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Abstract

Denote by R(L, L, L) the minimum integer N such that any 3-coloring of the
edges of the complete graph on N vertices contains a monochromatic copy of a
graph L. Bondy and Erdős conjectured that when L is the cycle Cn on n vertices,
R(Cn, Cn, Cn) = 4n − 3 for every odd n > 3.  Luczak proved that if n is odd, then
R(Cn, Cn, Cn) = 4n + o(n), as n → ∞, and Kohayakawa, Simonovits and Skokan
confirmed the Bondy-Erdős conjecture for all sufficiently large values of n.

Figaj and  Luczak determined an asymptotic result for the ‘complementary’ case
where the cycles are even: they showed that for even n, we have R(Cn, Cn, Cn) =
2n + o(n), as n → ∞. In this paper, we prove that there exists n1 such that for
every even n ≥ n1, R(Cn, Cn, Cn) = 2n.
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1. Introduction

For graphs L1, . . . , Lk, the Ramsey number R(L1, . . . , Lk) is the minimum integer N
such that for any edge-coloring of KN , the complete graph on N vertices, by k colors,
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and by FAPESP (Proj. Temático–ProNEx Proc. FAPESP 03/09925–5 and Proc. FAPESP
04/15397–4).



there exists a color i for which the corresponding color class contains Li as a subgraph.
Bondy and Erdős [4] conjectured that if n > 3 is odd and L1, L2, L3 are Cn, the cycle
on n vertices, then

R(Cn, Cn, Cn) = 4n − 3. (1)

 Luczak [11] showed that if n is odd, then R(Cn, Cn, Cn) = 4n + o(n), as n → ∞,
and Kohayakawa, Simonovits and Skokan [9] proved that there exists an n0 such that
(1) holds for every n odd with n > n0.

The case when n is even differs from the case when n is odd. Figaj and  Luczak [6] proved
that for α1, α2, α3 > 0,

R(C2⌊α1n⌋, C2⌊α2n⌋, C2⌊α3n⌋) = (α1 + α2 + α3 + max{α1, α2, α3} + o(1))n,

as n → ∞. In particular, for n even, we have

R(Cn, Cn, Cn) = 2n + o(n), as n → ∞.

For the path Pn on n vertices this implies that

R(Pn, Pn, Pn) = 2n + o(n), as n → ∞.

Slightly later, independently, Gyárfás, Ruszinkó, Sárközy, and Szemerédi [7] proved a
similar but more precise result for paths: there exists an n0 such that for n > n0,

R(Pn, Pn, Pn) =











2n − 1, n odd

2n − 2, n even.

In this paper we prove the following theorem.

Theorem 1 There exists an integer n1 such that for every even n > n1,

R(Cn, Cn, Cn) = 2n.

Our proof generally follows the proof-line of Gyárfás et al. [7] in which we strengthen
some of their lemmas and introduce new ones in order to find monochromatic cycles
instead of just paths.

2. Notation

Our notation is standard. For graphs, the first subscripts indicate the number of vertices,
e.g., Gn is always a graph of n vertices. Cn is the cycle with n vertices and Pn is the
path with n vertices. The length of a path is a number of its edges and, if x is its first
vertex and x′ is its last vetex, then we call it an (x, x′)-path. Given a set X of vertices
of a graph G, G[X] denotes the subgraph induced by the edges with both ends in X
and G \ X denotes the subgraph obtained by deleting the vertices of X and the edges
incident to the deleted vertices.

Given two disjoint non-empty sets of vertices X and Y , E(X,Y ) denotes the set of all
the edges with one end in X and the other one in Y . We also set e(X,Y ) = |E(X,Y )|
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and

d(X,Y ) =
e(X,Y )

|X||Y |
.

We denote the bipartite subgraph of G with bipartition X ∪Y and the edge set E(X,Y )
by G[X,Y ] and K(X,Y ) stands for the complete bipartite graph with bipartition X∪Y .

Whenever we speak about colorings, we mean edge-colorings. Mostly we use three col-
ors, red, blue and green, and the subgraphs induced by the edges of a given color are
indicated by superscripts: GR is the red subgraph of G. However, the corresponding
graph theoretical parameters, such as the number of edges or degrees, will be indicated
by subscripts: eR(X,Y ) denotes the number of red edges joining X to Y in an edge-
colored graph. If an edge xy of G is red, we say that y is a red neighbor of x (and
vice-versa). For a vertex x, N(x) denotes the set of all vertices adjacent to x and we set
deg(x, Y ) := |N(x) ∩ Y | (the degree of x to Y ) and degR(x, Y ) := |NR(x) ∩ Y | (the red
degree of x to Y ).

A graph Gn is called γ-dense if it has at least γ
(

n
2

)

edges. A bipartite graph with partite
sets of size k and ℓ is γ-dense if it contains at least γkl edges.

A matching in a graph G is a set of pairwise vertex-disjoint edges. A connected matching
is a matching M such that all the edges of M are in the same component of G.

3. Extremal colorings and Stability

Below we give a coloring that shows the lower bound (that is, R(Cn, Cn, Cn) > 2n − 1)
in Theorem 1.

Coloring 1 (ECMAX (n)) Let n ≥ 4 be even and let A∪B∪C ∪D∪K be a partition
of the vertices of K2n−1 such that |A| = |B| = |C| = |D| = n/2 − 1 and |K| = 3 (recall
that n is even). Let K = {r, g, b}. Color the edges inside A,B,C,D arbitrarily, the edges
in E(A,B) ∪ E(C,D) by red, the edges in E(A,D) ∪ E(B,C) by green, and the edges
in E(A,C) ∪E(B,D) by blue. Now color the edges from r to A∪B ∪C ∪D by red and
the edges from g to A ∪ B ∪ C ∪ D ∪ {r} by green. Finally, color all the edges incident
to b by blue.

A B

C D

r g b
red

green

blue

Fig. 1. Coloring of K2n−1 with no Cn

Lemma 2 For all n ≥ 4 even, R(Cn, Cn, Cn) > 2n − 1.
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PROOF. We must show that any n ≥ 4 even, coloring ECMAX (n) does not contain
any monochromatic Cn. Let GB, GR, GG be the color classes of ECMAX (n). It is clear
that GR

1 := GR \ {r, g, b}, GB
1 := GB \ {r, g, b} GG

1 := GG \ {r, g, b} do not contain any
monochromatic Cn because each of their components has order n− 2 < n. Since r is the
only vertex that is adjacent (in GR) to the both components of GR

1 , there is no red Cn

in GR. Similarly, there are no monochromatic Cn in GB or GG. 2

To prove the upper bound in Theorem 1, i.e., R(Cn, Cn, Cn) ≤ 2n, we will need to
look at another three types of colorings. It will be also convenient to consider multi-3-
colorings instead of 3-colorings. In a multi-3-coloring of a graph G, some of its edges
can be assigned more than one color. We say that an edge is C-exclusive (or exclusive
in color C) for C ∈ {(R)ed, (G)reen, (B)lue} if it is assigned color C only. We denote
by GC∗

the subgraph induced by the C-exclusive edges. Now we define the 3 types of
colorings:

Coloring 2 (EC1(α, δ) type)
A (multi-3-)coloring of a graph G is of type EC1(α, δ), where 0 ≤ α, δ < 1, if there exists
a partition A ∪ B ∪ C ∪ D of V (G) such that

(a) |A|, |B|, |C|, |D| ≥ (1 − α) |V (G)|
4

;
(b) The bipartite graphs GR∗

[A,B], GR∗

[C,D], GG∗

[A,D], GG∗

[B,C], GB∗

[A,C] and GB∗

[B,D]
are (1 − δ)-dense.

Coloring 3 (EC2(α, δ) type)
A (multi-3-)coloring of a graph G is of type EC2(α, δ), where 0 ≤ α, δ < 1, if there exists
a partition A ∪ B ∪ C ∪ D of V (G) such that

(a) |A|, |B|, |C|, |D| ≥ (1 − α) |V (G)|
4

;
(b) The bipartite graphs GR∗

[A,B], GG∗

[A∪B,C] and GB∗

[A∪B,D] are (1−δ)-dense.

