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Abstract

In this paper we introduce the notion of (A,B)-colouring of a graph : For given vertex

sets A,B, this is a colouring of the vertices in B so that both adjacent vertices and

vertices with a common neighbour in A receive different colours. This concept generalises

the notion of colouring the square of graphs and of cyclic colouring of graphs embedded

in a surface. We prove a general result which implies asymptotic versions of Wegner’s

and Borodin’s Conjecture on the planar version of these two colourings. Using a recent

approach of Havet et al., we reduce the problem to edge-colouring of multigraphs and

then use Kahn’s result that the list chromatic index is close to the fractional chromatic

index.

Our results are based on a strong structural lemma for graphs embedded in a surface

which also implies that the size of a clique in the square of a graph of maximum degree ∆

embeddable in some fixed surface is at most 3

2
∆ plus a constant.
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1 Introduction

Most of the terminology and notation we use in this paper is standard and can be found in any

text book on graph theory ( such as [2] or [8] ). All our graphs and multigraphs will be finite.

A multigraph can have multiple edges; a graph is supposed to be simple. We will not allow

loops. The vertex and edge set of a graph G are denoted by V (G) and E(G), respectively

( or just V and E, if the graph G is clear from the context ).

Given a graph G, the chromatic number of G, denoted χ(G), is the minimum number of

colours required so that we can properly colour its vertices using those colours. If we colour

the edges of G, we get the chromatic index, denoted χ′(G). The list chromatic number or

choice number ch(G) is the minimum value k, so that if we give each vertex v of G a list L(v)

of at least k colours, then we can find a proper colouring in which each vertex gets assigned

a colour from its own private list. The list chromatic index is defined analogously for edges.

The square G2 of a graph G is the graph with vertex set V (G), with an edge between any

two different vertices that have distance at most two in G. A proper vertex colouring of the

square of a graph can also be seen as a vertex colouring of the original graph satisfying :

• vertices that are adjacent must receive different colours, and

• vertices that have a common neighbour must receive different colours.

Another way to formulate these conditions is as ‘vertices at distance one or two must receive

different colours’. This is why the name distance-two colouring is also used in the literature.

In this paper we consider a colouring concept that generalises the concept of colouring

the square of a graph, but that also can be used to study different concepts such as cyclic

colouring of plane graphs ( definition will be given later ).

Let A and B be two subsets of the vertex set V . ( Note that we do not require A and B

to be disjoint. ) An (A, B)-colouring of G is an assignment of colours to the vertices in B so

that :

• vertices of B that are adjacent must receive different colours, and

• vertices of B that have a common neighbour from A must receive different colours.

When each vertex v ∈ B has its own list L(v) of colours from which its colour must be

chosen, we talk about a list (A, B)-colouring.

We denote by χ(G; A, B) the minimum number of colours required for an (A, B)-colouring

to exist. Its list variant is denoted by ch(G; A, B), and is defined as the minimum integer k

so that for each assignment of a list L(v) of at least k colours to vertices v ∈ B, there exists a

proper (A, B)-colouring of G in which the vertices in B are assigned colours from their own

lists.

Notice that we trivially have χ(G) = χ(G; ∅, V ) and χ(G2) = χ(G; V, V ); and the same

relations holds for the list variant.

For a vertex v ∈ V , let N(v) be the set of vertices adjacent to v, and define NB(v) = N(v)∩

B, and dB(v) = |NB(v)| ( so dG(v) = dV (v) ). If we set ∆(G; A, B) = max{ dB(v) | v ∈ A },

then it is clear that we always need at least ∆(G; A, B) colours in a proper (A, B)-colouring.

In the case A = B = V , there exist plenty of graphs G that require O(∆(G)2) colours

(where ∆(G) = ∆(G; V, V ) is the normal maximum degree of a graph ). But for planar

graphs, it is known that a constant times ∆(G) colours is enough ( even for list colouring ).

We’ll take a closer look at this in Subsection 1.1 below.
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Following Wegner’s Conjecture on colouring the square of planar graphs ( see also next

subsection ), we propose the following conjecture.

Conjecture 1.1

There exist constants c1, c2, c3 such that for all planar graphs G and A, B ⊆ V we have

χ(G; A, B) ≤
⌊

3
2 ∆(G; A, B)

⌋
+ c1;

ch(G; A, B) ≤
⌊

3
2 ∆(G; A, B)

⌋
+ c2;

ch(G; A, B) ≤
⌊

3
2 ∆(G; A, B)

⌋
+ 1, if ∆(G; A, B) ≥ c3.

If A = ∅ ( hence ∆(G; A, B) = 0 ) and B = V , then the Four Colour Theorem means that

the smallest possible value for c1 is four; while the fact that planar graphs are always 5-list

colourable but not always 4-list colourable, shows that the smallest possible value for c2 is

five.

Our main result is that Conjecture 1.1 is asymptotically correct. In fact, we can prove a

more general asymptotic version, which holds for general surfaces.

Theorem 1.2

Let S be a fixed surface, G a graph embeddable in S, and A, B ⊆ V . Then ch(G; A, B) ≤

(1 + o(1)) 3
2 ∆(G; A, B).

In other words, for all ε > 0, there exists DS,ε, so that for all D ≥ DS,ε we have : If G is

a graph embeddable in S, with A, B ⊆ V so that ∆(G; A, B) ≤ D, and L is a list assignment

so that each vertex v in B gets a list L(v) of at least
(

3
2 + ε

)
D colours, then there exists an

(A, B)-colouring of G in which the vertices in B are assigned colours from their own lists.

A trivial lower bound for the ( list ) chromatic number of a graph G is the clique number ω(G),

the maximal size of a clique in G. For (A, B)-colourings, where A, B ⊆ V , we can define the

following related concept. An (A, B)-clique is a subset C ⊆ B so that every two different

vertices in C are adjacent or have a common neighbour in A. Denote by ω(G; A, B) the

maximal size of an (A, B)-clique in G. Then we trivially have ch(G; A, B) ≥ ω(G; A, B),

and so Theorem 1.2 means that for a graph G embeddable in some fixed surface S we have

ω(G; A, B) ≤ (1 + o(1)) 3
2 ∆(G; A, B).

But in fact, the structural result we use to prove Theorem 1.2 fairly easily gives a better

estimate.

Theorem 1.3

Let S be a fixed surface, G a graph embeddable in S, and A, B ⊆ V . Then ω(G; A, B) ≤
3
2 ∆(G; A, B) + O(1).

To prove Theorems 1.2 and 1.3 we can as well assume that A contains all the vertices adjacent

to at most ∆(G; A, B) vertices of B. To simplify things, define Bβ = { v ∈ V | dB(v) ≤ β }.

So to prove Theorems 1.2 and 1.3 it is enough to prove the following theorems.

Theorem 1.4

Let S be a fixed surface. For all real ε > 0, there exists a βS,ε so that the following holds

for all β ≥ βS,ε. Let G be a graph that can be embedded in S, with B ⊆ V a set of vertices,

and suppose every vertex v ∈ B has a list L(v) of at least
(

3
2 + ε

)
β colours. Then a list

(Bβ , B)-colouring of G with those colours exist.
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Theorem 1.5

Let S be a fixed surface. There exist constants βS , γS so that the following holds for all

β ≥ βS. Let G be a graph that can be embedded in S, with B ⊆ V a set of vertices. Then

every (Bβ , B)-clique in G has size at most 3
2 β + γS.

In the next two subsections we discuss two special consequences of these results. These

special versions of the Theorems 1.4 and 1.5 also show that the term 3
2 β in these results is

best possible.

The main steps in the proof of Theorem 1.4 can be found in Section 2. The proof relies

on two technical lemmas; the proofs of those can be found in Section 3. After that we use

one of those lemmas to provide the relatively short proof of Theorem 1.5 in Section 4. In

Section 5 we discuss some of the aspects of our work and discuss open problems related to

( list ) (A, B)-colouring of graphs. The final section provides some background regarding the

proof of Kahn [17] on the asymptotical equality of the fractional chromatic index and the list

chromatic index of multigraphs. A more general result, contained implicitly in Kahn’s work,

is of crucial importance to our proof in this paper.

1.1 Colouring the Square of Graphs

Recall that the square of a graph G, denoted G2, is the graph with the same vertex set as G

and with an edge between any two different vertices that have distance at most two in G.

If G has maximum degree ∆, then a vertex colouring of its square will need at least ∆ + 1

colours, but the greedy algorithm shows that it is always possible to find a colouring of G2

with ∆2 + 1 colours. Diameter two cages such as the 5-cycle, the Petersen graph and the

Hoffman-Singleton graph ( see [2, page 239] ) show that there exist graphs that in fact require

∆2 + 1 colours.

Regarding the chromatic number of the square of a planar graph, Wegner [31] posed the

following conjecture ( see also the book of Jensen and Toft [14, Section 2.18] ), suggesting that

for planar graphs far less than ∆2 + 1 colours suffice.

Conjecture 1.6 ( Wegner [31] )

For a planar graph G of maximum degree ∆ : χ(G2) ≤





7, if ∆ = 3,

∆ + 5, if 4 ≤ ∆ ≤ 7,⌊
3
2 ∆

⌋
+ 1, if ∆ ≥ 8.

Wegner also gave examples showing that these bounds would be tight. For even ∆ ≥ 8, these

examples are sketched in Figure 1(a).

The graph in the picture has maximum degree 2 k and yet all the vertices except z are

pairwise adjacent in its square. Hence to colour these 3 k + 1 vertices, we need at least

3 k + 1 = 3
2 ∆ + 1 colours. Note that the same arguments also show that the graph G in the

picture has ω(G2) = 3
2 ∆ + 1.

Kostochka and Woodall [19] conjectured that for every square of a graph the chromatic

number equals the list chromatic number. This conjecture and Wegner’s one together imply

the conjecture that for planar graphs G with ∆ ≥ 8 we have ch(G2) ≤
⌊

3
2 ∆

⌋
+ 1.

The first upper bound on χ(G2) for planar graphs in terms of ∆, χ(G2) ≤ 8 ∆ − 22,

was implicit in the work of Jonas [15]. This bound was later improved by Wong [32] to
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Figure 1: (a) A planar graph G with maximum degree ∆ = 2 k and ω(G2) = χ(G2) = 3 k+1 =⌊
3
2 ∆

⌋
+ 1.

(b) A planar graph H with maximum face degree ∆∗ = 2 k and χ∗(H) = 3 k =
⌊

3
2 ∆∗

⌋
( see

Subsection 1.2 below ).

χ(G2) ≤ 3 ∆ + 5 and then by Van den Heuvel and McGuinness [13] to χ(G2) ≤ 2 ∆ + 25.

Better bounds were then obtained for large values of ∆. It was shown that χ(G2) ≤ ⌈9
5 ∆⌉+1

for ∆ ≥ 750 by Agnarsson and Halldórsson [1], and the same bound for ∆ ≥ 47 by Borodin

et al. [4]. Finally, the best known upper bound so far has been obtained by Molloy and

Salavatipour [24] : χ(G2) ≤ ⌈5
3 ∆⌉+78. As mentioned in [24], the constant 78 can be reduced

for sufficiently large ∆. For example, it was improved to 24 when ∆ ≥ 241.

Surprisingly, no independent results for the clique number of the square of planar graphs,

other than those that follow from their chromatic numbers, have been published so far.

Since ch(G2) = ch(G; V, V ), as an immediate corollary of Theorem 1.2 we obtain.

Corollary 1.7

Let S be a fixed surface. Then the square of every graph G embeddable in S and of maximum

degree ∆ has list chromatic number at most (1 + o(1)) 3
2 ∆.

In fact, the same asymptotic upper bound as in Corollary 1.7 can be proved for even larger

classes of graphs. Additionally, a stronger conclusion on the colouring is possible. For the fol-

lowing result we assume that colours are integers, which allows us to talk about the ‘distance’

|α1 − α2| between two colours α1, α2.

