
Threshold networks for pattern classification

Martin Anthony
Department of Mathematics

London School of Economics and Political Science
London WC2A 2AE, UK
m.anthony@lse.ac.uk

CDAM Research Report Series, LSE-CDAM-2008-22, November 2008

Abstract

This paper describes a method of constructing one-hidden layer feedforward linear thresh-
old networks to represent Boolean functions (or partially-defined Boolean functions). The
first step in the construction is sequential linear separation, a technique that has been used
by a number of researchers [7, 11, 2]. Next, from a suitable sequence of linear separations,
a threshold network is formed. The method described here results in a threshold network
with one hidden layer. We compare this approach to the standard approach based on a
Boolean function’s disjunctive normal form and to other approaches based on sequential
linear separation [7, 11].

1 Introduction

It is well known that any Boolean function can be represented by a feedforward linear threshold
network with one hidden layer. The simplest way to see this is via the disjunctive normal form
representation of the function (see later). Here, we discuss an alternative way of representing
Boolean functions (or partially-defined Boolean functions, by which we mean restrictions Boolean
functions to a specified domain). This alternative approach arises from considering a fairly
natural way of classifying points by iterative or sequential linear separation.

The problem considered, to be more precise, is the following. Given disjoint subsets T and F of
{0, 1}n, for some natural number n, we want to produce a feedforward linear threshold network

1

whose output is 1 if its input is in T , and whose output is 0 if its output is in F . We refer to
the pair (T, F) as a partially-defined Boolean function (pdBf), and if T ∪ F = {0, 1}n, then the
partially-defined Boolean function is simply a Boolean function (since its value is defined for
all elements of {0, 1}n). The set T is called the set of true points, or those labelled 1; and the
set F is the set of false points, labelled with 0. We focus on two-class classification problems
in the Boolean domain, but much of what we say can be generalised to deal with multi-class
classification, or classification on more general domains (such as the whole of Rn) [2].

We start by describing what we call the ‘standard’ approach, which is based on a disjunctive
normal form representation of the Boolean function (or of a Boolean function that is consistent
with a partially-defined Boolean function). Then we describe an approach in which we first find
a threshold decision list that represents the pdBf (T, F) and, from this threshold decision list,
produces a threshold network. We compare our method with other approaches. The threshold
networks we produce have a single hidden layer of units, as do those resulting from the standard
approach, but we show that there can be some advantages in the method we discuss here. Some
previous work [7, 11] also involved sequential linear separation, but resulted in networks with
a different structure, in which there were many single-unit hidden layers, with connectivity
between them.

2 Simple threshold networks representing Boolean functions:
the standard approach

There is a very straightforward way in which to represent partially-defined Boolean functions
by threshold networks having one hidden layer of units. This is based on the existence, for each
Boolean function, of a disjunctive normal form for the function. We first briefly review key ideas
on threshold networks and Boolean functions.

Threshold functions and threshold networks

A function t : {0, 1}n → {0, 1} is a (Boolean) threshold function if there are w ∈ Rn and θ ∈ R
such that

t(x) =
{

1 if 〈w, x〉 ≥ θ
0 if 〈w, x〉 < θ,

where 〈w, x〉 is the standard inner product of w and x. Thus, t(x) = sgn(〈w, x〉 − θ), where
sgn(z) = 1 if z ≥ 0 and sgn(z) = 0 if z < 0. Given such w and θ, we say that t is represented

2

by [w, θ] and we write t ← [w, θ]. The vector w is known as the weight vector, and θ is known
as the threshold.