Coloring 4 (EC3(µ, c1, c2, δ) type)
A (multi-3-)coloring of a graph G is of type EC3(µ, c1, c2, δ), where 0 ≤ µ, c1, c2, δ < 1,
if there exists a partition A ∪ B ∪ C ∪ D of V (G) such that

(a) |A|, |B|, |C| ≥ (1 − c1µ) |V (G)|
4

, |D| ≥ µ |V (G)|
4

;

(b) |A| ≥ max{|B|, |C|, |D|} + µ |V (G)|
4

, |A ∪ D| ≤ (1 + c2µ) |V (G)|
2

;
(c) The bipartite graphs GR∗

[A,B], GR∗

[C,D], GG∗

[A,D], GG∗

[B,C], GB∗

[A,C] and
GB∗

[B,D] are (1 − δ)-dense.

EC3

A B

CD

EC2

A B

CD

EC1

A B

CD

red
green

blue

Fig. 2. Three different types of colorings

We distinguish the case δ = 0 by giving the above colorings special names.
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Definition 3 We say that a coloring is EC1(α)-complete if it is of the type EC1(α, 0),
that is, if the monochromatic bipartite graphs involved in the definition of EC1 are com-
plete. We define EC2(α)-complete and EC3(µ, c1, c2)-complete colorings in a similar way.

The main tool to prove the upper bound in Theorem 1 is the following variant of the
stability theorem proved in [7], [8].

Theorem 4 Given α1 > 0 and µ1 > 0, there exist positive reals η4, ǫ4 and µ4, µ4 < µ1,
such that for all ǫ < ǫ4 there exists a positive integer n4 such that the following holds:

If n ≥ n4 and a (1−ǫ)-dense graph Gn is 3-multi-colored, then one of the following cases
occurs:

Case 1: Gn contains a monochromatic connected matching of size at least (1
4

+ η4)n;
Case 2: the coloring is of type EC1(α1/2, α1/2);
Case 3: the coloring is of type EC2(α1/2, α1/2);
Case 4: the coloring is of type EC3(µ4, 0.7, 0.2, ε1/3).

The proof of Theorem 4 is essentially the same as in [7] and it can be found in [1]. In
order to deal with Cases 2–4, we will need the following lemmas whose proofs appear in
Sections 7 and 8.

Lemma 5 There exists α5 > 0 such that, for all α ≤ α5 and all δ ≤ α, there exists a
positive integer n5 with the following property: For every even n ≥ n5, every 3-coloring
of K2n of type EC1(α, δ) contains a monochromatic Cn.

Lemma 6 There exists α6 > 0 such that, for all α ≤ α6 and all δ ≤ α, there exists a
positive integer n6 with the following property: For every even n ≥ n6, every 3-coloring
of K2n of type EC2(α, δ) has a monochromatic Cn.

Lemma 7 There is an integer µ7 > 0 such that, for all µ ≤ µ7, c1 < 1 and c2 < 0.5,
there exist n7 = n7(µ, c1, c2) and δ7 = δ7(µ, c1, c2) such that the following holds: For every
even n ≥ n7 and 0 < δ ≤ δ7, every 3-coloring of K2n of type EC3(µ, c1, c2, δ) contains a
monochromatic Cn.

The remainder of this paper is organized as follows: we present Szemerédi’s regularity
lemma in the next section. The proof of Theorem 1 is given in Section 5, and Sections
7 and 8 contain the proofs of the above three lemmas.

4. Regularity Lemma for graphs

Szemerédi’s regularity lemma [12] asserts that each graph of positive edge-density can
be approximated by the union of a bounded number of random-like bipartite graphs.
Before it can be stated formally, the concept of ε-regular pairs needs to be defined.

Definition 8 Let G = (V,E) be a graph and let 0 < ε ≤ 1. We say that a pair (A,B)
of two disjoint subsets of V is ε-regular (with respect to G) if

|d(A′, B′) − d(A,B)| < ε

holds for any two subsets A′ ⊂ A, B′ ⊂ B with |A′| > ε|A|, |B′| > ε|B|.

This definition states that a regular pair has uniformly distributed edges. In the next
section, we will make a use of the following properties of regular pairs.
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Fact 9 Let G be a bipartite graph with bipartition V (G) = V1 ∪ V2 such that the pair
(V1, V2) is ε-regular with density d := d(V1, V2). Then all but at most ε|V1| vertices v ∈ V1

satisfy deg(v) ≥ (d − ε)|V2|.

The next lemma about regular pairs is a slightly stronger version of Claim 3 in [11]. The
version in [11] is the case where β = 1. Both statements have the same proof that we
omit here.

Lemma 10 For every 0 < β < 1 there exists an n10 such that for every n > n10 the
following holds: Let G be a bipartite graph with bipartition V (G) = V1 ∪ V2 such that
|V1|, |V2| ≥ n. Furthermore let the pair (V1, V2) be ε-regular with density at least β/4 for
some ε satisfying 0 < ε < β/100. Then for every ℓ, 1 ≤ ℓ ≤ n − 5εn/β, and for every
pair of vertices v′ ∈ V1, v′′ ∈ V2 satisfying deg(v′), deg(v′′) ≥ βn/5, G contains a path
of length 2ℓ + 1 connecting v′ and v′′.

The regularity lemma of Szemerédi [12] enables us to partition the vertex set V (G) of
a graph G into t + 1 sets V0 ∪ V1 ∪ . . . ∪ Vt in such a way that almost all the pairs
(Vi, Vj) satisfy Definition 8. Its precise statement, extended to more than one graph, is
as follows.

Theorem 11 For every ε > 0 and s,m ∈ N there exist integers N11 = N11(ε, s,m)
and M11 = M11(ε, s,m) such that: for all graphs G1, . . . , Gs with the same vertex set V ,
|V | ≥ N11, there is a partition of V into t + 1 sets

V = V0 ∪ V1 ∪ . . . ∪ Vt

such that

(a) m ≤ t ≤ M11,
(b) |V0| ≤ εn, |V1| = . . . = |Vt|, and

(c) all but at most ε
(

t
2

)

pairs (Vi, Vj), 1 ≤ i < j ≤ t, are ε-regular with respect to each
Gk, 1 ≤ k ≤ s.

Remark 12 The original regularity lemma refers to the case s = 1. The proof is (basi-
cally) the same for an arbitrary but fixed number s of graphs. This version is used, for
example, in [5], and formulated in the survey [10].

5. Proof of Theorem 1

We give first a brief overview of the proof. We start the proof by defining a number of
parameters in order to be able to apply a sequence of lemmas later. At this point (see
(3)), we will also choose n1 (that is, the absolute constant from Theorem 1).

Next, we consider a 3-coloring (GR, GG, GB) of the complete graph K2n, where n is
even and n > n1. We apply the regularity lemma (Theorem 11) with carefully chosen ε
(see (2)) to GR, GG, GB and obtain a partition V0 ∪ V1 ∪ · · · ∪ Vt of V (K2n) satisfying
conditions (a)-(c) in Theorem 11. Using this partition we define the so-called reduced
graph H and also an appropriate multi-3-coloring of its edges: The vertex set of H is
{1, . . . , t}, we have an edge between i and j if and only if (Vi, Vj) is an ǫ-regular pair with
respect to GR, GG and GB, and an edge ij is is colored by red (blue, green, respectively)
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if GR[Vi, Vj] (GB[Vi, Vj], GG[Vi, Vj], respectively) has the edge density at least ε1/3/4.

Then, we apply Theorem 4 to H, which will lead us to one of four cases: either H has
a monochromatic connected matching of a certain size or its multi-3-coloring is of type
EC1 or EC2 or EC3. In the first case, we use the monochromatic matching in H to find
a copy of Cn of the same color in K2n by applying Lemma 10. In other three cases, we
prove that the original coloring of K2n must be of the same type as the coloring of H.
Then we apply Lemma 5, Lemma 6 or Lemma 7 to find a monochromatic Cn in K2n.

PROOF. We have already proved the lower bound in Lemma 2. Let us prove the upper
bound. Set α1 := min{α5, α6, 1/20} so that, in particular, we can use α1 as an input
for Lemmas 5 and 6 and obtain n5 = n5(α1, α1) and n6 = n6(α1, α1). Passing α1 and
µ1 := µ7 (the absolute constant from Lemma 7) as parameters to Theorem 4, we obtain
ǫ4, η4 and µ4 < µ7. Let

η := η4.

