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Abstract

In the metrizable topological groups context, a direct product con-
struction (mimicking the �action groupoid�) provides a multiplicative
representation canonical for arbitrary continuous �ows. This implies,
modulo metric di¤erences, the topological equivalence of the natural,
�ow setting of regular variation of [BOst13] with the Baj�anski and
Karamata [BajKar] group formulation. In consequence topological
theorems concerning subgroup actions may be lifted to the �ow set-
ting. Thus the Baj�anski-Karamata Uniform Boundedness Theorem
(UBT), as it applies to cocycles in the continuous and Baire cases, may
be reformulated and re�ned to hold under Baire-style Carathéodory
conditions. Its connection to the Banach-Steinhaus UBT is clari�ed.
An application to Banach algebras is given.
Classi�cation: 26A03
Keywords: multivariate regular variation, uniform convergence the-
orem, category, duality, �ows, cocycles, internal direct product, action
groupoid, Carathéodory conditions.
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1 Multiplicative action, duality and a trans-
fer principle

We work in the category of metrizable topological groups, implying that if X
and Y are isomorphic, then they are also homeomorphic. For groups T and
X; with identities eT and eX ; a (continuous) T -�ow on X ([GoHe], [Be], or
the more recent [Ell1]) is a continuous mapping ' : T �X ! X such that,
for s; t;2 T and x 2 X;

'(st; x) = '(s; tx) and '(eT ; x) = x:

Write the map induced by t as 't(x) := '(t; x); then 't is a home-
omorphism with (continuous) inverse 't

�1
(x) and for e = eT , 'e = idX ;

where idS(s) := s denotes the identity self-homeomorphism of a space S:
Thus ' : t ! 't embeds T as a subgroup of Auth(X); the group of self-
homeomorphisms (auto-homeomorphisms) of X: As a blanket assumption:
we restrict T to contain only bounded members, those t for which jjtjj :=
supx dX(t(x); x) < 1; this guarantees T is metrized by the supremum met-
ric, denoted dT .
Identifying t with 't, one may write t(x) for 't(x); which permits devel-

opment of a proper duality between the T -�ow 'T (t; x) = t(x) and the asso-
ciated X-�ow on TX the group of translates ftx : x 2 X; t 2 Tg with group
operation sx � ty = stxy; where tx(u) := t(ux) and the X-�ow is 'X(x; t) = tx
(�rst noted albeit in another setting in [Se1]). Point-evaluation of tx at eX ;
formally a projection on the eX co-ordinate space, is tx(eX) = t(x); the
original T -�ow. (One may write xt for tx or even ht; xi; for t(x); so that t
and x commute at least at the projection level; we see very pervasive con-
sequences of this later.) Proper expression of a duality calls for embedding
X in the double �topological dual�Auth(Auth(X)): Alternatively, the dual-
ity may be captured by a commutative diagram of homeomorphisms (where
�T (t; x) = (t; tx) and �X(x; t) = (t; xt):

(t; x) �
�T - (t; tx)

(x; t)
?

6

� �X - (t; xt)
?

6
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Here the two vertical maps may, and will, be used as identi�cations, since
(t; tx)� (t; x)� (t; xt) are bijections (more is true, see below).
However, there is a simpler, purely algebraic approach for capturing the

duality. Observe �rst that the simplest example of a �ow is a restriction
of the multiplicative action of a group X on X to the action of a subgroup
T of X on X; e.g. left translation (t; x) ! tx: We show that a T -�ow on
X and the associated X-�ow on TX may be represented canonically in this
multiplicative form by a group structure on the phase space T � X with
T and X represented by complementary normal subgroups isomorphic to T
and X. We denote the group T ./ X and call it the phase-group. (Anatole
Beck points out that T is sometimes called the parameter space and X the
state space, so their product may correctly be termed a phase space.) Albeit
with more structure here, this is similar in spirit to the semi-direct product
of group theory which describes a �split extension�of a group G by a group
A of automorphisms of G; see eg [As] Sect. 10. Our construction mimics
the construction of the action groupoid of Lie groupoid theory (cf. [We],
or [ALR] Section 1.4), but remains within group theory (appropriately to
our context/category). Here again the topological structure is richer than in
the groupoid setting (it contains a representation of the action groupoid, for
which see below), since it also takes into account the group structure of X �
see Example 2 below for further elucidation. In topological dynamics t(x) is
written multiplicatively as tx (cf. [GoHe]), consistently with a multiplicative
representation.
The representation implies the transfer principle that a topological theo-