Theorem 1.8 (Havet, van den Heuvel, McDiarmid & Reed [10] )

Let k be a fixed positive integer. The square of every K3,k-minor free graph G of maximum

degree ∆ has list chromatic number ( and hence clique number ) at most (1+o(1)) 3
2 ∆. More-

over, given lists of this size, there is a proper colouring in which the colours on every pair of

adjacent vertices of G differ by at least ∆1/4.

Note that planar graphs do not have a K3,3-minor. In fact, for every surface S, there is

a constant k so that all graphs embeddable in S do not have K3,k as a minor ( see also

Lemma 4.1 ). That shows that Theorem 1.8 is stronger than our Corollary 1.7. On the other

hand, Theorem 1.8 gives a weaker bound for the clique number than the one we obtain in

Corollary 1.9 below.
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Both Corollary 1.7 and Theorem 1.8 can be applied to K4-minor free graphs, since these

graphs are planar and don’t have K3,3 as a minor. But for this class we actually know the

exact results. Lih, Wang and Zhu [21] showed that the square of K4-minor free graphs with

maximum degree ∆ has chromatic number at most
⌊

3
2 ∆

⌋
+ 1 if ∆ ≥ 4 and ∆ + 3 if ∆ = 2, 3.

The same bounds, but then for the list chromatic number of K4-minor free graphs, were

proved by Hetherington and Woodall [12].

Regarding the clique number of the square of graphs, we get the following corollary of

Theorem 1.3.

Corollary 1.9

Let S be a fixed surface. Then the square of every graph G embeddable in S and of maximum

degree ∆ has clique number at most 3
2 ∆ + O(1).

From the proof of Theorem 1.3, it can be deduced that for planar graphs we know that every

planar graph G of maximum degree ∆ ≥ 1056 has clique number at most 3
2 ∆ + 109.

Very recently, this was improved by the following result.

Theorem 1.10 (Cohen & van den Heuvel [7] )

For a planar graph G of maximum degree ∆ ≥ 41 we have ω(G2) ≤
⌊

3
2 ∆

⌋
+ 1.

Apart from the bound ∆ ≥ 41, this theorem is best possible, as is shown by the same graphs

that show that Wegner’s Conjecture 1.6 is best possible for ∆ ≥ 8 ( see also Figure 1(a) ).

The proof of Theorem 1.10 in [7] in fact uses the concept of (A, B)-cliques, together with the

main result from Hell and Seyffarth [11] : For ∆ ≥ 8, the maximum number of vertices of a

planar graph with maximum degree ∆ and diameter two is
⌊

3
2 ∆

⌋
+ 1.

1.2 Cyclic Colourings of Embedded Graphs

Given a surface S and a graph G embeddable in S, we denote by GS that graph with a

prescribed embedding in S. If the surface S is the sphere, we talk about a plane graph GP .

The size ( number of vertices in its boundary ) of a largest face of GS is denoted by ∆∗(GS).

A cyclic colouring of an embedded graph GS is a vertex colouring of G such that any

two vertices incident to the same face have distinct colours. The minimum number of colours

required in a cyclic colouring of an embedded graph is called the cyclic chromatic num-

ber χ∗(GS). This concept was introduced for plane graphs by Ore and Plummer [25], who

also proved that for a plane graph GP we have χ∗(GP ) ≤ 2 ∆∗. Borodin [3] ( see also Jensen

and Toft [14, page 37] ) conjectured the following.

Conjecture 1.11 ( Borodin [3] )

For a plane graph GP of maximum face size ∆∗ we have χ∗(GP ) ≤
⌊

3
2 ∆∗

⌋
.

The bound in this conjecture is best possible. Consider the plane graph depicted in Fig-

ure 1(b) : it has 3 k vertices and has three faces of size ∆∗ = 2 k. Since all pairs of vertices

have a face they are both incident with, we need 3 k =
⌊

3
2 ∆∗

⌋
colours in a cyclic colouring.

Borodin [3] also proved Conjecture 1.11 for ∆∗ = 4. For general values of ∆∗, the original

bound χ∗(GP ) ≤ 2 ∆∗ of Ore and Plummer [25] was improved by Borodin et al. [6] to
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χ∗(GP ) ≤
⌊

9
5 ∆∗

⌋
. The best known upper bound in the general case is due to Sanders and

Zhao [27] : χ∗(GP ) ≤
⌈

5
3 ∆∗

⌉
.

Although Wegner’s and Borodin’s Conjectures seem to be closely related, nobody has ever

been able to bring to light a direct connection between them. Most of the results approaching

these conjectures use the same ideas, but up until this point ( as far as the authors know ) no

one had proved a general theorem implying both a result on the colouring of the square and

a result on the cyclic colouring of plane graphs ( let alone on embedded graphs ).

In order to show that our Theorem 1.2 provides an asymptotically best possible upper

bound for the cyclic chromatic number for a graph G with some fixed embedding GS , we need

some extra notation. For each face f of GS , add a vertex xf and call XF the set of vertices

that were added to G. For any face f of GS , and any vertex v incident with f , add an edge

between v and xf . We denote by GF the graph obtained from GS by this construction, so

V (GF ) = V (G) ∪ XF . Observe that a (list) (XF , V (G))-colouring of GF is exactly a cyclic

(list) colouring of GS and that ∆(GF ; XF , V (G)) = ∆∗(GS). We get the following corollary

of Theorem 1.2.

Corollary 1.12

Let S be a fixed surface. Every embedded graph GS of maximum face size ∆∗ has cyclic list

chromatic number at most (1 + o(1)) 3
2 ∆∗.

For an embedded graph GS , the cyclic clique number ω∗(GS) is the maximal size of a set

C ⊆ V so that every two vertices in C have some face they are both incident with. Note that

the plane graph depicted in Figure 1(b) satisfies ω∗(GP ) = 3 k =
⌊

3
2 ∆∗

⌋
. This shows that

the following corollary of Theorem 1.3 is best possible, up to the constant term.

Corollary 1.13

Let S be a fixed surface. Every embedded graph GS of maximum face size ∆∗ has cyclic clique

number at most 3
2 ∆∗ + O(1).

For plane graphs, the proof of Theorem 1.3 guarantees that a plane graph GP of maximum

face size ∆∗ ≥ 1056 has cyclic clique number at most 3
2 ∆∗ + 109.

2 Proof of Theorem 1.4

Throughout this section we assume that G = (V, E) is a graph embedded in a surface S, with

B ⊆ V , and β is a positive integer. Recall the notation Uβ = { v ∈ V | dU (v) ≤ β } for a

subset U ⊆ V . Note that this means that V β is the set of all vertices of degree at most β

Our goal is to show that for all ε > 0, if we take β large enough, then for every assign-

ment L(v) of at least
(

3
2 + ε

)
β colours to the vertices v ∈ B, there is a list (Bβ , B)-colouring

of G where each vertex in B receives a colour from its own list. In other words, we want an

assignment c(v) for each v ∈ B so that :

• for all v ∈ B we have c(v) ∈ L(v);

• for all u, v ∈ B with uv ∈ E we have c(u) 6= c(v); and

• for all u, v ∈ B with a common neighbour in Bβ ( i.e., with a common neighbour w with

dB(w) ≤ β ) we have c(u) 6= c(v).
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Before we start the actual proofs, we recall some of the important terminology, notation

and facts concerning embeddings of graph in surfaces.

2.1 Graphs in Surfaces

In this subsection, we give some background about graphs embedded in a surface. For more

details, the reader is referred to [22]. Here, by a surface we mean a compact 2-dimensional

surface without boundary. An embedding of a graph G in a surface S is a drawing of G on S

so that all vertices are distinct and every edge forms a simple arc connecting in S the vertices

it joins, so that the interior of every edge is disjoint from other vertices and edges. A face

of this embedding ( or just a face of G, for short ) is an arc-wise connected component of the

space obtained by removing the vertices and edges of G from the surface S. We say that an

embedding is cellular if every face is homeomorphic to an open disc in R
2.

A surface can be orientable or non-orientable. The orientable surface Sh of genus h is

obtained by adding h ≥ 0 ‘handles’ to the sphere; while the non-orientable surface Nk of

genus k is formed by adding k ≥ 1 ‘crosscaps’ to the sphere. The genus g(G) and non-

orientable genus g̃(G) of a graph G is the minimum h and the minimum k, resp., so that G

has an embedding in Sh, resp. in Nk.

The following result will allow us to suppose that a graph G with known genus g(G) or

non-orientable genus g̃(G) can be assumed to be embedded in a cellular way.

Lemma 2.1 ( [22, Propositions 3.4.1 and 3.4.2] )

(i) Every embedding of a connected graph G in Sg(G) is cellular.

(ii) There exists an embedding of a connected graph G in Neg(G) that is cellular.

The Euler characteristic χ(S) of a surface S is 2 − 2 h if S = Sh, and 2 − k if S = Nk.

The crucial result connecting all these concepts is Euler’s Formula : If G is a graph with

an embedding in S, with vertex set V , edge set E and face set F , then

|V | − |E| + |F | ≥ χ(S).

Moreover, if the embedding is cellular, then we have equality in Euler’s Formula.

Finally, if v is a vertex of a graph G embedded in a surface, then that embedding imposes

two circular orders of the edges incident with v. Since we assume graphs to be simple, this

corresponds to two circular orders of the neighbours of v. If the surface is orientable, then

we can consistently choose one of the two clockwise orders for all vertices; if the surface is

non-orientable, then such a choice is not possible. In our proofs that follow it is not important

that we can choose a consistent circular order : we only require that for each vertex v there

is at least one circular order of the neighbours around v.

2.2 The First Steps

A β-neighbour of v is a vertex u 6= v, so that u and v are adjacent, or u and v have a common

neighbour in Bβ . Denote the set of β-neighbours of v by Nβ(v), and its number by dβ(v).

Note that we have

dβ(v) ≤ d(v) +
∑

u∈N(v)∩Bβ

(d(u) − 1).
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For P, Q ⊆ V , the set of edges between P and Q is denoted by E(P, Q), and the number of

edges between P and Q by e(P, Q) ( edges with both ends in P ∩ Q are counted twice ).

An important tool in our proof of Theorem 1.4 is the following structural result.

Lemma 2.2

Let S be a fixed surface. Set ζ∗S = 132 (3 − χ(S)) and β∗
S = 8 ζ∗S. Then for all β ≥ β∗

S and

any connected graph G with a given cellular embedding in S, one of the following holds.

(S1) There is a vertex with degree zero or one.

(S2) There is a face f and two vertices u, v on the boundary of f with d(u) + d(v) ≤ β and

dβ(u) ≤ 3
2 β.

(S3) There are two disjoint non-empty sets X, Y ⊆ V β with the following properties :

(i) Every vertex y ∈ Y has degree at most four. Moreover, y is adjacent to exactly two

vertices of X and the other neighbours of y have degree at most four as well.

For y ∈ Y , let Xy be the set of its two neighbours in X. And for W ⊆ X, let Y W be

the set of vertices y ∈ Y with Xy ⊆ W ( that is, the set of vertices of Y having their two

neighbours from X in W ).

(ii) For all pairs of vertices y, z ∈ Y , if y and z are adjacent or have a common

neighbour w /∈ X, then Xy = Xz.

(iii) For all non-empty subsets W ⊆ X, we have the following inequality :

e(W, V \ Y ) ≤ e(W, Y \ Y W ) + ζ∗S |W |.

The proof of Lemma 2.2 can be found in Subsection 3.1. Observe that the values we use

for β∗
S and ζ∗S are probably far from best possible. The important point, to our mind, is that

they only depend on ( the Euler characteristic of ) the surface S.

We continue with a description how to apply the lemma to prove Theorem 1.4, assuming

that β ≥ β∗
S . We use induction on the number of vertices of G. We obviously can assume

that G is connected, otherwise we use induction on each of the components.