Now, inputting µ := 0.99µ4, c1 := 0.8, c2 := 0.3 into Lemma 7, we obtain n7 and δ7. We
define

ε :=
1

2
min

{

ε4,
δ3
7

8
,

1

106
,

α3
1

1000
,

µ4

100

}

. (2)

This choice particularly means that ε < ε4, 2ε1/3 < δ7 and ε < 0.001ε1/3, all of which
we will use later. For this ε, Lemma 4 yields n4 and Lemma 10 applied with β = ε1/3

gives n10. Now we may chose m = max{n4, 1/ε} and, from Theorem 11, we obtain
N11 = N11(ε, 3,m) and M11 = M11(ε, 3,m). Finally, define

n1 = max

{

n5, n6, n7, N11, 4M11n10,
M2

11

ε

}

. (3)

Consider any 3-coloring (GR, GG, GB) of K2n with n even and n > n1. We apply the
regularity lemma with parameters ǫ, m and s := 3 to GR, GG, GB. Let V := V (K2n) =
V0 ∪ V1 ∪ . . . ∪ Vt be the partition guaranteed by this lemma, thus satisfying

(a) m ≤ t ≤ M11,
(b) |V0| ≤ ε(2n), |V1| = . . . = |Vt|, and

(c) all but at most ε
(

t
2

)

pairs (Vi, Vj), 1 ≤ i < j ≤ t, are ε-regular with respect to each

GR, GG, GB.

Now we define the reduced graph H in the following way: the vertex set of H is {1, . . . , t}
and we have an edge between i and j if and only if (Vi, Vj) is an ǫ-regular pair with respect
to GR, GG and GB. Notice that by (c),

e(H) ≥ (1 − ǫ)

(

t

2

)

,

that is, H is (1 − ε)-dense.

We define a 3-multi-coloring (HR, HG, HB) of H in the following way: for c ∈ {R,B,G},

we put the edge ij into Hc if ec(Vi, Vj) ≥ ε1/3

3
|Vi||Vj|. Since t ≥ m ≥ n4, we can apply

Theorem 4 to H and distinguish four cases.
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Case 1 There is a monochromatic connected matching M of size t1 ≥ (1/4 + η)t in H.
Without loss of generality assume that M is red and let aibi, 0 ≤ i < t1, be all the edges
of M .

Now, we will use standard regularity arguments to built a (red) cycle of length n in GR.
First, let F be any minimal connected red subgraph of H containing M . Clearly, F is a
tree. Consider a closed minimal walk W = i1i2 . . . iℓi1 that contains all the edges of F .
Since F is a tree, W must be of even length and ℓ ≤ 2t.

Using Fact 9 repeatedly, we find an even red cycle C̃ = vi1vi2 . . . viℓ such that vij ∈ Vij

and vij has at least ε1/3

4
|Vij−1

| red neighbors in Vij−1
and at least ε1/3

4
|Vij+1

| red neighbors
in Vij+1

for all j = 1, . . . , ℓ. (We set Vi0 := Viℓ and Viℓ+1
:= Vi1 .)

Then, for each edge akbk of M , we choose a natural number ℓk satisfying

1 ≤ ℓk ≤
(

1 −
5ε

ε1/3

)

min{|Vak
| − 2t, |Vbk

| − 2t}

in such a way that
t1−1
∑

k=0

2ℓk = n − ℓ.

This is possible because n − ℓ is even, n > n − ℓ ≥ n − 2t ≥ 2t ≥ 2t1, and
t1−1
∑

k=0
2ℓk can

attain any even value between 2t1 and

t1−1
∑

i=0

2
(

1 −
5ε

ε1/3

)

min{|Vak
| − 2t, |Vbk

| − 2t} ≥ 2t1

(

1 −
5ε

ε1/3

)

(

(1 − ε)2n

t
− 2t

)

≥
(

1

2
+ 2η

)

t(1 − 5ε2/3)
(1 − 2ε)2n

t
≥ (1 + 3η)n.

Finally, we set V ′
ak

= (Vak
\ C̃) ∪ {vak

}, V ′
bk

= (Vbk
\ C̃) ∪ {vbk

} and notice that

|V ′
ak
| ≥ |Vak

| − |C̃| ≥ |Vak
| − 2t ≥

(1 − ε)2n

t
− 2t ≥

(1 − 2ε)2n

t

≥
|Vak

|

2
≥

(1 − ε)2n

2M11

> n10

and, similarly,

|V ′
bk
| ≥

|Vbk
|

2
> n10.

Hence, GR[V ′
ak

, V ′
bk

] is (2ε)-regular with density at least ε1/3

4
− ε > ε1/3

5
and we can apply

Lemma 10 to GR[V ′
ak

, V ′
bk

]. Since

1 ≤ ℓk ≤
(

1 −
5ε

ε1/3

)

min{|Vak
| − 2t, |Vbk

| − 2t} ≤
(

1 −
5ε

ε1/3

)

min{|V ′
ak
|, |V ′

bk
|},

there exists a path Pak,bk
of length 2ℓk + 1 that starts at vak

, ends at vbk
, and consists

only of edges in GR[V ′
ak

, V ′
bk

]. In C̃, we replace each edge vak
vbk

by the path Pak,bk
. This
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yields a red cycle of length ℓ − t1 +
t1−1
∑

k=0
(2ℓk + 1) = n.

Case 2 (HR, HG, HB) is a coloring of type EC1(α1/2, α1/2). We will show that this
implies that (GR, GG, GB) is of type EC1(α1, α1). Let A ∪ B ∪ C ∪ D be a partition
of V (H) satisfying conditions (a) and (b) of EC1(α1/2, α1/2), and consider partition
(f(A) ∪ V0) ∪ f(B) ∪ f(C) ∪ f(D) of V , where f(X) :=

⋃

i∈X Vi.

First note that

|f(A) ∪ V0| ≥ |A|
(1 − ǫ)(2n)

t
≥
(

1 −
α1

2

)

t

4

(1 − ǫ)(2n)

t
≥ (1 − α1)

2n

4
.

Similarly, we obtain that |f(B)|, |f(C)|, |f(D)| ≥ (1−α1)2n/4 as well. Hence, condition
(a) of EC1(α1, α1) holds.

Next we show that condition (b) in EC1(α1, α1) is also true for this partition (f(A) ∪
V0) ∪ f(B) ∪ f(C) ∪ f(D) of V and the original 3-coloring (GR, GG, GB) of K2n. Note
that since there are no multicolored edges in K2n, we have GR∗

= GR, GB∗

= GB and
GG∗

= GG. We first estimate the number of edges between f(A)∪ V0 and f(B) that are
not in GR∗

= GR.

For every i ∈ A, j ∈ B such that ij 6∈ HR∗

, the number of edges in K(Vi, Vj)∩(GG∪GB)
is bounded by |Vi||Vj|. On the other hand, for each edge ij ∈ HR∗

we have that ij 6∈ HG∪
HB, thus, by the definition of HG and HB, the number of edges in K(Vi, Vj)∩(GG∪GB)

is bounded by 2
(

ε1/3

4
|Vi||Vj|

)

. We have no information about the edges from V0 to f(B),

so we can only estimate the number of these edges by |V0||f(B)|. Hence,

|K(f(A) ∪ V0, f(B)) ∩ (GG ∪ GB)| ≤
∑

i∈A,j∈B

ij 6∈HR∗

|Vi||Vj| +
∑

i∈A,j∈B

ij∈HR∗

2
ε1/3

4
|Vi||Vj|

+|V0||f(B)|.

We estimate all three terms on the right-hand side. There are at most α1

2
|A||B| pairs

i ∈ A, j ∈ B such that ij 6∈ HR∗

. We also know that |V1| = · · · = |Vt| = (2n − |V0|)/t.
Hence,

∑

i∈A,j∈B

ij 6∈HR∗

|Vi||Vj| ≤
α1

2
|A||B|

(

2n − |V0|

t

)2

=
α1

2

∑

i∈A,j∈B

|Vi||Vj| =
α1

2
|f(A)||f(B)|.