A threshold network is formed when combine together threshold units, each of which computes a
threshold function. More precisely, we have a directed graph, at each vertex of which is a ‘unit’,
and with the arcs of the digraph representing the flows of signals between units. Some of the
units are termed input units: these receive signals not from other units, but have their signals
applied from outside. In our case, there will be n input units, each of which receives 0 or 1 as an
input. In this situation, the set of all input patterns, or just ‘inputs’, is {0, 1}n. Units that do
not transmit signals to other units are termed output units. We will be interested in networks
with one output unit. The network is said to be a feed-forward network if the underlying directed
graph is acyclic (that is, it has no directed cycles). This feed-forward condition means that the
units (both the input units and the threshold units) can be labeled with integers in such a way
that if there is a connection from the unit labeled i to the unit labeled j then i < j. In any
feed-forward network, the units may be grouped into layers, labeled 0, 1, 2, . . . , `, in such a way
that the input units form layer 0, these feed into the threshold units, and if there is a connection
from a threshold unit in layer r to a threshold unit in layer s, then we must have s > r. Note, in
particular, that there are no connections between any two units in a given layer. The ‘top’ layer
consists of output units. The layers that are not inputs or outputs are called hidden layers.

We will be primarily interested in linear threshold networks having just one hidden layer, and
it is useful to give an explicit description in this case of the functionality of the network. Such
a network will consist of n inputs and some number, k, of threshold units in a single hidden
layer, together with one output threshold unit. Each threshold unit computes a threshold
function of the n inputs. The (binary-valued) outputs of these hidden nodes are then used
as the inputs to the output node, which calculates a threshold function of these. Thus, the
threshold network computes a threshold function of the outputs of the k threshold functions
computed by the hidden nodes. If the threshold function computed by the output node is
described by weight vector β ∈ Rk and threshold φ, and the threshold function computed by
hidden node i is fi ← [w(i), θ(i)], then the threshold network as a whole computes the function
f : {0, 1}n → {0, 1} given by

f(y) = 1⇐⇒
k∑

i=1

βifi(y) ≥ φ;

that is,

f(y1y2 . . . yn) = sgn

 k∑
i=1

βi sgn

 n∑
j=1

w
(i)
j yj − θ(i)

− φ
 ,

where sgn(x) = 1 if x ≥ 0 and sgn(x) = 0 if x < 0. The state of the network is the (concatenated)

3

vector
ω = (w(1), θ(1), w(2), θ(2), . . . , w(k), θ(k), β, φ) ∈ Rnk+2k+1.

A fixed network architecture of this type (that is, fixing n and k), computes a parameterised set
of functions {fω : ω ∈ Rnk+2k+1}. In state ω, the network computes the function fω : {0, 1}n →
{0, 1}.

Boolean functions and DNF representations

Any Boolean function can be expressed by a disjunctive normal formula (or DNF), using literals
u1, u2, . . . , un, ū1, . . . , ūn, where the ūi are known as negated literals. A disjunctive normal
formula is one of the form

T1 ∨ T2 ∨ · · · ∨ Tk,

where each Tl is a term of the form

Tl =

(∧
i∈P

ui

)∧∧
j∈N

ūj

 ,

for some disjoint subsets P,N of {1, 2, . . . , n}.

Given a disjunctive normal form for a Boolean function, there may be a number of ways of
simplifying it. For two Boolean functions f and g, we write f ≤ g if f(x) ≤ g(x) for all x; that
is, if f(x) = 1 implies g(x) = 1. Similarly, for two Boolean formulae φ, ψ, we shall write φ ≤ ψ
if, when f and g are the functions represented by φ and ψ, then f ≤ g. A term T of a DNF is
said to absorb another term T ′ if T ′ ≤ T . For example, T = ū1u4 absorbs the term T ′ = ū1u3u4.
That is, whenever T ′ is true, so is T . This means, for example, that the formula

ū1u4 ∨ u1u2ū3 ∨ ū1u3u4

is equivalent to ū1u4 ∨ u1u2ū3. A term T is an implicant of f if T ≤ f ; in other words, if T
true implies f true. The terms in any DNF representation of a function f are implicants of
f . The most important type of implicants are the prime implicants. These are implicants with
the additional property that there is no other implicant of f absorbing T . Thus, a term is a
prime implicant of f if it is an implicant, and the deletion of any literal from T results in a
non-implicant T ′ of f (meaning that there is some x such that T ′(x) = 1 but f(x) = 0). If
we form the disjunction of all prime implicants of f , we have a particularly important DNF
representation of f .

