t] = e−λit , for all t ≥ 0 and some λi > 0 fixed. Assume that there

exist two (constantly correlated) standard Brownian motions W i = (W i
t )t≥0 , i = 1, 2, such

that 〈W 1,W 2〉t = ρt , for all t ≥ 0 and some −1 < ρ < 1 fixed. Let X i = (X i
t)t≥0 , be given

by:

X i
t = xi exp

((
r − σ2

i

2
− δi,0

)
t− (δi,1 − δi,0)(t− τi)+ + σiW

i
t

)
(4.19)

where r ≥ 0, and xi , σi , δi,j are some given strictly positive constants, for every i = 1, 2 and

j = 0, 1. Assume that the random times τi , i = 1, 2, are independent of the Brownian motions

W i , i = 1, 2, that implies the existence of such a pair of processes (X1, X2), by means of

standard change-of-measure arguments. Let us assume that the processes X i , i = 1, 2, describe

the risk-neutral dynamics of the values of some dividend paying assets, and τi , i = 1, 2, are

random times at which some credit events occur, leading to the changes of the dividend rates.

In more details, for every i = 1, 2 fixed, the i-th asset pays dividends at the rate δi,0 until the

time τi at which the i-th credit event occurs and the dividend rate is changed to δi,1 . Here, r

is the interest rate of a riskless banking account, and σi is the volatility coefficient.

Let us denote by (Ft)t≥0 the natural filtration of the processes X i , i = 1, 2, that is Ft =

σ(X1
s , X

2
s | 0 ≤ s ≤ t), for all t ≥ 0. By means of standard arguments (see, e.g. [21; Chapter IV,

Section 4]), it is shown that the process X i solves the stochastic differential equation:

dX i
t = X i

t

(
r − δi,1 + (δi,1 − δi,0) I(τi > t)

)
dt+X i

t σi dW
i
t (4.20)

and admits the following representation on its own filtration:

dX i
t = X i

t

(
r − δi,1 + (δi,1 − δi,0)Gi

t

)
dt+X i

t σi dW
i

t (4.21)

for every i = 1, 2. Here, Gi = (Gi
t)t≥0 is the survival probability process given by Gi

t = P [τi >

t | Ft] , for all t ≥ 0, and the innovation process W
i

= (W
i

t)t≥0 , defined by:

W
i

t = W i
t +

δi,1 − δi,0
σi

∫ t

0

(
I(τi > s)−Gi

s

)
ds (4.22)

is a standard Brownian motion, according to P. Lévy’s characterization theorem. It is easily

shown that the natural filtration of (W
1
,W

2
) coincides with (Ft)t≥0 , and 〈W 1

,W
2〉t = ρt for

all t ≥ 0.
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4.4 The conditional laws in the two-dimensional model

Let us define the process V = (Vt)t≥0 by:

Vt = Ψ1
t + Ψ2

t + Φ1
t e
−λ2t + Φ2

t e
−λ1t + e−λ1te−λ2t (4.23)

where the processes Ψi = (Ψi
t)t≥0 , i = 1, 2, are given by:

Ψi
t = λ3−i

∫ t

0

Φi
s

Zi,0
s Z

3−i,1
s

Zi,0
t Z

3−i,1
t

e−λ3−is ds (4.24)

with the processes Φi = (Φi
t)t≥0 , i = 1, 2, defined as:

Φi
t = λi

∫ t

0

Zi,0
w

Zi,0
t

e−λiw dw (4.25)

and the processes Zi,j = (Zi,j
t )t≥0 are obtained in terms of X i by:

Zi,j
t = exp

(
δi,1 − δi,0
σ2
i (1− ρ2)

(
ln
X i
t

xi
− σiρ

σ3−i

(
ln
X3−i
t

x3−i
−

2r − 2δ3−i,j − σ2
3−i

2
t
)
− 2r − δi,0 − δi,1 − σ2

i

2
t
))

(4.26)

for all t ≥ 0 and every i = 1, 2 and j = 0, 1.

Using tedious computations, from the formulas (4.23)-(4.26), we get the representation

which is the starting point of the study in [5]:

P [τ1 > u, τ2 > v | Ft] =

∫ ∞
u

∫ ∞
v

αt(s, w) dsdw (4.27)

where the density αt(s, w) is given by:

αt(s, w) =
1

Vt

(
λ1
Z1,0
s∧t

Z1,0
t

e−λ1s λ2
Z2,1
w∧t

Z2,1
t

e−λ2wI(s < w) + λ1
Z1,1
s∧t

Z1,1
t

e−λ1s λ2
Z2,0
w∧t

Z2,0
t

e−λ2wI(s > w)

)
(4.28)

for all s, t, w ≥ 0. By the definition of the process V in (4.23), we have:∫ ∞
0

∫ ∞
0

αt(s, w) dsdw = 1 (4.29)

as expected. We also observe that, letting λ2 tend to zero, we get that the conditional law in

(4.16) with the density in (4.17) takes the form of one in (4.12) with the density in (4.13).
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