Since ε1/3 < α1/100, |V0| ≤ ε(2n) and |f(A) ∪ V0| ≥ (1 − α1)
2n
4

, we have

∑

i∈A,j∈B

ij∈HR∗

2
ε1/3

4
|Vi||Vj| ≤

ε1/3

2

∑

i∈A,j∈B

|Vi||Vj| ≤
α1

4
|f(A)||f(B)|

9



and

|V0||f(B)| ≤ ε(2n)|f(B)| ≤ 5ε(1 − α1)
2n

4
|f(B)| ≤

α1

4
|f(A ∪ V0)||f(B)|.

Consequently,

|K(f(A) ∪ V0, f(B)) ∩ (GG ∪ GB)| ≤ α1|f(A) ∪ V0||f(B)|

and K(f(A) ∪ V0, f(B)) ∩ GR∗

is (1 − α1)-dense.

In the same way, one proves that the bipartite graphs GR∗

[f(C), f(D)], GG∗

[f(A) ∪
V0, f(D)], GG∗

[f(B), f(C)], GB∗

[f(A) ∪ V0, f(C)] and GB∗

[f(B), f(D)] are all (1 − α1)-
dense. We omit the technical details here.

So, the given 3-coloring of K2n is of type EC1(α1, α1), n > n5 and α1 < α5. We use
Lemma 5 to conclude that there is a monochromatic Cn in K2n.

Case 3 (HR, HG, HB) is of type EC2(α1/2, α1/2). Similarly to Case 2, one can show
that (GR, GG, GB) is of type EC2(α1, α1). Since n > n6 and α1 < α6, we use Lemma 6
and find the monochromatic Cn in K2n. We omit technical details.

Case 4 (HR, HG, HB) is of type EC3(µ4, 0.7, 0.2, ε1/3). We claim that in this case,
(GR, GG, GB) is of type EC3(0.99µ4, 0.8, 0.3, 2ε1/3).

Indeed, let A ∪ B ∪ C ∪ D be a partition of V (H) such that conditions (a)-(c) of
EC3(µ4, 0.7, 0.2, ε1/3) hold and consider partition (f(A)∪V0)∪ f(B)∪ f(C)∪ f(D) of
V , where f(X) :=

⋃

i∈X Vi. Clearly,

|f(D)| ≥ |D|
(1 − ǫ)(2n)

t
≥ µ4

t

4

(1 − ǫ)(2n)

t
≥ (1 − ǫ)µ4

2n

4
≥ 0.99µ4

2n

4
.

Furthermore,

|f(A) ∪ V0|, |f(B)|, |f(C)| ≥ (1 − 0.7µ4)
t

4

(1 − ǫ)(2n)

t
≥ (1 − 0.8(0.99µ4))

2n

4
,

hence, condition (a) of EC3(0.99µ4, 0.8, 0.3, 2ε1/3) is true. Also notice that if |A| − |B| ≥
µ4

t
4
, then

|f(A)| − |f(B)| ≥ µ4
t

4

(1 − ε)(2n)

t
= (1 − ε)µ4

2n

4
≥ 0.99µ4

2n

4
,

and the same holds if we replace B with C or D. It follows that

|f(A) ∪ V0| ≥ |f(A)| ≥ max{|f(B)|, |f(C)|, |f(D)|} + 0.99µ4
2n

4
.

Finally, since ε ≤ µ4/100, we get

|f(A) ∪ V0 ∪ D| ≤ (1 + 0.2µ4)
t

2

2n

t
+ ε(2n) ≤ (1 + 0.3(0.99µ4))

2n

2
.

Thus, condition (b) of EC3(0.99µ4, 0.8, 0.3, 2ε1/3) holds as well. Condition (c) can be
verified in a similar way as in Case 2.
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To finish this case, we use Lemma 7 with µ = 0.99µ4 and δ = 2ε1/3 to find the monochro-
matic Cn in K2n. The assumptions of this lemma are satisfied because 0.99µ4 < µ4 < µ7,
2ε1/3 < δ7(0.99µ4, 0.8, 0.3) and n ≥ n7. 2

6. Paths and cycles in (bipartite) graphs

In our proof of Lemmas 5 and 7, we will need the following well-known facts.

Theorem 13 ([3]) Suppose that Hn is a graph with minimum degree bigger than n/2.
Then Hn contains the cycle Ck for each k = 3, . . . , n.

Lemma 14 ([2], page 107) Let Hn be a graph containing no Pk+1, k ≥ 1. Then
e(Hn) ≤ (k − 1)n/2. Furthermore, if e(Hn) = (k − 1)n/2, then Hn is the disjoint union
of cliques Kk.

The next 3 lemmas are from [1] and their proofs are based on greedy (embedding)
algorithm.

Lemma 15 (Lemma 5.7 in [1]) Let 0 ≤ β < 1/4 and let H be a bipartite graph with
bipartition X ∪ Y , |X|, |Y | ≥ 4, such that for every x ∈ X, deg(x, Y ) ≥ (1 − β)|Y | and
for every y ∈ Y , deg(y,X) ≥ (1 − β)|X|. Then

(a) for any two vertices x, x′ ∈ X there exists an (x, x′)-path of length 2ℓ for every
1 ≤ ℓ ≤ min{|X|, (1 − 2β)|Y |}; the analogous statement, obtained by exchanging
the two vertex classes, also holds.

(b) for any two vertices x ∈ X, y ∈ Y there exists an (x, y)-path of length 2ℓ + 1 for
every odd 1 ≤ ℓ ≤ (1 − 2β) min{|X|, |Y |}.

Lemma 16 (Lemma 5.8 in [1]) Let 0 ≤ β < 1/3 and let H be a bipartite graph with
bipartition X̃ ∪ Ỹ where, |X̃| = |Ỹ |. Suppose that X ′ ∪X is a partition of X̃ and Y ′ ∪Y
is a partition of Ỹ such that

(a) |X ′| ≤ β|X̃|, |Y ′| ≤ β|Ỹ |;
(b) H[X,Y ] is the complete bipartite graph;
(c) there is an ordering x1, . . . , xk of X ′ such that deg(xi, Y ) ≥ 2i for all 1 ≤ i ≤ k;
(d) there is an ordering y1, . . . , yℓ of Y ′ such that deg(yi, X) ≥ 2i for all 1 ≤ i ≤ ℓ.

Then H is Hamiltonian.

Lemma 17 (Lemma 5.9 in [1]) Let 0 ≤ β < 1/4, n, t ∈ N, let H be a graph, and
let X̃, Ỹ be two disjoint subsets of V (H) satisfying |X̃| = n/2 + t and |Ỹ | = n/2 − t.
Suppose that H[X̃] contains a path P := P2t+1, X ′ ∪ X is a partition of X̃ and Y ′ ∪ Y
is a partition of Ỹ such that

(a) |X ′| ≤ β(n/2 − t), |Y ′| ≤ β(n/2 − t);
(b) H[X,Y ] is the complete bipartite graph;
(c) there is an ordering x1, . . . , xk of X ′ such that deg(xi, Y ) ≥ 2i for all 1 ≤ i ≤ k;
(d) there is an ordering y1, . . . , yℓ of Y ′ such that deg(yi, X \ V (P )) ≥ 2i for all 1 ≤

i ≤ ℓ.

Then H[X̃ ∪ Ỹ ] contains Cn.

Remark 18 If, in the last two lemmas, we assume that deg(x, Y ) ≥ 2β|X̃| ≥ 2|X ′| for
every x ∈ X ′, then any ordering of the vertices of X ′ satisfies condition (c). Similarly,
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if deg(y,X) ≥ 2|Y ′| for every y ∈ Y ′, then any ordering of the vertices of Y ′ satisfies
condition (d).

7. Proof of Lemmas 5 and 7

Since colorings EC1(α, δ) and EC3(µ, c1, c2, δ) are quite similar, it turns out we can prove
both lemmas simultaneously. The proof is rather long due to the fact that we need to
distinguish several sub-cases.

PROOF. We set
α5 = µ7 := 10−12

and, in Lemma 7, for µ ≤ µ7, define

δ7 = min







(

µ

25

)2

,
(1 − c1)

3µ3

106
,

(

(0.5 − c2)µ

100

)2






.