We first show that we can apply Lemma 2.2 to G. If G has a cellular embedding in S,

there is nothing to prove. Suppose that it is not the case, and assume that S is orientable

with genus h. By Lemma 2.1 we must have g(G) < h, and hence χ(Sg(G)) = 2 − 2g(G) >

2 − 2 h = χ(S). But that also means that the constants in Lemma 2.2 satisfy β∗
Sg(G)

< β∗
S

and ζ∗
Sg(G)

< ζ∗S . We will see later ( see the end of the proof in Subsection 2.3 ), that then

also βS,ε ≥ βSg(G),ε. So we can use Lemma 2.2 with the surface Sg(G) instead of S, and use a

cellular embedding of G in Sg(G).

If S is non-orientable, then exactly the same argument can be applied, this time using the

surface Neg(G).

So we can assume that G has a given cellular embedding in S, and so by Lemma 2.2, G

contains one of (S1), (S2) or (S3).

(S1) If G contains a vertex v of degree at most one, we consider the graph G1 obtained

from G by removing v. This graph is clearly embeddable in S. If v /∈ B, then

a list (Bβ , B)-colouring of G1 is also a list (Bβ , B)-colouring of G. Otherwise set

B1 = B \{v}. Now find a list (Bβ
1 , B1)-colouring of G1, and give an appropriate colour
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to v at the end. This is always possible since v is in conflict with at most β other

vertices, and we have
(

3
2 + ε

)
β ≥ β + 1 colours available for v.

(S2) Let f be a face with two vertices u, v on its boundary such that d(u) + d(v) ≤ β and

dβ(u) ≤ 3
2 β. In this case we construct a new graph G2 embeddable in S by identifying u

and v into a new vertex w. Set V2 = (V \{u, v})∪{w}, and notice that G2 has strictly

fewer vertices than G, and w has degree at most dG(u) + dG(v) ≤ β in G2. In other

words, w ∈ V β
2 . If v /∈ B, then set B2 = B. Otherwise, set B2 = (B \ {u, v}) ∪ {w}

and give w a list of colours L(w) with L(w) = L(v).

By induction there exists a list (Bβ
2 , B2)-colouring of G2. We define a colouring

of G as follows : every vertex different from u and v keeps its colour from the colouring

of G2. If v ∈ B, then we colour v with the colour given to w in G2. And if u ∈ B, then

we use the assumption, dβ
G(u) ≤ 3

2 β, and hence there exists a colour for u different

from the colour of all the vertices in conflict with u. We colour u with one of these

colours. It is easy to verify that this defines a list (Bβ , B)-colouring of G.

(S3) This is the only non-trivial case. In the remaining of this subsection we describe how

to reduce this case to a list edge-colouring problem. In the next subsection, we then

describe how Kahn’s approach to prove that the list chromatic index is asymptoti-

cally equal to the fractional chromatic index, can be used to conclude the proof of

Theorem 1.4.

Let X and Y be the two disjoint sets as in (S3). This means that every vertex in X has degree

at most β. Also recall that by (S3) (i), every vertex y ∈ Y has degree at most four. Moreover,

y is adjacent to exactly two vertices of X and the other neighbours of y have degree at most

four as well. As in (S3), let Xy be the set of the two neighbours of y in X.

Suppose there is a vertex y ∈ Y with y /∈ B. If N(y) = Xy, then contract y to one of its

two neighbours in Xy. If y has a neighbour u outside Xy, then contract the edge uy. Call

the resulting graph G3. It is easy to check that a list (Bβ , B)-colouring of G3, which exists

by induction, also is a proper list (Bβ , B)-colouring of G.

So from now on we assume that all vertices in Y are contained in B.

Let Y0 be the set of vertices from Y with no neighbour outside X ∪Y . Consider the graph

G[V \Y0] induced on the set of vertices outside Y0. For every vertex y ∈ Y \Y0 with a unique

neighbour u outside X ∪ Y , or with exactly two neighbours u and v outside X ∪ Y , contract

the edge yu into a new vertex u∗. The graph obtained is denoted by G0. And let B0 be the

union of B \ Y0 and all new vertices u∗ that originated from an edge yu with u ∈ B.

By the construction of G0, it is easy to verify the following statement.

Claim 2.3 For all u ∈ V (G0) ∩ V (G) we have (Nβ
G(u) \ Y ) ⊆ Nβ

G0
(u).

For each vertex u∗ of B0 corresponding to the contraction of an edge uy ( y ∈ Y \Y0 ) in G, set

L0(u
∗) = L(u) and for all other vertices v of B0 set L0(v) = L(v). By the induction hypothesis,

the graph G0 admits a list (Bβ
0 , B0)-colouring c0 with respect to the list assignment L0.

We now transform this colouring into a list (Bβ , B)-colouring of G with respect to the

original list assignment L. For each vertex u ∈ B \ Y , if an edge incident to u has been

contracted in the construction of G0 to form a new vertex u∗, set c(u) = c0(u
∗). Otherwise
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set c(u) = c0(u). Using Claim 2.3, this is a good partial (Bβ , B)-colouring of all the vertices

of B \ Y . The difficult part of the proof is to show that c can be extended to Y .

By assumption, at the beginning every vertex in Y has a list of at least
(

3
2 +ε

)
β available

colours. For each vertex y in Y , let us remove from L(y) the colours which are forbidden for y

according to the partial (Bβ , B)-colouring c of G. At the worst case, these forbidden colours

are exactly the colours of the vertices of V \ Y at distance at most two from y.

Let us define the multigraph H as follows : H has vertex set X. And for each vertex

y ∈ Y we add an edge ey between the two neighbours of y in X ( in other words, between the

two vertices from Xy ). We associate a list L(ey) to ey in H by taking the list of y obtained

after removing the set of forbidden colours for y from the original list L(y). Finally, for every

edge e in G[X], we add the same edge e to H and associate a list L(e) of at least
(

3
2 + ε

)
β

colours to such an edge. ( The colours within these lists are irrelevant for what follows, we

just have to make sure that the lists of these specific edges of H are large enough. )

We now prove the following lemma.

Lemma 2.4

A list edge-colouring for H, with the list assignment L defined as above, provides an extension

of c to a list (Bβ , B)-colouring of G by giving to each vertex y ∈ Y the colour of the edge ey

in H.

Proof This follows from property (S3) (ii) in Lemma 2.2 : for every two vertices y, z ∈ Y ,

if y and z are adjacent or have a common neighbour w /∈ X, then Xy = Xz. This proves

that the two vertices adjacent in Y or with a common neighbour not in X define parallel

edges in H and so will have different colours. If two vertices y1 and y2 of Y have a common

neighbour in X, ey1 and ey2 will be adjacent in H and so will get different colours. Since we

have already removed from the list of vertices in Y the set of forbidden colours ( defined by

the colours of the vertices in V \ Y ), there will be no conflict between the colours of a vertex

from Y and a vertex from V \ Y . We conclude that the edge-colouring of H will provide an

extension of c to a list (Bβ , B)-colouring of G. 2

The following lemma provides a lower bound on the size of L(e) for the edges e in H.

Lemma 2.5

Let e = uv be an edge in H. Then we have

|L(e)| ≥
(

3
2 + ε

)
β − (dG(u) − dH(u)) − (dG(v) − dH(v)) − 10.

Proof If e originated because there was already an edge in G[X], then by construction we

have |L(e)| ≥
(

3
2 + ε

)
β. On the other hand, suppose that e = ey, i.e., e originated because

of a vertex y ∈ Y in G with Xy = {u, v}. Let Z be the set of vertices adjacent in G to y

in V \ X. Then by (S3), |Z| ≤ 2 and |NG(Z) \ Y | ≤ 6. The colours that are forbidden

for y are the colours of {u, v}, plus the colours of vertices in (NG(u) ∪ NG(v)) \ Y , plus the

colours of vertices in (Z ∪ NG(Z)) \ Y . The number of vertices in these three sets add up to

(dG(u) − dH(u)) + (dG(v) − dH(v)) + 10. The lemma follows. 2
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In the remainder of this subsection, we apply Lemma 2.2 to obtain information on the density

of subgraphs in H, which we will need in the next subsection. As in Lemma 2.2, for all non-

empty subsets W ⊆ X, we define Y W as the set of vertices y ∈ Y with Xy ⊆ W ( that is, the

set of vertices of Y having their two neighbours from X in W ). By (S3) (iii) we have for all

non-empty W ⊆ X :

eG(W, V \ Y ) ≤ eG(W, Y \ Y W ) + ζ∗S |W |.

This inequality has the following interpretation in H.

Lemma 2.6

For all non-empty subsets W ⊆ X( = V (H) ) we have

∑

w∈W

(dG(w) − dH(w)) ≤ eH(W, X \ W ) + ζ∗S |W |.

Proof First note that
∑

w∈W

(dG(w)−dH(w)) = eG(W, V \ (X ∪Y )) ≤ eG(W, V \Y ). We also

have eG(W, Y \Y W ) = eH(W, X \W )−eG(W, X \W ) ≤ eH(W, X \W ). Combining these two

observations with the formula in (S3) (iii) immediately gives the required inequality. 2

At this point, our aim will be to apply Kahn’s approach to the multigraph H with the list

assignment L, to prove the existence of a proper list edge-colouring for H. This is described

in the next subsection.

We summarise the properties we assume are satisfied by the multigraph H and the list

assignment L of the edges of H. For these conditions we just consider dG(v) as an integer

with certain properties, assigned to each vertex of H.

(H1) For all vertices v in H we have dH(v) ≤ dG(v) ≤ β.

(H2) For all edges e = uv in H : |L(e)| ≥
(

3
2 +ε

)
β−(dG(u)−dH(u))−(dG(v)−dH(v))−10.

(H3) For all non-empty subsets W ⊆ V (H) :
∑

w∈W

(dG(w)−dH(w)) ≤ eH(W, X\W )+ζ∗S |W |,

for some constant ζ∗S .

2.3 The Matching Polytope and Edge-Colourings

We briefly describe the matching polytope of a multigraph. More about this subject can be

found in [28, Chapter 25].

Let H be a multigraph with m edges. Let M(H) be the set of all matchings of H, including

the empty matching. For each M ∈ M(H), let us define the m-dimensional characteristic

vector 1M as follows : 1M = (xe)e∈E(H), where xe = 1 for an edge e ∈ M , and xe = 0

otherwise. The matching polytope of H, denoted by MP(H), is the polytope defined by

taking the convex hull of all the vectors 1M for M ∈ M(H). Also, for any real number λ, we

set λMP(H) = {λ x | x ∈ MP(H) }.

Edmonds [9] gave the following characterisation of the matching polytope:
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Theorem 2.7 ( Edmonds [9] )

A vector ~x = (xe) is in MP(H) if and only if xe ≥ 0 for all xe and the following two types

of inequalities are satisfied :

• For all vertices v ∈ V (H) :
∑

e: v incident to e

xe ≤ 1;

• for all subsets W ⊆ V (H) with |W | ≥ 3 and |W | odd :
∑

e∈E(W )

xe ≤
1
2 (|W | − 1).

The significance of the matching polytope and its relation with list edge-colouring is indicated

by the following important result.

Theorem 2.8 (Kahn [17] )

For all real numbers δ, µ, 0 < δ < 1 and µ > 0, there exists a ∆δ,µ so that for all ∆ ≥ ∆δ,µ

the following holds. If H is a multigraph and L is a list assignment of colours to the edges

of H so that

• H has maximum degree at most ∆;

• for all edges e ∈ E(H) : |L(e)| ≥ µ∆;

• the vector ~x = (xe) with xe =
1

|L(e)|
for all e ∈ E(H) is an element of (1 − δ)MP(H).

Then there exists a proper edge-colouring of H where each edge gets a colour from its own

list.

The theorem above is actually not explicitly stated this way in [17], but can be obtained from

the appropriate parts of that paper. We give some further details about that in the final

section of this paper.

The next lemma shows how to use Theorem 2.8 to complete the induction.

Lemma 2.9

Let ζ be a real number. Then there exists a Kζ , so that for all K ≥ Kζ the following holds.