rem about multiplicative group actions may be lifted to a theorem concerning
�ow actions, in fact to a primal and dual form of the theorem (see [BOst13]
for a discussion of this point). Here we give the details for two such trans-
fers which are of interest to the topological theory of regular variation: the
two uniform boundedness theorems (for continuous, alternatively Baire, co-
cycles).
Recall that a group G is an internal direct product (for a topological view

see [Na] Ch. 2.7; for an algebraic view see [vdW] Ch. 6, Sect. 47, [J] Ch.
9 and 10, or [Ga] Section 9.1) if it is factorizable by two normal subgroups
H;K; i.e. G = HK withH\K = feGg (so that factorization in G is unique).
Under these circumstances hk = kh holds for h 2 H; k 2 K (since hkh�1k�1

is in H \K, cf. [vdW] Ch. 6, Sect. 47), so this setting provides a pleasingly
simple expression; when X;T are metrizable, of the inherent duality between
T acting on X and X acting on T if, as can be arranged, H and K are
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isomorphs of X and T . We now indicate why.
Under the above circumstances K is a unique complement for H (for

which see [As] Section 10 p. 29), and vice versa H a unique complement of
K; so we may also regard them as duals of each other. Furthermore, suppose
that G has a right-invariant metric (see Section 2 for details). If we identify
an element h in H with translation by h on G (i.e. with �h(g) := hg); then

dH(h; h
0) := sup

g2G
dG(hg; h

0g) = dG(h; h
0)

shows that H; as a subgroup of G; is isometric with f�h : h 2 Hg; as a
subgroup of Auth(G) under the supremum metric. Now, restricting 'G; the
multiplicative action of G on G; to H we obtain the H-�ow on G; namely
'H(h; g) := hg: The map induced by h is �h and h ! �h embeds H in
Auth(G); its image, 'H(H); is simply an isometric isomorph of H: The same
goes for K and 'K : Our theorem says we may identify H with T and K with
X; as well having a commutative diagram of isomorphisms.

Theorem (Multiplicative Representation of dual �ows on topo-
logical groups). For ' any continuous T -�ow on X with T � Auth(X);
there is a canonical internal direct product group G = �� and isomorphisms
� : T ! �; � : X ! � (as between topological groups) such that the T -�ow
on X is represented by the multiplicative �-�ow on G :

'� : (� ; g)! �g; (� 2 �; g 2 G);

as is simultaneously (mutatis mutandis) the associated X-�ow on TX : That
is,
(i) the isomorphisms �; � commute: �t�x = �x�t;
(ii) there are isomorphisms such that

(t; x)  ! (�t; �x)  ! �t�x  ! (t; tx)  ! (t; x)
l l

(x; t)  ! (�x; �t)  ! �x�t  ! (xt; t)  ! (x; t)

(iii) TX is isomorphic to G under the mapping xt! �x�t;
(iv) denoting (� � �)(t; x) := (�t; �x) etc., the diagrams below commute:
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��
'� - G ��

'� - G

and

T �X

� � �

6

�T - T �X

wwwwwwwwww
X � T

� � �

6

�X - T �X

wwwwwwwwww
as

�T = 'T � (� � �) and �X = '� � (� � �);
(v) moreover, if T is an internal direct product with T = UV; then � =
�(U)�(V ) is also an internal direct product; likewise, if X is an internal
direct product with X = Y Z; then � = �(Y )�(Z) is an internal direct product.

Proof. We proceed by constructing a generalized product group (as in
the Zappa-Szép product, or knit product, cf. [Sz], see Remark 3 below), i.e.
a group that is factorizable by two general subgroups H;K; so that G = HK
with H \K = feGg: We then check that H;K are normal. For X a group
and T � Auth(X); we equip the Cartesian product

G = T �X

with a group operation on G de�ned by

(s; x) ./ (t; y) = (st; st(s�1xt�1y));

for which eG = (eT ; eX): (For an interesting homeomorphic alternative see
Remark 2.) An equivalent de�nition is by the symmetric product formula:

(s; sa) ./ (t; tb) = (st; st(ab));

showing that (t; tx)�1 = (t�1; t�1(x�1)): The latter product formula (which
motivates the construction) shows that �T : (t; x) ! (t; tx) describes an
isomorphism from the direct product T�X to the general product T ./ X: As
this is also a homeomorphism, we see that T ./ X is a metrizable topological
group, when X is metrizable. For t 2 T; x 2 X; write

�t := (t; t(eX)); �x := (eT ; x):
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Then X is isomorphic to

� := f�x : x 2 Xg = f(eT ; x) : x 2 Xg:

Also � is a normal subgroup, since

(s; sa) ./ (eT ; x) ./ (s
�1; s�1a�1) = (eT ; axa

�1):

On the other hand, T is isomorphic to

� := f�t : t 2 Tg = f(t; t(eX)) : t 2 Tg;

since by the symmetric product formula

(s; s(eX)) ./ (t; t(eX)) = (st; st(eX)):

As with �; so too here � is a normal subgroup, since

(s; sa) ./ (t; t(eX)) ./ (s
�1; s�1a�1) = (sts�1; sts�1(eX)):

Finally, note �\� = feGg; since if (t; t(eX)) 2 �; then t = eT = idX and
so t(eX) = eT (eX) = eX : Thus G is in fact an internal direct product.
The �ow T � X ! X may now be recovered from '�; the multiplica-

tive action of the subgroup �; when restricted to the subgroup � via the
projection � : G! X; since

�t ./ �x = (t; t(eX)) ./ (eT ; x) = (t; t(t
�1(t(eX))x)) = (t; t(x)):

Indeed the equation con�rms that the multiplicative action yields an isomor-
phic target and also that the T -�ow on X is isomorphic, because

�s ./ �t ./ �x = �st ./ �x = (st; st(x)):

We note that �t ./ �x = �x ./ �t, since

�x ./ �t = (eT ; x) ./ (t; t(eX)) = (t; t(xeX)) = (t; t(x)):

The same goes for the �ow X � T ! TX and restriction of the action '�

to the subgroup �: Indeed TX is of course isomorphic to the internal direct
product X ./ T under the mapping tx $ (x; t)! (t; t(x)) = �x ./ �t; indeed
it is a homomorphism since (sx � ty)(eX) = stxy(eX) = st(xy); so that

(x; s) � (y; t) = (xy; st)! (st; st(xy) = (s; s(x)) on (t; t(y));
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it is injective, since t(x) = s(y) and t = s implies x = y; and it is surjective
since (t; y) = (t; t(t�1y)):
Finally, suppose that T itself is an inner direct product T = UV; with

U \ V = feTg and U; V normal. Then, since UV = V U elementwise, we see
that

�u ./ �v = (uv; uv(eX)) = (vu; vu(eX)) = �v ./ �u:

Put �(U) = f�u : u 2 Ug and �(V ) = f�v : v 2 V g: Then �(U) and �(V ) are
normal subgroups of �(T ) = �: Since �u = �v i¤ u = v; we see that � is an
inner direct product of �(U) and v(V ): Thus

� = �(U)�(V );

Likewise, if X = Y Z; with Y \ Z = feXg and Y; Z normal, since this time
we have

�y ./ �z = (eT ; y) ./ (eT ; z) = (eT ; zy) = �z ./ �y;

as claimed. �

Remarks
0. Note that (s; sa)�1./ = (s

�1; s�1a�1); since

(s; sa) ./ (t; tb) = (st; st(ab)):

similarly(s; s�1a)�1? = (s�1; sa�1) since

(s; s�1a) ? (t; t�1b) = (st; (st)�1(ab)):

1. If T is a group of self-isomorphisms of X; then t(eX) = eX and so
�t = (t; eX): Here

(s; x) ./ (t; y) = (st; (sts�1x) � sy);

suggesting more general forms, appropriate to isomorphism groups, such as

(h1; k1)(h2; k2) = (�(h1; h2)h1; �(h1; h2)(k1)h1(k2));

with �; � homomorphisms, e.g. �(h1; h2) = h1h2h
�1
1 and �(h1; h2) = h1h2h

�1
1 .