For δ ≤ α ≤ α5, we put
n5 = ⌈δ−12⌉

and, for δ ≤ δ7, we put
n7 = ⌈δ−12⌉.

Consider any 3-coloring of G = K2n of either type EC1(α, δ), in which case we assume
n ≥ n5, or EC3(µ, c1, c2, δ), in which case we assume n ≥ n7 . We aim to find a monochro-
matic Cn in this coloring. Let A ∪ B ∪ C ∪ D be a partition of V := V (G) satisfying
either conditions (a), (b) of EC1(α, δ) or (a)-(c) of EC3(µ, c1, c2, δ).

Now we find large subsets A2 ⊂ A, B2 ⊂ B, C2 ⊂ C, D2 ⊂ D such that the in-
duced coloring of the graph G2 := G[A2 ∪ B2 ∪ C2 ∪ D2] is either EC1 (α)-complete or
EC3 (µ, c1, c2)-complete. To this goal, we first remove from A all the vertices with low
degrees to B, C or D (in an appropriate color). More precisely, a vertex v ∈ A has low
degree if either

degR(v,B) < (1 − δ1/2)|B| or degB(v, C) < (1 − δ1/2)|C|

or degG(v,D) < (1 − δ1/2)|D|.

From the condition (b) in EC1 (α, δ) or (c) in EC3 (µ, c1, c2, δ) it follows that the number
of these low degree vertices in A is at most 6δ1/2|A|. Analogously, we define (and estimate
the number of) the low degree vertices for the sets B, C and D. Let E1 be the set of all
the low degree vertices. Then

|E1| ≤ 6δ1/2(|A| + |B| + |C| + |D|) ≤ 24δ1/2n.

Let A1 = A \ E1, B1 = B \ E1, C1 = C \ E1 and D1 = D \ E1. We observe that every
vertex v ∈ A1 is adjacent to at least

(1 − δ1/2)|B| − 6δ1/2|B| ≥ (1 − 7δ1/2)|B1| ≥ (1 − δ1/3)|B1|

12



vertices in B1 by red edges. Similarly, we have

degB(v, C1) ≥ (1 − δ1/3)|C1| and degG(v,D1) ≥ (1 − δ1/3)|D1|.

We get similar inequalities for the sets B1, C1 and D1 and for appropriate colors.

Then Lemma 15 implies that for any a ∈ A1 and b ∈ B1, the bipartite graph GR[A1, B1]
contains a red (a, b)-path of any odd length between 3 and 2(1−2δ1/3) min{|A1|, |B1|}+1,
and that for any two vertices a1, a2 ∈ A it also contains a red (a1, a2)-path of any even
length between 2 and 2(1− 2δ1/3) min{|A1|, |B1|}. The same holds for the other pairs of
sets and the corresponding colors.

In particular, this means that there are no red vertex-disjoint edges between A1 and C1:
if a1c1 and a2c2 were two such edges, then for any even number k satisfying

4 ≤ k ≤ 2(1 − 2δ1/3)
(

min{|A1|, |B1|} + min{|C1|, |D1|}
)

, (4)

we can find an (a1, a2)-path P in GR[A1, B1] and a (c1, c2)-path Q in GR[C1, D1] such
that e(P )+e(Q) = k. Clearly, P∪Q∪{a1c1, a2c2} is a copy of Ck+2. At this point we must
distinguish whether the original coloring of G was of type EC1 (α, δ) or EC3 (µ, c1, c2, δ).

The first case is easy: since in any EC1 (α, δ)-type coloring of G the sizes of the sets A,
B, C, D are at least (1 − α)2n/4, we have that

|A1|, |B1|, |C1|, |D1| ≥
(1 − α)n

2
− 24δ1/2n.

Consequently, k can be any even number between 6 and 2(1 − 2δ1/3)(1 − α − 48δ1/2)n.
Since δ ≤ α ≤ 10−12, it is easy to see that

2(1 − 2δ1/3)(1 − α − 48δ1/2)n ≥ 2(1 − 2α1/3)(1 − 49α1/2)n ≥ (1 − 51α1/3)(2n) > n. (5)

In the second case, the condition (a) of EC3 (µ, c1, c2, δ) implies that

|A1|, |B1|, |C1| ≥
(1 − c1µ)n

2
− 24δ1/2n

and

|D1| ≥ µ
2n

4
− 24δ1/2n.

Since δ ≤ δ7 ≤ (1 − c1)
3µ3/106, k can be as large as

2(1 − 2δ1/3)

(

(1 − c1µ)n

2
+

µn

2
− 48δ1/2n

)

> (1 + (1 − c1)µ − 100δ1/3)n ≥ n. (6)

In either case, we can take k = n − 2 above and find a red copy of Cn in G. This
means that there are no red edges in E(A1, C1) with the exception of at most one red
star. By the same argument in which we use the green bipartite graphs GG[A1, D1] and
GG[C1, B1] instead of GR[A1, B1] and GR[C1, D1], there are no green edges in E(A1, C1)
with the exception of at most one green star.
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Similar arguments show that there is at most one red and one green star in E(B1, D1),
one red and one blue star in E(A1, D1) and in E(B1, C1), and one green and one blue
star in E(A1, B1) and in E(C1, D1). We remove the centers of these (at most 12) stars
from A1, B1, C1, D1 and obtain sets A2, B2, C2, D2. Let E2 = V (G)\ (A2∪B2∪C2∪D2).

Clearly, the induced coloring of the graph G2 = G[A2 ∪B2 ∪C2 ∪D2] is either EC1 (α)-
complete or EC3 (µ, c1, c2)-complete. Although these are very nice colorings of G2, they
may not have any monochromatic Cn. Therefore we still need to use the vertices in E2

to build our monochromatic Cn in G.

Definition 19 For a vertex v ∈ E2, we say that

v is R1-type if either degR(v, A2), degR(v, C2) ≥ 4 or degR(v,B2), degR(v,D2) ≥ 4;
v is R2-type if either degR(v, A2), degR(v,D2) ≥ 4 or degR(v,B2), degR(v, C2) ≥ 4;
v is B1-type if either degB(v, A2), degB(v,B2) ≥ 4 or degB(v, C2), degB(v,D2) ≥ 4;
v is B2-type if either degB(v, A2), degB(v,D2) ≥ 4 or degB(v,B2), degB(v, C2) ≥ 4;
v is G1-type if either degG(v, A2), degG(v,B2) ≥ 4 or degG(v, C2), degG(v,D2) ≥ 4;
v is G2-type if either degG(v, A2), degG(v, C2) ≥ 4 or degG(v,B2), degG(v,D2) ≥ 4.

The next claim shows that E2 contains only a few vertices of the types defined above.

Claim 20 Either there exists a monochromatic Cn in G or there is at most one vertex
of each of the above types.

PROOF. Suppose that G contains two vertices v1 and v2 of type R1. We will show
that G has a red copy of Cn. Assume, without loss of generality, that degR(v1, A2) ≥ 4
and degR(v1, C2) ≥ 4 and let a1 ∈ A2, c1 ∈ C2 be any red neighbors of v1.

Now if degR(v2, A2) ≥ 4 and degR(v2, C2) ≥ 4, then there are red neighbors a2 ∈ A2, c2 ∈
C2 of v2 that are distinct from a1, c1. It follows from Lemma 15 that for any even number
k satisfying

4 ≤ k ≤ 2(1 − 2δ1/3) (min{|A2|, |B2|} + min{|C2|, |D2|}) , (7)

we can find an even red (a1, a2)-path P in GR[A2, B2] and an even red (c1, c2)-path Q
in GR[C2, D2] such that e(P ) + e(Q) = k. Clearly, P ∪ Q ∪ {v1a1, a2v2, v2c2, c1v1} form
a red copy of Ck+4. The same type of analysis that we have done in (5) and (6) shows
that we can take k = n − 4 and find a red copy of Cn in G.