Let H be a multigraph, and suppose that for each vertex v an integer D(v), and for each edge e

a positive real number be is given. Suppose that the following three conditions are satisfied :

(H1’) For all vertices v in H : d(v) ≤ D(v) ≤ β.

(H2’) For all edges e = uv in H : be ≥
(

3
2 β + K

)
− (D(u) − d(u)) − (D(v) − d(v)).

(H3’) For all non-empty subsets W ⊆ V (H) :
∑

w∈W

(D(w)−d(w)) ≤ eH(W, V (H)\W )+ζ |W |.

Then for all edges e ∈ E(H) we have be ≥ 1
2 β. And the vector ~x = (xe) defined by xe =

1

be
for e ∈ E(H) is an element of MP(H).

The proof of Lemma 2.9 will be given in Subsection 3.2. This lemma guarantees that for all

ε > 0, there exists a βε, so that for all β ≥ βε Theorem 2.8 can be applied to a multigraph H

with an edge list assignment L satisfying properties (H1) – (H3) stated at the end of the

previous subsection.

To see this, take δε =
ε

3 + 2 ε
, so 0 < δε < 1. In order to be able to apply Theorem 2.8,

we want to prove the existence of βε,ζ∗
S

such that for any β ≥ βε,ζ∗
S
, the vector ~x = (xe),
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xe =
1

|L(e)|
, is in (1 − δε)MP(H). Let ζ∗S be the real number described in condition (H3)

and let Kζ∗
S

be the number given by Lemma 2.9. By condition (H2) we have

(1 − δε) |L(e)| ≥ (1 − δε)
((

3
2 + ε

)
β − (D(u) − d(u)) − (D(v) − d(v)) − 10

)

≥ (1 − δε)
(

3
2 + ε

)
β − (D(u) − d(u)) − (D(v) − d(v)) − 10

=
(

3
2 β + 1

2 ε β
)
− (D(u) − d(u)) − (D(v) − d(v)) − 10.

Let βε,ζ∗
S

=
2 (Kζ∗

S
+ 10)

ε
. For β ≥ βε,ζ∗

S
we have

(1 − δε) |L(e)| ≥
(

3
2 β + Kζ∗

S

)
− (D(u) − d(u)) − (D(v) − d(v)).

So by Lemma 2.9, taking be = (1−δε) |L(e)|, the vector ~x′ = (x′
e), x′

e =
xe

1 − δε
, is in MP(H).

We infer that ~x ∈ (1 − δε)MP(H) and the lemma follows.

Now set βS,ε = max{β∗
S , βε,ζ∗

S
, ∆δε,1/2 } ( where β∗

S , ζ∗S are determined by Lemma 2.2, βε,ζ∗
S

and δε are related to Kζ∗S
from Lemma 2.9 as explained above, and ∆δε,1/2 is according to

Theorem 2.8 ), and assume β ≥ βS,ε. Then using Lemma 2.9, we can now apply Theorem 2.8

which implies that the multigraph H defined in Subsection 2.2 has a list edge-colouring

corresponding to the list assignment L. Lemma 2.4 then implies that the colouring c can be

extended to a list (Bβ , B)-colouring of the original graph G. This concludes the induction

and also completes the proof of Theorem 1.4.

3 Proofs of the Main Lemmas

We use the terminology and notation from the previous sections.

3.1 Proof of Lemma 2.2

Let S be a surface, and set ζ∗S = 132 (3− χ(S)) and β∗
S = 8 ζ∗S . We take β ≥ β∗

S and consider

a connected graph G with a given cellular embedding in S. We need some further notation

and terminology.

The set of faces of G is denoted by F . Recall that since the embedding in S is cellular,

every face is homeomorphic to an open disk in R
2. For a face f , a boundary walk of f is a

walk consisting of vertices and edges as they are encountered when walking along the whole

boundary of f , starting at some vertex. The degree of a face f , denoted d(f), is the number

of edges on the boundary walk of f . Note that this means that if f is incident with a bridge

( cut edge ) of G, that bridge will be counted twice in d(f). The size of a face f is the number

of vertices on its boundary. We always have that the size of f is at most d(f), with strict

inequality if and only if the face has a cut vertex on its boundary.

We start by proving that we can assume that any two vertices on the boundary of the same

face are adjacent in G. For suppose this is not the case for some pair u, v on the boundary of

a face f . Form the graph G′ by adding the edge uv to G, with the natural embedding of that

edge inside f . Then G′ is still a connected simple graph, and the embedding of G′ is cellular.
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Suppose G′ contains one of the structures (S1) – (S3) in the lemma. We claim that then

also G contains one of these structures. This is obvious if G′ contains (S1) or (S2). So

suppose G′ has sets X, Y according to (S3).

It is easy to check that exactly the same pair X, Y works for G as well in the following

cases : if {u, v} ∩ (X ∪ Y ) = ∅, or if u, v ∈ X, or if u, v ∈ Y , or if u ∈ Y and v ∈ V \ (X ∪ Y ).

If u ∈ X and v ∈ V \ (X ∪Y ), then going from G′ to G for W ⊆ X with u ∈ W , we loose one

on the left hand side of the inequality in (iii). Hence the pair X, Y also works for G. If u ∈ X

and v ∈ Y , then in G either v has degree at most one, and then G contains structure (S1),

or v is adjacent to one vertex x ∈ X and at most two more vertices of degree at most four.

But then v has a neighbour w with d(v) + d(w) ≤ 7 ≤ β. Moreover, since x ∈ X ⊆ V β ,

we have dβ(v) ≤ 8 + β ≤ 3
2 β. Hence in this case G contains structure (S2). Finally, the

possibilities v ∈ Y and u ∈ V \ (X ∪ Y ), or v ∈ X and u ∈ V \ (X ∪ Y ), or v ∈ X and u ∈ Y ,

can be done by symmetry with the cases above.

So, by adding edges we can transform G to a simple connected graph G∗ with a cellular

embedding in S so that any two vertices on the boundary of the same face are adjacent in G∗,

and so that if G∗ satisfies the lemma, then so does G. Hence we might as well assume the

following :

(a) The graph G with a cellular embedding in S has the property that any two vertices on

the boundary of the same face are adjacent.

Now suppose that G does not contain any of the structures (S1) or (S2). In order to prove

Lemma 2.2, we only need to prove that G contains structure (S3). We can observe that :

(b) All vertices have degree at least three. ( Since G does not contain (S1), degrees must

be at least two. As G is not a triangle, we cannot have a vertex of degree two, since

otherwise, for each face to have at degree at least three, we have a multiple edge as

well. )

(c) For all pairs of adjacent vertices u, v we have d(u)+d(v) > β or dβ(u) > 3
2 β ( otherwise

we have structure (S2) ).

Let B ⊆ V , the big vertices, be the vertices of degree at least ζ∗S + 1; the other vertices are

called small. Define Bβ = B∩V β ( the big vertices with degree at most β ) and B>β = B \Bβ.

Note that for a vertex u, a neighbour v that is not in Bβ adds at most ζ∗S − 1 neighbours

at distance two from u to dβ(u) ( none if v ∈ B>β and at most ζ∗S − 1 if v is small, where

the −1 appears since one of the neighbours of v is u itself ).

(d) If a vertex u of degree three has a small neighbour, then its other two neighbours are

in Bβ.

This follows since if u has a small neighbour v, then d(u) + d(v) ≤ β. But then, by obser-

vation (c), we must have dβ(u) > 3
2 β, which is only possible if both its other neighbours are

in Bβ .

In the same way we can prove :

(e) If a vertex of degree four has a small neighbour, then it also has at least two neighbours

from Bβ.

(f) A vertex u of degree five has at least two big neighbours. ( otherwise we have dβ(u) ≤

5 + 4 · (ζ∗S − 1) + (β − 1) = 4 ζ∗S + β ≤ 3
2 β, since β ≥ 8 ζ∗S ).
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We continue our analysis using the classical technique of discharging. Give each vertex v

an initial charge µ(v) = 6 d(v) − 36. Since every face has degree at least three, 2 |E| ≥ 3 |F |.

Hence, by Euler’s Formula,
∑

v∈V

µ(v) = 12 |E|−36 |V | ≤ −36 |V |+36 |E|−36 |F | ≤ −36 χ(S).

We further redistribute charges according to the following rules :

(R1) Each vertex of degree three that is adjacent to three big vertices receives a charge 6

from each of its neighbours.

(R2) Each vertex of degree three that is adjacent to two big vertices receives a charge 9

from each of its big neighbours.

(R3) Each vertex of degree four that is adjacent to four big vertices receives a charge 3 from

each of its big neighbours.

(R4) Each vertex of degree four that is adjacent to three big vertices receives a charge 4

from each of its big neighbours.

(R5) Each vertex of degree four that is adjacent to two big vertices receives a charge 6 from

each of its big neighbours.

(R6) Each vertex of degree five receives a charge 3 from each of its big neighbours.

Denote the resulting charge of an element v ∈ V after applying rules (R1) – (R6) by µ′(v).

Since the global charge has been preserved, we have
∑

v∈V

µ′(v) ≤ −36 χ(S). We will show that

for most v ∈ V , µ′(v) is non-negative.

Combining observations (d) – (f) with rules (R1) – (R6) and our knowledge that µ(v) =

6 d(v) − 36, we find that µ′(v) = 0 if d(v) = 3, 4, while µ′(v) ≥ 0 if d(v) = 5. If v is a small

vertex with d(v) ≥ 6, we have µ′(v) = µ(v) = 6 d(v) − 36 ≥ 0.

So we are left to consider vertices v ∈ B. By the final paragraph of Subsection 2.1,

the embedding of G in S imposes a circular order on the neighbours of each vertex v. By

observation (a) we may assume that two consecutive vertices in this order are adjacent. If u

is a neighbour of v, then by u− ( resp. u+ ) we indicate the neighbour of v that comes before

( resp. after ) u in that order. Similarly, we denote by u−− ( resp. u++ ) the neighbour of v

that comes before u− ( resp. after u+ ) in the same order.

Let us take a vertex v ∈ B>β . We distinguish five different types of neighbours of v :

N3(v) = {u ∈ N(v) | d(u) = 3 and all neighbours of u are big };

N4a(v) = {u ∈ N(v) | d(u) = 4 and all neighbours of u are big };

N4b(v) = {u ∈ N(v) | d(u) = 4 and u has exactly one small neighbour };

N5(v) = {u ∈ N(v) | d(u) = 5 };

N6(v) = {u ∈ N(v) | d(u) ≥ 6 }.

Notice that each neighbour of v is in one of these sets. ( For a neighbour of degree three,

this follows from observation (d). And for a neighbour u of degree four, it follows from

observation (e) that, since v ∈ B>β , if u has a small neighbour, then the remaining two

neighbours are in Bβ . )

Moreover, by observation (d) we must have that if u ∈ N3(v), then u−, u+ ∈ N6(v).

Similarly, if u ∈ N4a(v), then we also have u−, u+ ∈ N6(v). While if u ∈ N4b(v), then at least
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one of u−, u+ is in N6(v). Set n3 = |N3(v)|, n4a = |N4a(v)|, n4b = |N4b(v)|, n5 = |N5(v)|, and

n6 = |N6(v)|. From the previous observation, we deduce

n6 ≥ n3 + n4a + 1
2 n4b.

We also have, using µ(v) = 6 d(v)−36 and applying rules (R1), (R3), (R4) and (R6), that

µ′(v) = 6 d(v) − 36 − 6 n3 − 3 n4a − 4 n4b − 3 n5.

Combining this with d(v) = n3 + n4a + n4b + n5 + n6 and 3n6 ≥ 3 n3 + 3n4a + 3
2 n4b, we find

µ′(v) = 6n6 + 3n4a + 2n4b + 3n5 − 36 ≥ 3 n6 + 3n3 + 6n4a + 7
2 n4b + 3n5 − 36

≥ 3 (n6 + n3 + n4a + n4b + n5) − 36 ≥ 3 d(v) − 36 ≥ 0.