4

From DNF to threshold network

Suppose that (T, F) is a partially-defined Boolean function and that the Boolean function f is
some ‘extension’ of (T, F), meaning that f(x) = 1 for x ∈ T and f(x) = 0 for x ∈ F . Let
φ be a DNF formula for f . Suppose φ = T1 ∨ T2 ∨ · · · ∨ Tk, where each Ti is a term of the
form Ti =

(∧
j∈Pi

uj

)∧(∧
j∈Ni

ūj

)
, for some disjoint subsets Pi, Ni of {1, 2, . . . , n}. We form

a network with k hidden units, one corresponding to each term of the DNF. Labelling these
threshold units 1, 2, . . . , k, we set the weight vector w(i) from the inputs to hidden threshold
unit i to correspond directly to Ti, in the sense that w(i)

j = 1 if j ∈ Pi, w
(i)
j = −1 if j ∈ Ni, and

w
(i)
j = 0 otherwise. We take the threshold θ(i) on hidden unit i to be |Pi|. We set the weight

on the connection between each hidden threshold unit and the output unit to be 1, and the
threshold on the output unit to be 1/2. That is, we set β to be the all-1 vector of dimension k,
and set the threshold φ to be 1/2. It is clear that hidden threshold unit i outputs 1 on input
x precisely when x satisfies the term Ti, and that the output unit computes the ‘or’ of all the
outputs of the hidden units. Thus, the output of the network is the disjunction of the terms Ti,
and hence equals f .

Note that this does not describe a unique threshold network representing the pdBf (T, F), for
there may be many choices of extension function f and, given f , there may be many possible
choices of DNF for f . In the case in which T ∪F = {0, 1}n, so that the function is fully defined,
we could, for the sake of definiteness, use the particular DNF formula described above, the
disjunction of all ‘prime implicants’.

In general, a simple counting argument establishes that, whatever method is being used to
represent Boolean functions by threshold networks, for most Boolean functions a high number
of units will be required in the resulting network. Explicitly, suppose we have an n-input
threshold network with one output and one hidden layer comprising k threshold units. Then,
since the number of threshold functions is at most 2n2

(see [1, 3], for instance), the network
computes no more than (2n2

)k+1 different Boolean functions, this being an upper bound on
the number of possible mappings from the input set {0, 1}n to the vector of outputs of all the
k + 1 threshold units. This bound, 2n2(k+1) is, for any fixed k, a tiny proportion of all the 22n

Boolean functions and, to be comparable, we need k = Ω(2n/n2). (This is a very quick and easy
observation. For more detailed bounds on the sizes of threshold networks required to compute
general and specific Boolean functions, see [10], for instance.)

It is easy to give an explicit example of a function for which this standard method produces an
exponentially large threshold network. The parity function f on {0, 1}n is given by f(x) = 1
if and only if x has an odd number of ones. It is well known that any DNF formula φ for f

5

must have 2n−1 terms. To see this, note first that each term of φ must have degree n. For,
suppose some term Ti contained fewer than n literals, and that neither uj nor ūj were present
in Ti. Then there are x, y ∈ {0, 1}n which are true points of Ti, but which differ only in position
j. Then, since Ti is a term in the DNF representation of the parity function f , we would have
f(x) = f(y) = 1. But this cannot be: one of x, y will have an odd number of entries equal to
1, and one will have an even number of such entries. It follows that each term must contain
n literals, in which case each term has only one true point, and so we must have 2n−1 distinct
terms, one for each true point. It follows that the resulting network has 2n−1 threshold units in
the hidden layer.

3 Decision lists and threshold decision lists

We now present a different approach to the problem of finding a threshold network representation
of a partially-defined Boolean function. To explain this, we first discuss decision lists and
threshold decision lists.