If degR(v2, B2) ≥ 4 and degR(v2, D2) ≥ 4, then we proceed similarly: we take any
red neighbors b2 ∈ B2 and d2 ∈ D2 of v2 and find red paths P from a1 to b2 with
edges in GR[A2, B2] and Q from c1 to d2 with edges in GR[C2, D2] such that P ∪ Q ∪
{v1a1, b2v2, v2d2, c1v1} is a red cycle of length n.

By symmetry, if G has two vertices of type R2, B1, B2, G1 or G2, then we can also find
a monochromatic Cn. We omit the details here. 2

Remark 21 For the proof of Claim 20, it suffices to define a vertex of type R1 if either
degR(v, A2), degR(v, C2) ≥ 2 or degR(v,B2), degR(v,D2) ≥ 2. Only later we will need
the stronger definition of R1-type vertices.

We say that a vertex v ∈ E2 is of type R∗ (or R∗-type) if it is either R1-type or
R2-type. We define B∗-type and G∗-type vertices similarly. Notice, for example, that

14



any vertex v ∈ E2 that satisfies degR(v, A2 ∪B2) ≥ 7 and degR(v, C2 ∪D2) ≥ 7 must be
of type R∗.

Denote by F be the set of vertices of type R∗, G∗ or B∗. By Claim 20, we have that
|F | ≤ 6. Let E ′

2 = E2 \ F . We define a partition A′
2 ∪B′

2 ∪C ′
2 ∪D′

2 of E ′
2 as follows: We

put a vertex v ∈ E ′
2

to A′
2 if degR(v,B2) ≥ |B2|− 12, degB(v, C2) ≥ |C2|− 12, and degG(v,D2) ≥ |D2|− 12;

to B′
2 if degR(v, A2) ≥ |A2|− 12, degG(v, C2) ≥ |C2|− 12, and degB(v,D2) ≥ |D2|− 12;

to C ′
2 if degB(v, A2) ≥ |A2|− 12, degG(v,B2) ≥ |B2|− 12, and degR(v,D2) ≥ |D2|− 12;

to D′
2 if degG(v, A2) ≥ |A2| − 12, degB(v,B2) ≥ |B2| − 12, and degR(v, C2) ≥ |C2| − 12.

We decide ties arbitrarily so that A′
2, B

′
2, C

′
2, D

′
2 are pairwise disjoint.

Is this really a partition of E ′
2? Indeed, for each vertex v ∈ E ′

2, since v is not of R∗-type,
we must have either degR(v, A2 ∪B2) ≤ 6 or degR(v, C2 ∪D2) ≤ 6 not to contradict our
observation above. Furthermore, we must also have that either degB(v, A2 ∪ C2) ≤ 6 or
degB(v,B2∪D2) ≤ 6, and either degG(v, A2∪D2) ≤ 6 or degG(v,B2∪C2) ≤ 6. Without
loss of generality assume that degR(v, C2 ∪ D2) ≤ 6 and degB(v,B2 ∪ D2) ≤ 6. Then
degG(v,D2) ≥ |D2| − 12, which implies degG(v,B2 ∪ C2) ≤ 6. From this we conclude
that degB(v, C2) ≥ |C2| − 12 and degR(v,B2) ≥ |B2| − 12. Hence, v belongs to A′

2. The
other 3 possibilities yield that v is in one of B′

2, C
′
2 or D′

2.

We put Ã2 := A2 ∪ A′
2, B̃2 := B2 ∪ B′

2, C̃2 := C2 ∪ C ′
2 and D̃2 := D2 ∪ D′

2, therefore,
Ã2 ∪ B̃2 ∪ C̃2 ∪ D̃2 = A2 ∪ B2 ∪ C2 ∪ D2 ∪ E ′

2 = V (G) \ F and

|Ã2 ∪ B̃2 ∪ C̃2 ∪ D̃2| = 2n − |F | ≥ 2n − 6.

Recall that |E ′
2| ≤ |E2| ≤ |E1| + 12 ≤ 25δ1/2n. If the original coloring of G was of type

EC3 (µ, c1, c2, δ), then Ã2 is the largest among Ã2, B̃2, C̃2, D̃2 because condition (b) of

EC3 (µ, c1, c2, δ) holds for the original partition of G and 25δ1/2 ≤ 25δ
1/2
7 ≤ µ. If it was

EC1 (α, δ), then we may assume the same by symmetry.

Notice that in either case, |Ã2| ≥ n/2 − 1. If two of the sets Ã2, B̃2, C̃2 and D̃2, say Ã2

and B̃2, have at least n/2 vertices, then there is a monochromatic red Cn in GR[Ã2, B̃2]
by Lemma 16 and Remark 18 (applied with β = 50δ1/2).

Thus, we may assume that |B̃2| = n/2 − b, |C̃2| = n/2 − c and |D̃2| = n/2 − d, where
b, c, d > 0. We put |Ã2| = n/2 + a, where a ≥ −1, and |F | = f ≥ 0. Then

a + f = b + c + d. (8)

We distinguish two cases: a ≥ 0 and a = −1.

Case 1 a ≥ 0. We first prove that G[A2] contains a long monochromatic path.

Claim 22 The graph G[A2] contains either a red path P2b+1, or a blue path P2c+1, or
a green path P2d+1.

PROOF. Suppose that none of those paths exists. Then, by Lemma 14, G[A2] has at
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most 2b−1
2

|A2| red edges, 2c−1
2

|A2| blue edges and 2d−1
2

|A2| green edges. Therefore,

(

|A2| − 1

2

)

|A2| ≤

(

2b − 1

2
+

2c − 1

2
+

2d − 1

2

)

|A2|.

From |Ã2| = |A2| + |A′
2| and |A′

2| ≤ |E ′
2| ≤ 25δ1/2n, it follows that

n

2
+ a − 25δ1/2n − 1 ≤ |Ã2| − |E ′

2| − 1 = |A2| − 1 ≤ 2 (b + c + d) − 3
(8)
= 2(a + f) − 3.

Hence, we have that a ≥ n/2 − 25δ1/2n− 2f + 2. From this we derive a lower bound on
the order of the set A from the original partition of V (G), namely

|A| ≥ |A2| ≥ |Ã2| − 25δ1/2n ≥ n − 50δ1/2n − 2f + 2.

But this is a contradiction: in EC1 (α, δ), from condition (a) and from δ ≤ α ≤ 10−12,
we have

|A| = (2n) − |B| + |C| + |D| ≤ 2n − 3(1 − α)
2n

4

= (1 + 3α)
n

2
<

3n

4
< n − 50δ1/2n − 2f + 2;

in EC3 (µ, c1, c2, δ), the bounds for |A ∪ D| and |D| given in (a) and (b) imply that

|A| = |A ∪ D| − |D| ≤ (1 + (c2 − 0.5)µ)n < n − 50δ1/2n − 2f + 2,

because c2 < 0.5 and δ ≤ δ7 ≤ ((0.5 − c2)µ/100)2. 2

Assume there exists a green path P2d+1 in G[A2].

If d ≤ a, then we find a green Cn using Lemma 17 applied with H = GG, X̃ = Ã2,
X = A2, X ′ = A′

2, Ỹ = D̃2, Y = D2, Y ′ = D′
2, β = 1/100 and t = d. To verify its

assumptions, it suffices to recall that |A′
2|, |D

′
2| ≤ 25δ1/2n and, moreover, to notice that

if the original coloring was EC1 (α, δ), then we have that d ≤ (α + 50δ1/2)n
2
, otherwise,

the coloring was EC3 (µ, c1, c2, δ) and we have d ≤ (1 − µ)n
2
.

If d > a, then for every vertex v in F we find a color q ∈ {R,B,G} for which

degq(v, A2 \ P ) ≥
|A2 \ P |

3
. (9)

Suppose there are d − a vertices for which this color is green. We add theses vertices to
D′

2 ⊂ D̃2, so that, after adding these vertices, |D̃2| = n/2 − d + (d − a) = n/2 − a, and
we use Lemma 17 again to find a green Cn.