So for all v /∈ Bβ we have µ′(v) ≥ 0, and hence we must have
∑

v∈Bβ

µ′(v) ≤ −36 χ(S). (1)

To derive the relevant consequence of that formula, we must make a detailed analysis of the

neighbours of vertices in Bβ . We distinguish six different types of neighbours of a vertex

v ∈ Bβ :

M1(v) = {u ∈ N(v) | {u−, u−−, u+, u++} ∩ Bβ 6= ∅ };

M3(v) = {u ∈ N(v) \ M1(v) | d(u) = 3 };

M4a(v) = {u ∈ N(v) \ M1(v) | d(u) = 4 and u− or u+ have degree at least five };

M4b(v) = {u ∈ N(v) \ M1(v) | d(u) = d(u−) = d(u+) = 4 };

M5(v) = {u ∈ N(v) \ M1(v) | d(u) = 5 };

M6(v) = {u ∈ N(v) \ M1(v) | d(u) ≥ 6 }.

First observe that if u ∈ N(v)\M1(v) is a small vertex, then u− and u+ both have degree

at least four : Assume that u− has degree three, then by observation (d) the neighbour w

of u− distinct from v and u is in Bβ . By observation (a), w = u−−, which contradicts the

fact that u /∈ M1(v). If u+ has degree three, we find that u++ ∈ Bβ , which again contradicts

u /∈ M1(v). Also note that if u ∈ M3(v), then u− and u+ are both in B>β , where we use

observation (d) and the fact that u 6∈ M1(v).

As a consequence, every neighbour of v is in exactly one set. Our aim in the following, in

order to prove Lemma 2.2, is to show that most neighbours of vertices v ∈ Bβ are in M4b(v).

We now evaluate the charge that a vertex v ∈ Bβ has given to its neighbours. If u ∈ M1(v),

then v gave at most 9+9+9 = 27 to {u−, u, u+}; if u ∈ M3(v), then v gave at most 0+9+0 = 9

to {u−, u, u+}; if u ∈ M4a(v), then v gave at most 3+6+6 = 15 to {u−, u, u+}; if u ∈ M4b(v),

then v gave at most 6+6+6 = 18 to {u−, u, u+}; if u ∈ M5(v), then v gave at most 3+6+6 = 15

to {u−, u, u+}; and, finally, if u ∈ M6(v), then v gave at most 6 + 0 + 6 = 12 to {u−, u, u+}.

Setting m1 = |M1(v)|, m3 = |M3(v)|, m4a = |M4a(v)|, m4b = |M4b(v)|, m5 = |M5(v)|, and

m6 = |M6(v)|, we can conclude that v gave at most

1
3 (27m1 + 9m3 + 15m4a + 18m4b + 15m5 + 12m6)

≤ 9 m1 + 6m4b + 5 (m3 + m4a + m5 + m6) ≤ 5 d(v) + 4m1 + m4b
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to its neighbourhood. This means that the remaining charge µ′(v) of a vertex v ∈ Bβ must

satisfy

µ′(v) ≥ (6 d(v) − 36) − (5 d(v) + 4m1 + m4b) = d(v) − m4b − 4 m1 − 36.

By definition, |M1(v)| is at most four times the number of neighbours of v in Bβ . Consider

the subgraph G[Bβ ] of G induced by Bβ . This graph can be embedded in S, and no face of

such an embedding is incident with two or fewer edges. So Euler’s Formula means that G[Bβ]

has at most 3 |Bβ | − 3 χ(S) edges, and hence

∑

v∈Bβ

|M1(v)| ≤
∑

v∈Bβ

4 dG[Bβ ](v) = 8 |E(G[Bβ ])| ≤ 24 |Bβ | − 24 χ(S).

Combining the last two inequalities with (1) gives

−36 χ(S) ≥
∑

v∈Bβ

µ′(v) ≥
∑

v∈Bβ

(d(v) − |M4b(v)|) − 4 (24 |Bβ | − 24 χ(S)) − 36 |Bβ|.

Using that Bβ 6= ∅ ( otherwise G contains structure (S1) or (S2) ) and χ(S) ≤ 2, this can be

written as

∑

v∈Bβ

(d(v) − |M4b(v)|) ≤ 132 |Bβ | − 132 χ(S)

< 132 |Bβ | + 132 (2 − χ(S)) ≤ 132 (3 − χ(S)) |Bβ |.

Define X0 = Bβ and Y0 =
⋃

v∈Bβ
M4b(v). Note that the previous inequality can be written

e(X0, V \ Y0) < ζ∗S |X0|. (2)

Also observe that the pair (X0, Y0) satisfies the conditions (i) and (ii) for X and Y in part (S3)

of Lemma 2.2 :

(i) For all vertices u ∈ M4b(v), u, u− and u+ have degree four in G, and the fourth neighbour

of u is in Bβ = X0 by observation (e).

(ii) By observation (a) and the definition of M4b(v), all pairs of adjacent vertices y, z ∈ Y0,

satisfy Xy
0 = Xz

0 . Moreover, if y, z ∈ Y0 share a neighbour w /∈ X0, then t has degree

four and, by observation (a), its neighbours distinct from y and z are in Xy
0 and in Xz

0 .

This again gives Xy
0 = Xw

0 = Xz
0 .

So we are done if the pair (X0, Y0) also satisfies condition (iii) ( with X = X0 and Y = Y0 ).

Suppose this is not the case. So there must exist a set Z1 ⊆ X0 with

e(Z1, V \ Y0) > e(Z1, Y0 \ Y Z1
0 ) + ζ∗S |Z1|.

Define X1 = X0 \ Z1 and Y1 = Y X1
0 . Again, by construction, (X1, Y1) satisfies conditions (i)

and (ii) of (S3). If it does not satisfy condition (iii) we iterate the process ( see Figure 2 ) and

eventually obtain a pair (Xk, Yk) satisfying conditions (i), (ii) and (iii) of (S3). We only need

to check that Xk 6= ∅ and Yk 6= ∅.
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Zi

Xi
Yi

Xi−1 Yi−1

Figure 2: Xi = Xi−1 \ Zi and Yi = Y Xi

i−1.

Let 1 ≤ i ≤ k. Since Xi = Xi−1 \ Zi, we have

e(Xi, V \ Yi) = e(Xi−1, V \ Yi) − e(Zi, V \ Yi)

= e(Xi−1, V \ Yi−1) + e(Xi−1, Yi−1 \ Yi) − e(Zi, V \ Yi−1) − e(Zi, Yi−1 \ Yi)

= e(Xi−1, V \ Yi−1) − e(Zi, V \ Yi−1) + e(Xi, Yi−1 \ Yi).

Since Yi = Y Xi

i−1, every neighbour u ∈ Yi−1 \ Yi of a vertex from Xi has exactly one neighbour

in Zi ( see Figure 2 ). Hence, e(Xi, Yi−1 \ Yi) = e(Zi, Yi−1 \ Y Zi

i−1). So we have

e(Xi−1, V \ Yi−1) = e(Xi, V \ Yi) + e(Zi, V \ Yi−1) − e(Zi, Yi−1 \ Y Zi

i−1).

By the definition of Zi, we have e(Zi, V \ Yi−1) > e(Zi, Yi−1 \ Y Zi

i−1) + ζ∗S |Zi|. Combining the

last two expressions gives

e(Xi−1, V \ Yi−1) > e(Xi, V \ Yi) + ζ∗S |Zi|.

Setting Z∗ =
⋃

1≤i≤k

Zi, we have e(Xk, V \ Yk) < e(X0, V \ Y0) − ζ∗S |Z∗|. As a consequence,

using equation (2),

|Z∗| <
e(X0, V \ Y0) − e(Xk, V \ Yk)

ζ∗S
≤

e(X0, V \ Y0)

ζ∗S
<

ζ∗S |X0|

ζ∗S
= |X0|.

Since Xk = X0 \ Z∗, this implies |Xk| > 0, which leads to Xk 6= ∅.

Finally, let v ∈ Xk 6= ∅ and assume Yk = ∅. Taking W = {v} in the inequality (iii)

of (S3) ( which by construction is satisfied by (Xk, Yk) ), we obtain d(v) ≤ ζ∗S . Since v is a big

vertex, d(v) ≥ ζ∗S + 1. This contradiction means that we must have Yk 6= ∅, which concludes

the proof of Lemma 2.2.

3.2 Proof of Lemma 2.9

We recall the hypotheses of the lemma : We have a real number ζ; H is a multigraph; each

vertex v of H has an associated integer D(v); and for each edge e a positive number be is

given. Finally, K is a real number satisfying K ≥ Kζ for a constant Kζ whose existence will

be determined in the proof.
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The following three conditions are satisfied :

(H1’) For all vertices v in H : d(v) ≤ D(v) ≤ β.

(H2’) For all edges e = uv in H : be ≥
(

3
2 β + K) − (D(u) − d(u)) − (D(v) − d(v)).

(H3’) For all non-empty subsets W ⊆ V (H) :
∑

w∈W

(D(w)−d(w)) ≤ eH(W, V (H)\W )+ζ |W |.

In the proof that follows, we will show that Kζ = max{ 0, 9
2 ζ } will be a suitable choice. I.e.,

it will guarantee that under the conditions above, the vector ~x = (xe), xe = 1/be, will be

in MP(H).

For an edge e = uv in H, define

ae =
(

3
2 β + K

)
− (D(u) − d(u)) − (D(v) − d(v)) and ye =

1

ae
. (3)

We will in fact prove that the vector ~y = (ye) is in the matching polytope MP(H). Since

be ≥ ae, we have xe = 1/be ≤ 1/ae = ye. So, by Edmonds’ characterisation of the matching

polytope, if ~y ∈ MP(H), this guarantees that ~x ∈ MP(H), as required.

Applying condition (H3’) to the set W = {v} gives D(v)−d(v) ≤ d(v)+ ζ, which implies :

(a) For all vertices v ∈ V (H) we have d(v) ≥ 1
2 (D(v) − ζ).

Let e = uv be an edge of H. If we use the estimate above for both u and v in the definition

of ae in (3), and recalling that D(u), D(v) ≤ β, we obtain

ae ≥ 3
2 β − 1

2 D(u) − 1
2 D(v) + K − ζ ≥ 1

2β + K − ζ.

On the other hand, if we use observation (a) to u only we get

ae ≥ d(v) + 3
2 β − 1

2 D(u) − D(v) + K − 1
2 ζ ≥ d(v) + K − 1

2 ζ.

Since K ≥ 2 ζ, the following two conclusions hold.

(b) For all edges e = uv in E(H) we have ae ≥ d(v) + 1
2 K.

(c) For all edges e ∈ E(H) we have ae ≥
1
2 β + 1

2 K.

Note that observation (c) also gives be ≥ ae ≥
1
2 β for all e ∈ E(H), as required.

Next notice that for any κ ≥ 0, the function x 7→
x

x + κ
is non-decreasing in x. Together

with the fact that d(v) ≤ β for all v ∈ V (H) and observation (b), we find, since K ≥ 0,

∑

e∋v

1

ae
≤ d(v) ·

1

d(v) + 1
2 K

≤ 1,

which shows that

Claim 3.1 For all vertices v ∈ V (H) we have
∑

e∋v

ye ≤ 1.

Using Theorem 2.7, all that remains is to prove that for all W ⊆ V (H) with |W | ≥ 3 and |W |

odd we have
∑

e∈E(W )

ye ≤ 1
2 (|W | − 1). We actually will prove this for all |W | ≥ 3. Note that

we certainly can assume E(W ) 6= ∅.
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Using observation (b), we infer that :

∑

e∈E(W )

1

ae
≤ 1

2

∑

u∈W

dH[W ](u)

d(u) + 1
2 K

= 1
2

∑

u∈W

( d(u)

d(u) + 1
2 K

−
d(u) − dH[W ](u)

d(u) + 1
2 K

)
.