Decision lists

We start by describing decision lists, introduced by Rivest [9]. Suppose that G is any set of
Boolean functions. A function f : {0, 1}n → {0, 1} is said to be a decision list based on G if
for some positive integer r, there are functions f1, f2, . . . , fr ∈ G and bits c1, c2, . . . , cr ∈ {0, 1}
such that f acts as follows. Given an example y, we first evaluate f1(y). If f1(y) = 1, we assign
the value c1 to f(y); if not, we evaluate f2(y), and if f2(y) = 1 we set f(y) = c2, otherwise
we evaluate f3(y), and so on. If y fails to satisfy any fi then f(y) is given the default value 0.
The evaluation of a decision list f can therefore be thought of as a sequence of ‘if then else’
commands, as follows:

if f1(y) = 1 then set f(y) = c1
else if f2(y) = 1 then set f(y) = c2

. . .

. . .
else if fr(y) = 1 then set f(y) = cr

else set f(y) = 0.

6

We define DL(G), the class of decision lists based on G, to be the set of finite sequences

f = (f1, c1), (f2, c2), . . . , (fr, cr)

such that fi ∈ G, ci ∈ {0, 1} for 1 ≤ i ≤ r. The values of f are defined by f(y) = cj where
j = min{i : fi(y) = 1}, or 0 if there are no j such that fj(y) = 1. We call each fj a test (or,
following Krause [6], a query) and the pair (fj , cj) is called a term of the decision list.

Threshold functions and threshold decision lists

We now consider the class of decision lists in which the tests are threshold functions. We shall
call such decision lists threshold decision lists, but they have also been called neural decision
lists [7] and linear decision lists [13]. Formally, a threshold decision list

f = (f1, c1), (f2, c2), . . . , (fr, cr)

has each fi : Rn → {0, 1} of the form fi(x) = sgn(〈wi, x〉 − θi) for some wi ∈ Rn and θi ∈ R.
The value of f on y ∈ Rn is f(y) = cj if j = min{i : fi(y) = 1} exists, or 0 otherwise (that is, if
there are no j such that fj(y) = 1).

A geometrical interpretation: iterative linear separation

Threshold decision lists are, in fact, quite a natural way in which to classify points, and a useful
geometrical motivation can be given. Suppose we are given a partially-defined Boolean function
(T, F). We can use a hyperplane to separate off a set of points all having the same classification
label (that is, all of which are from T , or all of which are from F). At least one point can
always be separated off in this way. For, given any x ∈ {0, 1}n, x and {0, 1}n \ {x} are linearly
separable. To see this, we can suppose, without any loss of generality, that x is the origin.
Then the hyperplane with equation

∑n
i=1 xi = 1/2 achieves the required separation. (Note

that this argument is contingent on the geometry of {0, 1}n. For more general subsets of Rn,
some additional properties, such as general position, would need to hold to make the argument
work.) The points that have been ‘chopped off’ can then be removed from consideration and
the procedure iterated until no points remain. In general, we would hope to be able to separate
off more than one point at each stage, but the argument given above establishes that, at each
stage, at least one point can indeed be ‘chopped off’, so since the set of points is finite, the
procedure does indeed terminate.

7

We may regard the chopping procedure as a means of constructing a threshold decision list
consistent with the data set. If, at stage i of the procedure, the hyperplane with equation∑n

i=1 αiyi = θ chops off points all having label j, with these points in the half-space with
equation

∑n
i=1 αiyi ≥ θ, then we take as the ith term of the threshold decision list the pair

(fi, j), where fi ← [α, θ]. Therefore, given any partially-defined Boolean function (T, F), there
will always be some threshold decision list representing the pdBf.

A related approach

This sequential linear separation, or ‘chopping’, procedure is similar to one employed by Jeroslow [5],
but at each stage in his procedure, only examples from T may be ‘chopped off’ (and one cannot
choose instead to chop off a subset of points from F).

Note that if the ‘chopping’ method of constructing a threshold decision list is applied to the
sequence of hyperplanes resulting from the Jeroslow method, a restricted form of decision list
results, namely one in which all terms are of the form (fi, 1). But such a decision list is quite
simply the disjunction f1 ∨ f2 ∨ · · · . For Boolean functions, the problem of decomposing a
function into the disjunction of threshold functions has been given substantial consideration by
Hammer et al. [4] and Zuev and Lipkin [14]. Hammer et al. defined the threshold number of a
Boolean function to be the minimum s such that f is a disjunction of s threshold functions, and
they showed that there is an increasing function with threshold number

(
n

n/2

)
/n. (A function

is increasing if, when f(x) = 1 and xi = 0, then f(x + ei) = 1 too, where ei is the unit basis
vector with ith entry equal to 1 and all other entries equal to 0.) Zuev and Lipkin showed that
almost all increasing functions have this order of threshold number, and that almost all Boolean
functions have a threshold number that is Ω(2n/2) and O(2n lnn/n).