Otherwise, there exist at most d − a − 1 vertices in F such that degG(v, A2 \ P ) ≥
|A2 \ P |/3. If there are b vertices for which the color q in (9) is red, then we add theses
vertices to B′

2 ⊂ B̃2 so that, after adding these vertices, |B̃2| ≥ n/2. Applying Lemma 16
yields a red cycle Cn in GR[Ã2, B̃2].
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Otherwise, there are at most b − 1 vertices in F such that the color q in (9) is red. By
the same argument, there either exists a blue Cn in GB[Ã2, C̃2] or at most c− 1 vertices
in F satisfies (9) with q = B. But the latter is impossible because then

|F | ≤ (d − a − 1) + (b − 1) + (c − 1) = |F | − 3.

Other cases, when there is a blue path P2c+1 or a red path P2b+1 in G[A2], are handled
similarly.

Case 2: a = −1. In this case, we have that n
2
− 1 = |Ã2| ≥ |B̃2|, |C̃2|, |D̃2|, |F | ≤ 6, and

|Ã2| + |B̃2| + |C̃2| + |D̃2| + |F | = 2n, therefore, |B̃2|, |C̃2|, |D̃2| ≥ n/2 − 3 and |F | ≥ 4.

Let us first solve the easier sub-case when |F | = 4. It follows form (8) that b = c = d = 1,
hence

|Ã2| = |B̃2| = |C̃2| = |D̃2| =
n

2
− 1.

Recall that all the vertices of F are either R∗-, G∗- or B∗-type. As |F | = 4, two of
them, say u and v, must have the same color type. Since the sizes of Ã2, B̃2, C̃2, D̃2 are
all equal and our coloring is symmetric, without loss of generality, we may assume that
u and v are R∗-type, say u is of R1-type and v is of R2-type. We may also assume that
degR(u,A2), degR(u,C2) ≥ 4 and degR(v, A2), degR(v,D2) ≥ 4. Then we add u to the
set D′

2 and v to C ′
2 and find a red Cn in G[C̃2, D̃2] using Lemma 16.

When |F | = 5 or |F | = 6, we will need to look at the edges inside the sets A2,B2,C2 and
D2, and use the following claim.

Claim 23 If there are two vertices of type R∗ (B∗, G∗, respectively) and at least one
red (blue, green, respectively) edge inside any of the sets A2, B2, C2, D2 then we can find
a red (blue, green, respectively) Cn.

PROOF. Suppose that there exist two vertices of type R∗, say u of type R1 and
v of type R2. By symmetry, we may assume that degR(u,A2), degR(u,C2) ≥ 4 and
degR(v, A2), degR(v,D2) ≥ 4. Let xy be any red edge in A2. We choose distinct red
neighbors uA ∈ A2 \ {x, y}, uC ∈ C2 of u, and vA ∈ A2 \ {x, y}, vD ∈ D2 of v.

Since the coloring induced by A2 ∪ B2 ∪ C2 ∪ D2 is EC1(α)-complete, there is

• a (uA, x)-path P1 of length 2 in GR[A2, B2];
• a (vA, y)-path P2 of any even length between 2 and 2 min{|A2|−3, |B2|−1} inGR[A2 \

V (P1), B2 \ V (P1)];
• a (uC , vD)-path P3 of any odd length between 1 and 2 min{|C2|, |D2|}−1 in GR[C2, D2].

Hence, P1 ∪P2 ∪P3 ∪{uuA, uuC , vvA, vvD, xy} is a red cycle of any even length between
10 and

2 min{|A2|, |B2|} + 2 min{|C2|, |D2|} − 2 > n.

In particular, we can find a red Cn. The case when xy is in B2, C2 or D2 are handled
similarly. 2

Therefore notice that we cannot have |F | = 6. Indeed, as there are at most two special
vertices in each color, the only way to have |F | = 6 is if we have two vertices of type R∗,
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two of type B∗ and two of type G∗. Therefore, applying the above claim to each color,
there is no way to color any edge inside A2, B2, C2 and D2 without creating a Cn.

The last remaining case is |F | = 5. Without loss of generality we may assume that
|D̃2| ≤ |B̃2|, |C̃2|, and hence

(|Ã2|, |B̃2|, |C̃2|, |D̃2|) =
(

n

2
− 1,

n

2
− 1,

n

2
− 1,

n

2
− 2

)

.

By permuting the names of the colors (if needed), we may assume that F contains two
vertices r1, r2 of type R∗, two vertices b1, b2 of type B∗ and a vertex g of type G∗. Using
the Claim 23, we may assume that all the edges within A2, B2, C2, D2 are green.

We construct an auxiliary graph H with vertex set {r1, r2, b1, b2, A2, B2, C2, D2}. For all
vertices u, v ∈ V (H), we put {u, v} as an edge of H, except when {u, v} ⊂ {r1, r2, b1, b2}.
We 3-multi-color the edges of H in the following way: edges {U, V } with U, V ∈ {A2,
B2, C2, D2} receive only one color: the unique color that appears in G[U, V ]; edges
{u, V } with u ∈ {r1, r2, b1, b2} and V ∈ {A2, B2, C2, D2} receive color red (blue, green,
respectively) if degR(u, V ) ≥ 4 (degB(u, V ) ≥ 4, degG(u, V ) ≥ 4, respectively).

To finish the proof we need to treat 16 possibilities, according to how the vertices
r1, r2, b1, b2 to connect A2, B2, C2, D2 in Definition 19. Although these possibilities are
not symmetric, they can be represented by one of the following four drawing (see Fig. 3),
in which (X,Y, Z,W ) is some suitable permutation of (A2, B2, C2, D2).

Indeed, one can always draw H in a way that the red edges between Ã2, B̃2, C̃2, D̃2 are
drawn horizontally, the blue edges vertically and the green edges diagonally. After this,
we can perform horizontal and/or vertical reflections to position the vertices r1, r2 like
in the Fig. 3. We then look at the relative position of vertices b1 and b2. This gives us
only four sub-cases to treat.

We will use X̃, Ỹ , Z̃, W̃ to denote Ã2, B̃2, C̃2, D̃2 and X ′, Y ′, Z ′,W ′ to denote A′
2, B

′
2, C ′

2,
D′

2 in the correspondent order. For each of the four above drawings, we need to treat
four possibilities, according to which of the sets X̃, Ỹ , Z̃, W̃ has order n/2 − 2.

If in any drawing below |X̃| = n
2
− 2 or |Ỹ | = n

2
− 2, then we could add r1 to W ′ and r2

to Z ′ and find a red Cn in G[Z̃, W̃ ] using Lemma 16.

In sub-cases 2a and 2c, if |W̃ | = n
2
− 2, then we could add b1 to X ′ and b2 to Z ′ and find

a blue Cn in G[X̃, Z̃], also using Lemma 16. In a similar way, in sub-cases 2b and 2d, if
|Z̃| = n

2
− 2, then we could find a blue Cn in G[Ỹ , W̃ ].

The next 2 possibilities require a little more work.

Sub-case 2a and |Z̃| = n

2
− 2: If the edge {b2,W} was blue, then the vertex b2 would

be of type B1. But there cannot be two vertices of type B1 in F by Claim 20. If the
edge {b2,W} was red, then we could add b2 and r2 to the set Z ′ and r1 to the set W and
find a red Cn in G[Z̃, W̃ ] by Lemma 16. Therefore, {b2,W} must be green-exclusive. A
similar argument shows that {b1,W} must also be green-exclusive. Hence,

degG(b1,W ), degG(b2,W ) ≥ |W | − 6.

But now we can add b1 and b2 to the set X ′ and obtain that |X̃| = n/2 + 1 and
|W̃ | = n/2 − 1. Since all the edges within X are green, we find a path of length 2 in X
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r1 r2

b1

b2

X Y

Z W

Sub-case 2a

r1 r2

b1

b2

X Y

Z W

Sub-case 2b

r1 r2

b1

b2

X Y

Z W

Sub-case 2c

r1 r2

b1

b2

X Y

Z W

Sub-case 2d

red green blue

Fig. 3. Possibilities for H

and extend this path to a cycle of length n in G[X̃, W̃ ] using Lemma 17.