Since
d(u)

d(u) + 1
2 K

≤
β

β + 1
2 K

and
d(u) − dH[W ](u)

d(u) + 1
2 K

≥
d(u) − dH[W ](u)

β + 1
2 K

, this implies

∑

e∈E(W )

1

ae
≤ 1

2 |W |
β

β + 1
2 K

− 1
2

e(W, W c)

β + 1
2 K

.

Here we used that
∑

u∈W

(
d(u) − dH[W ](u)

)
= e(W, W c), where W c = V (H) \ W .

If e(W, W c) ≥ β, we obtain, since K ≥ 0,

∑

e∈E(W )

ye ≤ 1
2 (|W | − 1) ·

β

β + 1
2 K

≤ 1
2 (|W | − 1).

So we can assume in the following that e(W, W c) ≤ β, in which case Condition (H3’) of

Lemma 2.9 implies

∑

u∈W

(D(u) − d(u)) ≤ e(W, W c) + ζ |W | ≤ β + ζ |W |.

For a vertex u set c(u) = D(u) − d(u), and for a set of vertices U we define c(U) =
∑

u∈U

c(u).

So we can write the above as c(W ) ≤ β + ζ |W |.

In the following we use the fact that all ae are large enough to find a bound for the sum∑
e∈E(W )

a−1
e . To this aim, recall from definition (3) that ae =

(
3
2 β + K

)
− c(u) − c(v) for all

edges e = uv in H. This gives

∑

e∈E(W )

ae =
(

3
2 β + K

)
|E(W )| −

∑

u∈W

c(u) dH[W ](u).

Since dH[W ](u) ≤ d(u) = D(u) − c(u) ≤ β − c(u), we have

∑

e∈E(W )

ae ≥
(

3
2 β + K

)
|E(W )| − β c(W ) +

∑

u∈W

c(u)2.

Set p = min
uv∈E(W )

{(
3
2 β + K

)
− c(u) − c(v)

}
and q = 3

2 β + K. This means that q − p =

max
uv∈E(W )

{
c(u) + c(v)

}
. Let e = uv be an edge in E(W ) so that c(u) + c(v) = q − p. Then

c(u)2 + c(v)2 ≥ 1
2 (q − p)2, and hence we can be sure that

∑

e∈E(W )

ae ≥ q |E(W )| − β c(W ) + 1
2 (q − p)2.

We now use this inequality and the following claim to bound
∑

e∈E(W )

a−1
e .

21



Claim 3.2 Let r1, . . . , rm be m real numbers so that 0 < p ≤ r1, . . . , rm ≤ q and
∑

1≤i≤m
ri ≥

q m − (q − p)S, for some S ≥ 0. Then we have
∑

1≤i≤m
r−1
i ≤

S

p
+

m − S

q
.

Proof The result is trivial if p = q, so suppose p < q. For any 1 ≤ i ≤ m, set ci =
q − ri

q − p
.

Now we have 0 ≤ ci ≤ 1 for all 1 ≤ i ≤ m, and
∑

1≤i≤m
ci ≤ S. Since the function x 7→

1

x
is

convex, we have that for 1 ≤ i ≤ m,

1

ri
=

1

q − ci (q − p)
=

1

ci p + (1 − ci) q
≤ ci

1

p
+ (1 − ci)

1

q
= ci

(1

p
−

1

q

)
+

1

q
.

As a consequence,

∑

1≤i≤m

1

ri
≤

(1

p
−

1

q

) ∑

1≤i≤m

ci +
m

q
≤

(1

p
−

1

q

)
S +

m

q
≤

S

p
+

m − S

q
.

2

We set R = β c(W ) − 1
2 (q − p)2 and S =

R

q − p
. Using Claim 3.2, at this point we have

∑

e∈E(W )

1

ae
≤

S

p
+

|E(W )| − S

q
=

S (q − p)

p q
+

|E(W )|

q
=

R

p q
+

2 |E(W )|

3 β + 2K
.

Notice that by condition (H3’) of Lemma 2.9, 2 |E(W )| ≤
∑

u∈W

D(u) − 2 c(W ) + ζ |W | ≤

β |W | − 2 c(W ) + ζ |W |. Hence we find

∑

e∈E(W )

1

ae
≤

β |W |

3 β + 2K
+

R

p q
−

2 c(W )

3 β + 2K
+

ζ |W |

3 β + 2K
. (4)

Claim 3.3 For K ≥ 9
2 ζ we have

R

p q
−

2 c(W )

3 β + 2K
+

ζ |W |

3 β + 2K
≤

2 K

3 (3β + 2K)
|W |.

Proof Since q = 3
2 β + K, we only have to prove that

2 R

p
− 2 c(W ) + ζ |W | ≤ 2

3 K |W |.

Let us write q − p = α β, and so p = 1
2 (3 − 2 α)β + K and R = β c(W ) − 1

2 α2 β2. Using

that c(W ) ≤ β + ζ |W |, we have

2 R

p
− 2 c(W ) + ζ |W | =

2 β c(W )

p
−

α2 β2

p
− 2 c(W ) + ζ |W |

= c(W )
2 β − 2 p

p
−

α2 β2

p
+ ζ |W |

≤
β

p
(2β − 2 p − α2 β) + ζ |W |

2 β − p

p
.

As 2 p = (3−2 α)β+2K, we have 2 β−2 p−α2 β = (−1+2α−α2)β−2 K = −(α−1)2 β−2 K <

0. Note that by observation (a), condition (H1’), and K ≥ ζ, we have q− p ≤ β + ζ ≤ β +K,

and hence p ≥ 1
2 β. We can conclude

2 R

p
− 2 c(W ) + ζ |W | ≤ 3 ζ |W |. As soon as K ≥ 9

2 ζ,

we have 3 ζ |W | ≤ 2
3 K |W |, which completes the proof of the claim. 2

22



Combining (4) and Claim 3.3, we obtain that for any K ≥ 9
2 ζ :

∑

e∈E(W )

ye =
∑

e∈E(W )

1

ae
≤

β |W |

3 β + 2K
+

2 K |W |

3 (3β + 2K)

=
β + 2

3 K

3 β + 2K
|W | = 1

3 |W |.

Since |W | ≥ 3 we have 1
3 |W | ≤ 1

2 (|W | − 1), which completes the proof of the lemma.

4 Proof of Theorem 1.5

Let β∗
S and ζ∗S be as given in Lemma 2.2, and take βS = β∗

S and γS =
⌈

1
4 (3 ζ∗S + 37)

⌉
. Next

take β ≥ β∗
S . Suppose the theorem is false, and let the graph G embeddable in S be a

counterexample with the minimum number of vertices, for some B ⊆ V . Similarly as in the

proof of Theorem 1.4, we can assume that G is connected and has a cellular embedding in S.

We will need the following simple lemma.

Lemma 4.1

For any positive integer ℓ and surface S, if the bipartite graph K3,ℓ can be embedded in S,

then ℓ ≤ 6 − 2 χ(S).

Proof Again, first assume that there is a cellular embedding of K3,ℓ in S with f faces. Then

by Euler’s Formula we obtain

χ(S) = v(K3,ℓ) − e(K3,ℓ) + f = (3 + ℓ) − 3 ℓ + f.

Since the graph K3,ℓ is bipartite, every face of this cellular embedding should contain an even

number of vertices, and so each face has degree at least 4. It follows that f ≤ 1
2 e(K3,ℓ) = 1

2 ·3 ℓ.

We obtain that

χ(S) ≤ (3 + ℓ) − 3 ℓ + 1
2 · 3 ℓ = 3 − 1

2 ℓ.

We infer that ℓ ≤ 6 − 2 χ(S), as required.

The case that there is no cellular embedding in S can be done exactly as in the beginning

of the proof of Theorem 1.4 and leads to ℓ < 6 − χ(S). 2

Suppose that G contains vertices u, v that are incident with a common face, and so that

d(u) + d(v) ≤ β. Construct a graph G1 by identifying u and v into a new vertex w, and

observe that G1 also has a cellular embedding in S. Set V1 = (V \ {u, v}) ∪ {w}, and notice

that G1 has strictly fewer vertices than G, and w has degree at most dG(u)+dG(v) ≤ β in G1.

In other words, w ∈ V β
1 . If v /∈ B, then set B1 = B; otherwise, set B1 = (B \ {u, v}) ∪ {w}.

Every (Bβ , B)-clique in G not containing u corresponds to a (Bβ
1 , B1)-clique in G1 of the

same size. Since G was chosen as the smallest counterexample to Theorem 1.5, this means

that every (Bβ , B)-clique in G of size larger than 3
2 β + γS must contain u. On the other

hand, any (Bβ , B)-clique in G containing u has size at most 1 + dβ(u).
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We can conclude that for all pairs of vertices u, v in G incident with a common face and

with d(u) + d(v) ≤ β, we have that u and v are in every (Bβ , B)-clique of size larger than
3
2 β + γS , and these vertices satisfy dβ(u), dβ(v) ≥ 3

2 β + γS .

Since β ≥ β∗
S , we can apply Lemma 2.2. We use the notation from the lemma. Because

of the observation above, conclusions (S1) and (S2) of that lemma are not possible. Hence

we know that G contains X, Y ⊆ V β satisfying (S3) from the lemma. We recall the crucial

properties :

(i) Every vertex y ∈ Y has degree at most four. Moreover, y is adjacent to exactly two

vertices of X and the other neighbours of y have degree at most four as well.

For y ∈ Y , let Xy be the set of its two neighbours in X. And for W ⊆ X, let Y W be the set

of vertices y ∈ Y with Xy ⊆ W ( that is, the set of vertices of Y having their two neighbours

from X in W ).

(ii) For all pairs of vertices y, z ∈ Y , if y and z are adjacent or have a common neighbour

w /∈ X, then Xy = Xz.

(iii) For all non-empty subsets W ⊆ X, we have the following inequality :

e(W, V \ Y ) ≤ e(W, Y \ Y W ) + ζ∗S |W |.

By (i), it follows that all vertices in Y are in every (Bβ , B)-clique of size larger than 3
2 β +γS .

Hence in particular :

(a) For every y ∈ Y we have dβ(y) ≥ 3
2 β + γS.

Also by the properties of the vertices in Y according to (i) and (ii) we have for all y ∈ Y and

Xy = {x1, x2} :

dβ(y) ≤ 4 + 2 · (4 − 1) + (d(x1) − 1) + (d(x2) − 1) − |Y {x1,x2} \ {y}|

= 9 + d(x1) + d(x2) − |Y {x1,x2}|

( the term |Y {x1,x2} \{y}| is subtracted, since these vertices are counted twice in (d(x1)−1)+

(d(x2) − 1) ). Since d(x1), d(x2) ≤ β, from observation (a) we can conclude that

(b) for every pair x1, x2 ∈ X we have |Y {x1,x2}| ≤ 1
2 β − γS + 9.

We also must have that all pairs of vertices from Y are adjacent or have a common

neighbour from Bβ . By (ii), this proves that for every two vertices y1, y2 ∈ Y we have

Xy1 ∩ Xy2 6= ∅. As a consequence, if X ′ denotes the set of vertices of X with at least one

neighbour in Y , and H denotes the graph with vertex set X ′ in which two vertices are adjacent

if they have a common neighbour in Y , then H is either a triangle or a star.

Case 1. H is a triangle or H is a star with at most two leaves.

First suppose H is a triangle. Let y ∈ Y with (X ′)y = {x1, x2}, where X ′ = {x1, x2, x3}.

Then Y = Y {x1,x2}∪Y {x1,x3}∪Y {x2,x3}, hence by observation (b), |Y | ≤ 3
2 β−3 γS +27. Since

all vertices in Y are in every (Bβ , B)-clique of size larger than 3
2 β + γS , we can estimate,

using (i) :

dβ(y) ≤ 2 · (4 − 1) + |X ′| + |Y | + e({x1, x2}, V \ (X ′ ∪ Y ))

≤ 3
2 β − 3 γS + 36 + e({x1, x2}, V \ (X ′ ∪ Y )).
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Since Y X′

= Y by definition of X ′, we have e(X ′, Y \Y X′

) = 0. So using the inequality in (iii)

with W = X ′ leads to

e({x1, x2}, V \ (X ′ ∪ Y )) ≤ e(X ′, V \ Y ) ≤ 3 γS .