We give an example for illustration, which demonstrates the advantages to be gained by the
threshold decision list approach over the Jeroslow approach.

Example: Consider again the parity function f on {0, 1}n, given by f(x) = 1 if and only if x has
an odd number of ones. We first find a hyperplane such that all points on one side of the plane
are either positive or negative. It is clear that all we can do at this first stage is chop off one of
the points since the nearest neighbours of any given point have the opposite classification. Let
us suppose that we decide to chop off the origin. We may take as the first hyperplane the plane
with equation y1 + y2 + · · · + yn = 1/2. We then ignore the origin and consider the remaining
points. We can next chop off all neighbours of the origin, all the points which have precisely one
entry equal to 1. All of these are positive points and the hyperplane y1 +y2 + · · ·+yn = 3/2 will
separate them from the other points. These points are then deleted from consideration. We can

8

continue in this way. The procedure iterates n times, and at stage i in the procedure we ‘chop off’
all data points having precisely (i−1) ones, by using the hyperplane y1 +y2 + · · ·+yn = i−1/2,
for example. (These hyperplanes are in fact all parallel, but this is not in general possible.) So
we can represent the parity function by a threshold decision list with n terms. By contrast,
Jeroslow’s method requires 2n−1 iterations, since at each stage it can only ‘chop off’ one positive
point: that is, it produces a disjunction of threshold functions (or a special type of threshold
decision list) with an exponential number of terms.

Algorithmics

The chopping procedure as we have described it is in some ways merely a device to help us see
that threshold decision lists have a fairly natural geometric interpretation. But the algorithmic
practicalities have been investigated by Marchand et al. [7, 8] and Tajine and Elizondo [11].
Marchand et al. derive a greedy heuristic for constructing a sequence of ‘chops’, where the aim
is to separate as large a set (all of the same class) as possible at each stage. This relies on an
incremental heuristic for the NP-hard problem of finding at each stage a hyperplane that chops
off as many remaining points as possible. Tajine and Elizondo consider batch and incremental
and modular algorithms and also focus on greedy strategies.

4 Threshold networks from threshold decision lists

From a threshold decision list to a threshold network with one hidden layer

We now show how we can make use of the chopping procedure to find a threshold network
representing a given Boolean function by giving an explicit way in which a threshold decision
list can be represented by a threshold network with one hidden layer.

Theorem 4.1 Suppose we have a threshold decision list

f = (f1, c1), (f2, c2), . . . , (fk, ck)

in which fi is represented by weight vector w(i) and threshold θ(i), so that fi ← [w(i), θ(i)].
Consider a threshold network architecture having n inputs, k threshold units in a single hidden
layer, and one output. Let ω be the state given as follows:

ω = (w(1), θ(1), w(2), θ(2), . . . , w(k), θ(k), β, 1),

9

where
β = (2k−1(2c1 − 1), 2k−2(2c2 − 1), . . . , 2(2ck−1 − 1), (2ck − 1));

that is, βi = 2k−i(2ci − 1). Then fω, the function computed by the network in state ω, equals f .

Proof: We prove the result by induction on k, the length of the decision list (and number of
hidden threshold units in the network).

The base case is k = 1. Since the default output of any decision list is 0, we may assume that f
takes the form f = (f1, 1) where f1 ← [w, θ] for some w ∈ Rn and θ ∈ R. Then, β is the single
number 21−1(2c1 − 1) = 1 and φ = 1. So

fω(y1y2 . . . yn) = sgn

sgn

 n∑
j=1

w
(i)
j yj − θ(i)

− 1

 = sgn

 n∑
j=1

w
(i)
j yj − θ(i)

 = f1(y1y2 . . . yn),

so fω = f1 = f .