Sub-case 2b and |W̃ | = n

2
− 2: Here the edge {b2, Y } cannot be blue (otherwise we

would have two vertices of type B1) and cannot be red (otherwise we could add b2 to X ′

and r2 to Y ′ and find a red Cn by Lemma 16). Therefore, {b2, Y } must be green-exclusive.
Similarly, the edge {r2, Z} cannot be red (otherwise we would have two vertices of type
R1) neither blue (otherwise we could add b2 to Z ′ and r2 to X ′ and find a blue Cn in
G[X̃, Z̃] using Lemma 16). Therefore, {b2, Y } must be green-exclusive. Then, however,
we can add r2 to Y and b2 to Z ′ and find a green Cn in G[Ỹ , Z̃] using Lemma 16.

The last two possibilities are very similar to the previous two, so we only indicate the
edges that we must look at.

Sub-case 2c and |Z̃| = n

2
− 2: First, observe that the edges {b2, Y } and {r1, Y } must

be both green-exclusive. Furthermore, {b1, Y } must be green-exclusive as well. Then we
add b1, b2 and r1 to the set Z ′, find a path of length 2 in Z and use Lemma 17 to find a
green Cn in G[Ỹ , Z̃].

Sub-case 2d and |W̃ | = n

2
− 2: Here, both the edges {b2, Y } and {r1, Y } must be

green-exclusive. Then, after we add b2 and r1 to the set Z ′, find a path of length 2 in Z
and we apply Lemma 17 to find a green Cn in G[Ỹ , Z̃]. 2
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8. Proof of Lemma 6

We set
α6 = 10−18

and consider any α ≤ α6. Note that, for every δ ≤ α, any coloring of type EC2 (α, δ) is
also of type EC2 (α, α), hence, we may assume that δ = α. Take

n6 = ⌈α−6⌉.

Consider any 3-coloring of G = K2n of type EC2(α, α) and let A ∪ B ∪ C ∪ D be a
partition of V := V (G) satisfying both conditions (a), (b) of EC2(α, α).

Similarly to the proof of Lemmas 5 and 7, a vertex v ∈ A has “low” degree if

degR(v,B) < (1 − α1/2)|B|, degG(v, C) < (1 − α1/2)|C|

or degB(v,D) < (1 − α1/2)|D|;

a vertex v ∈ B has “low” degree if

degR(v, A) < (1 − α1/2)|A|, degG(v, C) < (1 − α1/2)|C|

or degB(v,D) < (1 − α1/2)|D|;

a vertex v ∈ C has “low” degree if

degG(v, A ∪ B) < (1 − α1/2)(|A| + |B|),

and, finally, a vertex v ∈ D has “low” degree if

degB(v, A ∪ B) < (1 − α1/2)(|A| + |B|).

By the condition (b) in EC2 (α, α), it follows that the number of low degree vertices in
A (B, C, D, respectively) is at most 6α1/2|A| (6α1/2|B|, α1/2|C|, α1/2|D|, respectively).
Together, there are at most 28α1/2n low degree vertices that we put into a new set say
E1. We define A1 := A \ E1, B1 := B \ E1, C1 := C \ E1, D1 := D \ E1.

Thus, all the vertices in A1 ∪B1 are adjacent to at least (1− 2α1/2)|C| ≥ (1− 2α1/2)|C1|
vertices in C1 by green edges and all the vertices in C1 are adjacent to at least (1 −
7α1/2)(|A| + |B|) ≥ (1 − 7α1/2)(|A1| + |B1|) by green edges. A similar statements hold
for other colors and sets. If |C1| ≥ n/2, then we greedily find a monochromatic Cn in
[C1, A1 ∪ B1] because every two vertices of C1 have (1 − 14α1/2)(|A1| + |B1|) common
neighbors and

|A1| + |B1| ≥ 2(1 − α)
2n

4
− 28α1/2n >

n

2(1 − 14α1/2)
.

By the same type of argument we are also done if |D1| ≥ n/2. Hence suppose that
|C1| = n

2
− c and |D1| = n

2
− d for some c, d > 0. From |E| ≤ 28α1/2n and condition (a)

in EC2 (α, α) it follows that c, d ≤ 29α1/2n.
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We claim that there is neither a green path in A1 ∪ B1 of length 2c nor a blue path in
A1 ∪ B1 of length 2d. To the contrary, suppose that P is such a green path in A1 ∪ B1,
with length 2c and endpoints a1 and a2.

Since all the vertices in A1 ∪ B1 have high green degrees to C1, we find c1 6= c2 ∈ C1

such that a1c1, a2c2 are green. Now, every two vertices in C1 have at least

(1 − 14α1/2)(|A1| + |B1|) − 2c ≥ 2(1 − α)
2n

4
− 28α1/2n − 2 · 29α1/2n ≥

n

2
> |C1|

common green neighbors in A1 ∪ B1 \ V (P ). Hence, we greedily find a green (c1, c2)-
path P ′ that avoids V (P ) and saturates all the vertices of C1. Then P ∪ P ′ is a green
monochromatic Cn.

Consequently, A1 ∪ B1 contains at most

(2c − 1)
|A1| + |B1|

2
≤ 29α1/2n

(

2n − 2
(

n

2
− 29α1/2n

))

≤ 58α1/2n2

green edges and at most (2d−1)(|A1|+ |B1|)/2 ≤ 58α1/2n2 blue edges. We again remove
from A1 and B1 all the vertices adjacent to more than α1/6n vertices of A1 ∪ B1 by
green or blue edges and put them into E1. Call the new sets A2, B2, C2, D2 and E2

(we set C2 := C1 and D2 := D1). Note that we removed at most α1/6n vertices, and so
|E2| ≤ 2α1/6n. Therefore, GR[A2 ∪ B2] has minimum degree |A2 ∪ B2| − 3α1/6n.

If |A2 ∪ B2| ≥ n, then |A2 ∪ B2| − 3α1/6n > |A2 ∪ B2|/2. Hence, GR[A2 ∪ B2] contains
Cn by Theorem 13.

Otherwise, |A2∪B2| < n and nAB := n−|A2∪B2| ≥ 1. We also notice that n/2−|C2| =
n/2 − |C1| = c and n/2 − |D2| = n/2 − |D1| = d. Suppose there is c ≤ 29α1/2n vertices
e1, . . . , ec in E2, each with at least 2c green neighbors in A2 ∪ B2. For each ei, take two
of its green neighbors ai, bi ∈ A2 ∪ B2. Since ei has 2c such neighbors, we can select all
ai, bi distinct.

Next, we find a green neighbor c1 ∈ C2 of a1, a green neighbor ck+1 ∈ C2 of bk, and for
all bi−1, ai, where i = 2, . . . , k, a common green neighbor ci ∈ C2. Again, all ci’s may be
chosen distinct because any two vertices in A2 ∪ B2 have at least

(1 − 4α1/2)|C1| = (1 − 4α1/2)|C2| ≥ (1 − 4α1/2)
(

n

2
− 29α1/2n

)

> 58α1/2n > 2c

common green neighbors in C2. Finally, we may greedily find a green (c1, ck+1)-path
avoiding all ai, bi, ci’s and saturating the remaining vertices of C2, because all the pairs
of vertices in C2 have a large common neighborhood to A2 ∪ B2:

(1 − 14α1/2)(|A1| + |B1|) − α1/6n ≥ 2(1 − α)
2n

4
− 28α1/2n − α1/6n

≥
n

2
+ 58α1/2n > |C2| + 2c.

Hence, we only need to settle the case in which there are less than c vertices in E2 that
have at least 2c green neighbors in A2 ∪ B2. In the same way, we may also assume that
less than d vertices in E2, have at least 2d blue neighbors in A2 ∪ B2.
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Thus, there are at least 2n−|A2∪B2|−|C2|−|D2|−(c−1)−(d−1) > n−|A2∪B2| = nAB

vertices in E2, each with at least |A2 ∪ B2| − 2(c + d) > 2|A2 ∪ B2|/3 red neighbors in
A2∪B2. Let F be a set with any nAB of these vertices. Since nAB = |F | ≤ |E2| ≤ 2α1/6n,
the graph GR[A2∪B2∪F ] has the minimum degree at least 2|A2∪B2|/3 > |A2∪B2∪F |/2.
Since |A2 ∪ B2| + |F | = |A2 ∪ B2| + nAB = n, it contains a red Cn by Theorem 13. 2
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for paths, Combinatorica 27 (2007), no. 1, 35–69. MR 2310787 (2008b:05110)
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