These two estimates give dβ(y) ≤ 3
2 β + 3 ζ∗S + 36 − 3 γS , which contradicts observation (a),

since 4 γS ≥ 3 ζ∗S + 37.

If H is a star with at most two leaves, then similar arguments will give a contradiction.

Case 2. H is a star with at least three leaves.

We denote by x the vertex of X which corresponds to the centre of the star H. Let C

be a (Bβ , B)-clique of size larger than 3
2 β + γS . Take a vertex y ∈ Y , and consider the

set D of vertices of C that are distinct from y, from the neighbours of y, the neighbours of

y’s neighbours of degree at most four, and the neighbours of x. Since C is a (Bβ , B)-clique

containing Y , all the vertices of D are β-neighbours of every vertex of Y . Denote by x1, . . . , xk

the vertices of X corresponding to the leaves of the star H, and consider the graph obtained

from G by contracting the vertices of Y {x,xi} to xi, for every i = 1, . . . , k. By property (ii)

above, this graph contains Kk,|D|+1 as a minor. Since H has at least three leaves, so k ≥ 3,

and G is embeddable in S, by Lemma 4.1 we have |D| ≤ 5 − 2 χ(S). So, we can estimate

|C| ≤ 1 + 4 + 2 · (4 − 1) + (β − 1) + 5 − 2 χ(S) ≤ β + 15 − 2 χ(S).

This contradicts the definition of C, since β ≥ β∗
S guarantees 1

2 β > 15 − 2 χ(S).

Lemma 2.2 was proved with β∗
S = 1056 (3−χ(S)) and ζ∗S = 132 (3−χ(S)). Since the plane P

has χ(P ) = 2, following the proof above means we can obtain βP = 1056 and γP = 109 in

Theorem 1.5 for the planar case. But it is clear that these values are far from best possible.

Using more elaborate discharging arguments and more careful reasoning in the final parts of

the proof of Lemma 2.2 can give significantly smaller values. Since our first goal is to show

that we can obtain constant values for these results, we do not pursue this further.

5 Concluding Remarks and Discussion

5.1 About the Proof

The proof of our main theorem for major parts follows the same lines as the proof of Theo-

rem 1.8 in [10]. In particular, the proof of that theorem also starts with a structural lemma

comparable to Lemma 2.2, uses the structure of the graph to reduce the problem to edge-

colouring a specific multigraph, and then applies ( and extends ) Kahn’s approach to that

multigraph. Of course, a difference is that Theorem 1.8 only deals with list colouring the

square of a graph, but it is probably possible to generalise the whole proof to the case of list

(Bβ , B)-colouring. Nevertheless, there are some important differences in the proofs we feel

deserve highlighting.

Lemma 2.2 is stronger than the comparable [10, Lemma 3.3]. We obtain a set Y of vertices

with degree at most four and with a very specific structure of their neighbourhoods. This

structure allows us to construct a multigraph H so that a standard list edge-colouring of H

provides the information to colour the vertices in Y ( see Lemma 2.4 ). In the lemma in [10],
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the vertices in the comparable set Y are only guaranteed to have degree at most ∆1/4, and

knowledge about their neighbourhood is far sketchier. This means that the translation to list

edge-colouring of a multigraph is not so clean; apart from the normal condition in the list

edge-colouring of H ( that adjacent edges need different colours ), for each edge there may be

up to O(∆1/2) non-adjacent edges that also need to get a different colour. In particular this

means that in [10], Kahn’s result in Theorem 2.8 cannot be used directly. Instead, a new,

stronger, version has to be proved that can deal with a certain number of non-adjacent edges

that need to be coloured differently. Lemma 2.2 allows us to use Kahn’s Theorem directly.

A second aspect in which our Lemma 2.2 is stronger is that in the final condition (S3) (iii),

we have an ‘error term’ that is a constant times |W |. In [10] the comparable term is ∆9/10 |W |,

where ∆ is the maximum degree of the graph. This in itself already means that the approach

in [10] at best can give a bound of the type 3
2 ∆+o(∆). The fact that we cannot do better with

the stronger structural result is because of the limitations of Kahn’s Theorem, Theorem 2.8.

If it would be possible to replace the condition in that theorem by a condition of the form ‘the

vector ~x = (xe) with xe =
1

|L(e)| − K
for all e ∈ E(H) is an element of MP(H)’, where K is

some positive constant, the work in this paper would give an improvement for the bound in

Theorem 1.4 to 3
2 β +O(1). Note that our version of Lemma 2.9 is also already strong enough

to support that case.

Lemma 2.2 also allows us to prove a bound 3
2 β + O(1) for the (Bβ , B)-clique number in

Theorem 1.5. The important corollary that the square of a graph embeddable on a fixed sur-

face has clique number at most 3
2 ∆+O(1) would have been impossible without the improved

bound in the lemma.

Also Lemma 2.9 is stronger than its compatriot [10, Lemma 5.9]. The lemma in [10] only

deals with the case D(v) = β for all vertices v in H. Because of this, it can only be applied

to the case that all vertices in H have maximum degree ∆. Some non-trivial trickery then

has to be used to deal with the case that there are vertices in H of degree less than ∆. Apart

from that difference, the proof of Lemma 2.9 is completely different from the proof in [10].

We feel that our new proof is more natural and intuitive, giving a clear relation between

the lower bounds on the sizes of the lists and the upper bound of the sum of their inverses.

The proof in [10] is more ad-hoc, using some non-obvious distinction in a number of different

cases, depending on the size of W and the degrees of some vertices in W .

5.2 Further Work

We feel that our work is just the beginning of the study of general (A, B)-colouring. It should

be possible to obtain deeper results taking into account the structure of the two sets A and B,

and not just the degrees of the vertices. The following easy result is an example of this.

Theorem 5.1

Let G = (V, E) be a planar graph and A, B ⊆ V so that ∆(G; A, B) 6= 0. Suppose that

for every two distinct vertices in A we have that their distance in G is at least three. Then

ch(G; A, B) ≤ ∆(G; A, B) + 5.

Proof Since G is planar, there exists a ordering v1, . . . , vn of the vertices so that each vi has

at most five neighbours in {v1, . . . , vi−1}. We greedily colour the vertices v1, . . . , vn that are
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in B in that order. Note that each vertex has at most one neighbour from A.

When colouring the vertex vi, we need to take into account its neighbours in {v1, . . . , vi−1},

plus the neighbours in {v1, . . . , vi−1} of a vertex a ∈ A adjacent to vi (where that vertex a can

be in {v1+1, . . . , vn} ). By construction of the ordering, there are at most five neighbours of vi

in {v1, . . . , vi−1}. And a neighbour a ∈ A has at most max{ 0, dB(a) − 1 } ≤ ∆(G; A, B) − 1

neighbours in {v1, . . . , vi−1} different from vi. So the total number of forbidden colours when

colouring vi is at most ∆(G; A, B)+4. Since each vertex has ∆(G; A, B)+5 colours available,

the greedy algorithm will always find a free colour.

Note that saying that the vertices in A have distance at least three is the same as saying

that two different vertices in A have no common neighbour. We think that it is possible to

generalise our main theorem and the theorem above in the following way. For A, B ⊆ V , let

k(G; A, B) be the maximum of |NB(a1) ∩ NB(a2)| over all a1, a2 ∈ A, a1 6= a2.

Conjecture 5.2

Let S be a fixed surface. Then there exists a constant cS so that for all graphs G embeddable

on S, and A, B ⊆ V , we have

ch(G; A, B) ≤ ∆(G; A, B) + k(G; A, B) + cS .

This conjecture would fit with our current proof of Theorem 1.4, the main part of which

is a reduction of the original problem to a list edge-colouring problem. For this approach,

Shannon’s Theorem [29] that a multigraph with maximum degree ∆ has an edge-colouring

using at most
⌊

3
2 ∆(G)

⌋
colours, forms a natural base for the bounds conjectured in Conjec-

ture 1.1. If the relation between colouring the square of graphs embeddable on a fixed surface

and edge-colouring multigraphs holds in a stronger sense, then Conjecture 5.2 forms a logical

extension of Vizing’s Theorem [30] that a multigraph with maximum degree ∆ and maximum

edge-multiplicity µ has an edge-colouring with at most ∆ + µ colours.

In Borodin et al. [5], a weaker version of Conjecture 5.2 for cyclic colouring of plane graphs

was proved. Recall that if G is a plane graph, then ∆∗ is the maximum number of vertices in

a face. Let k∗ denote the maximum number of vertices that two faces of G have in common.

Theorem 5.3 (Borodin, Broersma, Glebov & van den Heuvel [5] )

For a plane graph G with ∆∗ ≥ 4 and k∗ ≥ 4 we have χ∗(G) ≤ ∆∗ + 3 k∗ + 2.

6 Kahn’s Work on List Edge-Colourings

As mentioned earlier, Theorem 2.8 is not explicitly stated in [17], but is implicit in the proof

of the main result of that paper. In this final section, we give an overview of how the theorem

can be obtained from the ideas in Kahn’s paper.

The main result in [17] is that the list chromatic index is asymptotically equal to the

fractional chromatic index of a multigraph :

Theorem 6.1 (Kahn [17] )

For all ε > 0, there exists a ∆ε so that for all ∆ ≥ ∆ε the following holds. If H is a multigraph

with maximum degree at most ∆, then

χ′
f (H) ≤ χ′(H) ≤ ch ′(H) ≤ (1 + ε)χ′

f (H).
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Here χ′(H) is the normal chromatic index ( or edge-chromatic number ) of H, χ′
f (H) is the

fractional chromatic index of H, and ch ′(H) is the list chromatic index of H. The cru-

cial step to relate this result to the matching polytope MP(H) is the following well-known

characterisation of the fractional chromatic index :

χ′
f (H) = min{ γ > 0 | the vector (xe)e∈E(H) with xe = γ−1 is in MP(H) }.

So Theorem 6.1 is just a special case of Theorem 2.8 if we set |L(e)| ≥
χ′

f (H)

1 − δ
for all edges e.

( The second condition of Theorem 2.8 is automatically satisfied in that case, since trivially

χ′
f (H) ≥ ∆(H). )

In order to prove Theorem 6.1, Kahn describes a randomised iterative procedure that

colours the edges of H in a number of stages. During this procedure, the lists of available

colours for each edge will change, and the lists will not be the same size for the uncoloured

edges. This is why, roughly speaking, Kahn’s actual proof deals with the more general case,

as described in Theorem 2.8.

In order to give the reader a better understanding of the background of Kahn’s approach,

we give an overview of the crucial elements in the following subsections.

6.1 Hardcore Distributions

Hardcore distributions are distributions that originally arose in Statistical Physics, and that

satisfy very natural conditions and generally provide strong independence properties allowing

good sampling from a given family. Given a family of subsets F of a given set E , a natural

way of picking at random an element of F ( or, in an other words, a probability distribution

on F ) is as follows.

Let us suppose that each element e of E has been assigned a positive weight λe > 0. Then

we pick each element M ∈ F with probability proportional to
∏

e∈M

λe. More precisely, the

probability PM of picking M ∈ F at random is given by

PM =

∏
e∈M

λe

∑
M ′∈F

∏
e∈M ′

λe
.

We define the vector ~x = (xe)e∈E by setting xe =
∑

M∈F , e∈M

PM . It is clear that xe is the prob-

ability that a given random element of F contains the element e. The probability distribution

{PM} is called a hardcore distribution with activities {λe} and marginals {xe}. The vector ~x

is called the marginal vector associated with the hardcore distribution {PM}.