Now suppose that the result is true for threshold decision lists of length k, where k ≥ 1. Consider
a threshold decision list

f = (f1, c1), (f2, c2), . . . , (fk, ck), (fk+1, ck+1).

Let g denote the threshold decision list

g = (f2, c2), . . . , (fk, ck), (fk+1, ck+1).

Then, the inductive assumption implies that, for all y,

g(y) = sgn

(
k∑

i=1

2k−i(2ci+1 − 1)fi+1(y)− 1

)
= sgn(G(y))),

say. What we need to prove is that for all y,

f(y) = sgn(F (y)),

where

F (y) =
k+1∑
i=1

2k+1−i(2ci − 1)fi(y)− 1.

10

Now,

F (y) = 2k(2c1 − 1)f1(y) +
k+1∑
i=2

2k+1−i(2ci − 1)fi(y)− 1

= 2k(2c1 − 1)f1(y) +
k∑

i=1

2k−i(2ci+1 − 1)fi+1(y)− 1

= 2k(2c1 − 1)f1(y) +G(y).

Now, suppose f1(y) = 0. In this case, by the way in which decision lists are defined to operate,
we should have f(y) = g(y). This is indeed the case, since

sgn(F (y)) = sgn(2k(2c1 − 1)f1(y) +G(y)) = sgn(0 +G(y)) = sgn(G(y)) = g(y).

Suppose now that f1(y) = 1. In this case we have f(y) = c1 and so we need to verify that
sgn(F (y)) = c1. We have

(2c1 − 1)F (y) = 2k(2c1 − 1)2f1(y) + (2c1 − 1)G(y)

= 2k + (2c1 − 1)
k∑

i=1

2k−i(2ci+1 − 1)fi+1(y)− 1

≥ 2k −
k∑

i=1

2k−i − 1

= 2k − (2k − 1)− 1
= 0.

That is, (2c1 − 1)F (y) ≥ 0, so sgn(F (y)) = sgn(2c1 − 1) = c1. This completes the proof.

Using other types of threshold network

Marchand et al. [7, 8] and Tajine and Elizondo [11] have also studied the construction of threshold
networks through a consideration of how the points to be classified can be separated iteratively
by hyperplanes. However, the threshold networks arising in [7] and (from the batch algorithm)
in [11], have different architectures to those constructed above, in that there are connections
between hidden units (making the networks have more than one layer). By contrast, like the
standard representation based on DNF, our construction gives a network with only one hidden
layer. A characteristic feature of decision lists which must be captured by the corresponding

11

threshold networks is the ‘if-then-else’ nature of their definition: there is a precedence or hierarchy
among the tests. The first test is conducted and, if passed, the output is determined. Only if
the first test is failed, do we move on to the next test. In the construction of Theorem 4.1, the
precedence structure is encoded into the network by the exponentially-decreasing weights in the
β-vector: the output if the first hidden unit is weighted twice as much as that of the second,
and so on. In [7, 11], the precedence structure is built in with lateral connections between
hidden units. For instance, in [7], the network constructed has a ‘cascade’ structure: the hidden
threshold units are labelled 1 to k and there are connections between unit i and unit j for all
j < i. The weights on these connections are large enough to enable the output of unit i to
dominate (or inhibit) that of unit j.

5 Comparison with an approach based on disjunctive normal
form

Comparing the DNF-based approach and the threshold decision list approach

The parity function demonstrates that the representation arising from Theorem 4.1 can dif-
fer considerably from the one described earlier. For, we have seen that the parity function
can be represented by a threshold decision list with n terms, and hence the network given by
Thoerem 4.1 has only n hidden units. By contrast, as noted earlier, the standard DNF-based
construction will, necessarily, have at least 2n−1 hidden units.

A useful observation in comparing the two approaches is the following: if T is any term of a
DNF formula, then T can be represented by a threshold function. This is quite easy to see and,
indeed, is implicit in our description of the standard construction of a network from a DNF.
For, suppose that

T =

∧
j∈P

uj

∧∧
j∈N

ūj

 ,

where P ∩ N = ∅. Then T ← [w, |P |] where wj = 1 if j ∈ P , wj = −1 if j ∈ N , and wj = 0
otherwise. So if φ = T1 ∨ T2 ∨ · · · ∨ Tk is a DNF representation of the function f , then f is also
represented by the threshold decision list

(T1, 1), (T2, 1), . . . , (Tk, 1).

Applying Theorem 4.1 now to this threshold decision list would give a threshold network rep-
resenting f . That network would have exactly the same structure as the one obtained by using

12

the standard DNF-based method, using DNF formula φ. (However, the weights from the hid-
den layer to the output would be different, with exponentially decreasing, rather than constant,
values.) What this demonstrates is that, in particular, there is always a threshold decision list
representation whose length is no more than that of any given DNF representation of the func-
tion. There may, as in the case of parity, be a significantly shorter threshold decision list. So
the decision list approach (and application of Theorem 4.1) will, for any function (or partially-
defined function), in the best case, give a network that is no larger than that obtained by the
standard method.

6 Conclusions

We have shown that a natural approach to data classification by successive linear separation can
be used to construct threshold networks of simple architecture to represent Boolean or partially-
defined Boolean functions. Such an approach differs from previous constructions which have
also been based on iterative linear separation, in that the networks constructed have only one
hidden layer. Furthermore, it can always produce a network that is no larger than that which
follows from the standard translation from a Boolean function’s disjunctive normal form into a
threshold network.

References

[1] Martin Anthony. Discrete Mathematics of Neural Networks: Selected Topics. Society for
Industrial and Applied Mathematics, Philadeplhia, 2001.

[2] Martin Anthony. On data classification by iterative linear partitioning. Discrete Applied
Mathematics, 144 (1-2), 2004: 2-16.

[3] T. M. Cover. Geometrical and Statistical Properties of Systems of Linear Inequalities with
Applications in Pattern Recognition. IEEE Trans. on Electronic Computers, EC-14, 1965:
326–334.

[4] P. L Hammer, T. Ibaraki and U. N. Peled. Threshold numbers and threshold completions.
Annals of Discrete Mathematics 11, 1981: 125–145.

[5] R.G. Jeroslow. On defining sets of vertices of the hypercube by linear inequalities. Discrete
Mathematics, 11, 1975: 119–124.

13

[6] Matthias Krause. On the Computational Power of Boolean Decision Lists. In Proceedings
of the 19th Annual Symposium of Theoretical Aspects of Computer Science (STACS),
2002, Springer Lecture Notes in Computer Science, LNCS 2285 372–383, Springer, New
York.

[7] Mario Marchand and Mostefa Golea. On Learning Simple Neural Concepts: from Halfspace
Intersections to Neural Decision Lists, Network: Computation in Neural Systems, vol. 4,
1993: 67–85.

[8] M. Marchand, M. Golea and P. Ruján. A convergence theorem for sequential learning in
two-layer perceptrons. Europhys. Lett. 11, 1990, 487.

[9] Ronald R. Rivest. Learning Decision Lists. Machine Learning 2 (3), 1987: 229–246.

[10] K-Y Siu, V. Rowchowdhury and T. Kalaith. Discrete Neural Computation: A Theoretical
Foundation. Prenctice Hall, 1995.

[11] M. Tajine and D. Elizondo. Growing methods for constructing Recursive Deterministic
Perceptron neural networks and knowledge extraction. Artificial Intelligence 102, 1998:
295-322.

[12] M. Tajine and D. Elizondo. The recursive deterministic perceptron neural network. Neural
Networks 11, 1998: 1571-1588.

[13] György Turán and Farrokh Vatan. Linear decision lists and partitioning algorithms for
the construction of neural networks. Foundations of Computational Mathematics: selected
papers of a conference held at Rio de Janeiro, Springer 1997: 414-423

[14] A. Zuev and L. I. Lipkin. Estimating the efficiency of threshold representations of Boolean
functions. Cybernetics 24, 1988: 713–723. (Translated from Kibernetika (Kiev), 6, 1988:
29–37.)

14