Given a vector ~x, it is not always true that ~x is the marginal vector of some hardcore

distribution. Indeed if P(F) denotes the polytope defined by taking the convex hull of the

characteristic vectors of the elements of F1, then the marginal vector ~x of a hardcore distri-

bution is in P(F) :

~x =
∑

M∈F

PM 1M .

1Recall that the characteristic vector, 1M , of a given element M ∈ F is the |E|-dimensional vector (ye)e∈E

such that ye = 1 if e ∈ M and ye = 0 otherwise.
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This provides a necessary condition for a vector to be the marginal vector of a hardcore

distribution. It is not difficult to prove that the activities λe corresponding to ~x, if they exist,

are unique.

From now on, let H be a given multigraph. We recall that M(H) and MP(H) are the

family of matchings and the matching polytope of H, respectively. ( So M(H) will play the

role of the family F from above. And using the notation from above means MP(H) =

P(M(H)). )

We have the following theorem relating the matching polytope and hardcore distributions.

Theorem 6.2 ( Lee [20], Rabinovich et al. [26] )

For a given real number 0 < δ < 1, suppose ~x is a vector in (1 − δ)MP(H), for some

multigraph H. Then there exists a unique family of activities λe such that ~x is the marginal

vector of the hardcore distribution defined by the λ’s. The hardcore distribution {PM}M∈M(H)

is the unique distribution maximising the entropy function

H(QM ) = −
∑

M∈M(H)

QM log(QM )

among all the distributions {QM}M∈M(H) satisfying ~x =
∑

M∈M(H)

QM 1M .

Kahn and Kayll proved in [18] a family of results, resulting in a long-range independence

property for the hardcore distributions defined by a marginal vector ~x inside (1− δ)MP(H),

see [17]. We refer to the original papers of Kahn [16, 17] and Kahn and Kayll [18], and the

book by Molloy and Reed [23] for more on these issues. We settle here for citing the following

lemma.

Lemma 6.3 ( [18, Lemma 4.1] )

For every δ, 0 < δ < 1, there is a ρδ > 0 such that if {PM} is a hardcore distribution with

marginal vector ~x ∈ (1 − δ)MP(H), then for all u, v ∈ V (H) :

Pr(M does not touch u and v) > ρδ.

6.2 Hardcore Distributions and Edge-Colouring

We present here Kahn’s algorithm for list edge-colouring of multigraphs first introduced and

analysed in [17]. We continue to use the notations of the previous subsection. In particular,

we suppose that H is a multigraph and L a list assignment of colours to the edges of H

so that the conditions of Theorem 2.8 are satisfied. By Lemma 6.2 there exists a hardcore

distribution {PM} with marginals {|L(e)|−1}e∈E(H) which in addition satisfies the property

of Lemma 6.3. Let {λe} be the activities on the edges (which are unique by Theorem 6.2 )

corresponding to this distribution. An extra condition is indeed true : for every subgraph H∗

of H it is possible to find a hardcore distribution {P ∗
M} with corresponding marginals |L(e)|−1

for e ∈ E(H∗). The corresponding activities λ∗
e will in general be different from the λe’s.

The algorithm works as follows : Let L =
⋃

e∈E(H)

L(e) be the union of the colours in the

lists. For each colour α, let us define the colour graph Hα to be the graph containing all
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the edges whose lists contain the colour α. And denote by {λα,e} the activities producing

the hardcore distribution with marginals |L(e)|−1 for e ∈ E(Hα). The colouring procedure

consists in a finite number of iterations of a procedure that we may call naive colouring. At

step i of the iteration, we are left with subgraphs H i
α containing some uncoloured edges whose

lists contain the colour α. Of course we have H i
α ⊆ H i−1

α ⊆ · · · ⊆ H0
α = Hα.

The naive colouring procedure at step i + 1 consists of the following sub-steps.

(a) For each colour α ∈ L, choose independently of the other colours a random matching

M i+1
α ⊆ E(H i

α). The distribution of the matchings is the hardcore distribution defined

by the activities λα,e on the edges e ∈ E(H i
α).

(b) If an edge e is in one or more of the M i+1
α ’s, then choose one of the colours from those,

chosen uniformly at random, and colour e with that colour.

(c) For each colour α, form H i+1
α by removing from H i

α all the edges that received some

colour at this stage, and all vertices that are incident to one of the edges coloured with α.

(While removing a vertex, all the edges incident to it are of course removed as well. )

Note that the process above can also be described in terms of subgraphs H i of the original

multigraph H, where the edges of H i are the edges that are still uncoloured after step i, and

each edge e in H i has a list of colours Li(e) formed by all colours α for which e ∈ E(H i
α).

Also note that the activities λα,e remain unchanged all through the process ( but the edge

sets on which they are applied change ).

A sufficient number of iterations of the naive colouring procedure results in a graph HI ,

consisting of all the uncoloured edges at this step, such that HI has maximum degree T , for

some integer T , and that the list sizes are at least 2 T ( i.e., each uncoloured edge is in at

least 2 T of the HI
α’s ). Remember that the conditions of Theorem 2.8 imply that the lists

are quite large at the beginning. At this stage it is easy to finish the procedure by a simple

greedy algorithm.

The heart of the analysis of the above algorithm in Kahn’s approach is the following strong

lemma, the proof of which can be found in [17].

Lemma 6.4 (Kahn [17, Lemma 3.1] )

For each K > 0 and 0 < η < 1, there are constants 0 < ξK,η ≤ η and ∆K,η such that the

following holds for all ∆ ≥ ∆K,η. Let H be a multigraph with lists L(e) of colours for each

edge e. For each colour α, define the colour graph Hα as above. Finally, for each colour α we

are given a hardcore distribution with activities {λα,e}e∈E(Hα) and marginals {xα,e}e∈E(Hα).

Suppose the following conditions are satisfied :

• for every vertex v : dH(v) ≤ ∆;

• for every colour α and edge e ∈ E(Hα) : λα,e ≤
K

∆
; and

• for every edge e : 1 − ξK,η ≤
∑

α∈L(e)

xα,e ≤ 1 + ξK,η.

Then with positive probability the naive colouring procedure described above gives matchings

Mα ⊆ E(Hα) for all colours α, so that if we set H∗ = H −
⋃

α′ Mα′, H∗
α = Hα − V (Mα) −⋃

α′ Mα′, and form lists L∗(e) for all edges e ∈ E(H∗) by removing no longer allowed colours

from L(e), we have :
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• for every vertex v : dH∗(v) ≤
1 + η

1 + ξK,η
e−1 ∆; 2 and

• for every edge e in H∗ : 1 − η ≤
∑

α∈L∗(e)

x∗
α,e ≤ 1 + η.

Here {x∗
α,e}e∈E(H∗

α) are the marginals associated to λα,e in H∗
α.

In other words, the lemma guarantees that after one iteration of the naive colouring proce-

dure, with positive probability the multigraph formed by the uncoloured edges has maximum

degrees bounded by
1 + η

1 + ξK,η
e−1 ∆, while the sum of the marginal probabilities x∗

α,e for every

edge e will be close to 1.

In the next subsection we will combine all the strands and use the lemma above to conclude

the proof of Theorem 2.8.

6.3 Completing the Proof of Theorem 2.8 — after Kahn

Let 0 < δ < 1 and µ > 0. Then we should prove the existence of a ∆δ,µ such that for ∆ ≥ ∆δ,µ

the following holds. Let H be a multigraph and L a list assignment of colours to the edges

of H so that

• for every vertex v : dH(v) ≤ ∆;

• for all edges e ∈ E(H) : |L(e)| ≥ µ∆;

• the vector ~x = (xe) with xe =
1

|L(e)|
for all e ∈ E(H) is an element of (1 − δ)MP(H).

Then there should exist a proper edge-colouring of H, where each edge receives a colour from

its own list.

For each colour α, define the colour graph Hα as in the previous subsection. For each

colour α and edge e, set xα,e = xe =
1

|L(e)|
, and let {λα,e}e∈E(Hα) be the activities associated

with the marginals xα,e on Hα.

Since for every edge e we have
∑

α∈L(e)

xα,e =
∑

α∈L(e)

|L(e)|−1 = 1, we certainly know that

• for every edge e and ξ > 0 : 1 − ξ ≤
∑

α∈L(e)

xα,e ≤ 1 + ξ.

We next bound the activities λα,e, using Lemma 6.3. First observe that for all α the vector

(xα,e)e∈E(Hα) is in (1− δ)MP(Hα). So by Lemma 6.3 there is a constant ρδ such that if Mα

is chosen according to the hardcore distribution with marginals {xα,e} on Hα, then for all

u, v ∈ E(Hα) we have Pr(Mα does not touch u and v) > ρδ. Let e = uv be an edge of Hα.

Then we have

xα,e = Pr(Mα contains e) = λα,e · Pr(Mα does not touch u and v) > λα,e · ρδ.

Given the fact that xα,e =
1

|L(e)|
and |L(e)| ≥ µ∆, and setting Kδ,µ =

1

ρδ µ
, we infer that

λα,e <
xα,e

ρδ
≤

1

ρδ µ∆
=

Kδ,µ

∆
. We have show that there exists a Kδ,µ > 0 so that

2To avoid confusion between an edge ‘e’ and the base of the natural logarithms 2.718. . . , we will use the

roman letter ‘e’ for the latter one.
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• for every colour α and edge e ∈ E(Hα) : λα,e ≤
Kδ,µ

∆
.

Suppose we repeat the naive colouring procedure from the previous subsection s = sKδ,µ
times

(where sKδ,µ
is a fixed constant to be made more precise later ). Let H i be the subgraph of H

formed by the edges that are as yet uncoloured at step i, and for each e ∈ E(H i) let Li(e) be

the list of colours from L(e) that are still allowed for e at that stage.

Set ηs = 1−e−1 and recursively for i = s−1, . . . , 1, set ηi = ξKδ,µ,ηi+1 , where ξKδ,µ,ηi+1 is the

function given by Lemma 6.4. Let ∆δ,µ = max
i=1,...,s

∆Kδ,µ,ηi
(∆Kδ,µ,ηi

according to Lemma 6.4

again ), and η0 = 0. By applying Lemma 6.4 and the observations above, we can ensure

inductively, starting from i = 0, that for ∆ ≥ ∆µ,δ the following conditions are satisfied for

all i = 0, . . . , s, with positive probability :

• for all vertices v : dHi(v) ≤ Ti, where T0 = ∆ and Ti =
1 + ηi

1 + ηi−1
e−1 Ti−1 for i ≥ 1; and

• for all edges e ∈ E(H i) : 1 − ηi ≤
∑

α∈Li(e)

xi
α,e ≤ 1 + ηi, where {xi

α,e}e∈E(Hi) are the

marginals associated to the hardcore distribution with activities λα,e in H i
α.

It follows that with positive probability after s steps we have

• for all vertices v : dHs(v) ≤ (2 − e−1) e−s ∆; and

• for all edges e ∈ E(Hs) : e−1 ≤
∑

α∈Ls(e)

xs
α,e ≤ 2 − e−1.

We note that for an edge e = uv,

xs
α,e = λα,e · Pr(M s

α does not touch u and v) ≤ λα,e,

which implies that xs
α,e ≤ λα,e ≤

Kδ,µ

∆
. We infer that for all e ∈ E(Hs),

|Ls(e)| = |{α | e ∈ E(Hs
α) }| ≥

∆

e Kδ,µ
.

Let T =
∆

2 e Kδ,µ
. It is now clear that if we choose s so that 2 e−s ≤

1

2 e Kδ,µ
( i.e., set

s = sKδ,µ
≥ ln(4Kδ,µ) + 1 ), we can ensure with positive probability that

dHs(v) ≤ T for all v ∈ V (Hs), and |Ls(e)| ≥ 2 T for each e ∈ E(Hs).

Hence we can apply a greedy algorithm to Hs to extend the colouring obtained by the naive

colouring procedure so far to a colouring of the whole graph.
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