2. An alternative product, denoted T ? X; derives from the group opera-
tions on G de�ned by

(s; x) ? (t; y) = (st; (st)�1(sxty));
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and is homeomorphic to T ./ X via inversion (with a repeated inversion
on the �rst coordinate). An equivalent de�nition of the operation is by the
symmetric product formula

(s; s�1a) ? (t; t�1b) = (st; (st)�1(ab)):

Specialization of the latter formula here to the case of T a subgroup of X
yields pairs (x; y) satisfying xy = a etc.; thus this generalized product re-
�ects the mechanics of a multiplicative convolution (Mellin transform). The
notation of regular variation, however, prefers the earlier choice T ./ X (see
later). For

��s := (s; s
�1(eX)) �x := (eT ; x);

we obtain

��s � �x = (s; s�1(eX)) ? (eT ; x) = (s; s�1(s(s�1(eX))x)) = (s; s�1(x)):

3. Note that �(�s � g) = sx for g = (t; x); since

�s ./ g = (s; s(eX)) ./ (t; x) = (st; st(t
�1x) = (st; sx):

We use this observation in the Transfer Principle of the next section.

Examples.
1. If T � Tr(X) is a subgroup of translations � t : z ! tz and X is

abelian, then

(�u; x) ./ (� v; y) = (�uv; uv(u
�1xv�1y)) = (�u� v; xy):

2. For two commuting �ows U and V on X, the action T = U � V
is an internal direct product and the theorem asserts that both �ows on
X are representable by commuting multiplications. Analogous to this is a
representation for the general linear skew-product �ow �: This is de�ned to
be (see [Se1], [Se2]) a T -�ow on X = Y �Z; with Y a topological space and
Z a normed vector space, whereby � takes the form

�(t; y; z) = (t(y); �(t; y)z):

Here (t; y)! t(y) is a �ow in Y . Note that

�(st; y; z) = �(s; �(t; y; z)) = �(s; (t(y); �(t; y)z))

= (s(t(y)); �(s; t(y))�(t; y)z);
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so since
�(st; y; z) = (st(y); �(st; y)z)

we have
�(st; y)z = �(s; t(y))�(t; y)z;

or the cocycle condition:

�(st; y) = �(s; t(y))�(t; y):

We have
I = �(e; y) = �(t�1; t(y))�(t; y);

so �(t�1; t(y)) = �(t; y)�1:
The one-parameter group �(t) := �(t; t(y)) has �(0) = I; with �(t) invertible

since �(�t)�(t) = �(0) = I: (In fact more is true when T = R, as the de�n-
ing properties of a �ow secure the continuity condition limt!0 jjQ(t)z�zjj = 0
for every z in Z; hence, if �(t) is itself continuous on Z, then �(t) has an ex-
ponential representation �see [Ru] Ch. 13, Semigroups of operators.) Thus
a phase-group �HZ can be created with

�(t; y; z) = �t ./ �y ./ �z;

with T = R, Z = Rd, and Y as in the standard example. (Motivation and
details are presented in Appendix 1 of the extended web-site version of this
paper.)
3. We note here the multiplicative representation that the phase-group

gives for the action-groupoid of a T -action on X: (Compare Appendix 2 of
the extended website version of this paper.) In the current circumstances
the groupoid is presented as a space of points (objects) together with a space
of arrows (morphisms), with the space X taken as the space of objects (we
agree to call points locations) and T �X as the space of arrows (t; x): The
arrow (t; x) has source x and target t(x): The binary operation is composition
of two arrows, (t; x) followed by (s; y); and is possible if and only if y =
t(x) (when the arrows are said to be a composable, ordered pair); that is,
speaking intuitively, the target of the �rst displacement provides the location
for a subsequent displacement. We term the points �x in the group G the
source elements, as they correspond to sources of arrows, and the terms �t
displacement elements.
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The natural embedding  : T �X ! �� of arrows to the phase-group G
is

(t; x) := (t; t(x)):

The embedding is continuous, if we agree to use the product topology on the
space of arrows T �X. We may call the arrow (t; eX) a basic displacement,
as it is represents an arrow from the base point eX of X; this is carried to
(t; eX) = (t; t(eX)); i.e. to the point �t of �: We then have the unique
representation of an arrow in G as a multiplicative decomposition

(t; x) = �t ./ �x;

i.e. the product in G of a displacement �t and a source �x:
The decomposition above induces a natural projection � from arrows to

displacements, de�ned from the set T �X to the subset � of T �X by

�(t; x) = �t = (t; t(eX)):

This is an idempotent when viewed as acting only on sets; however, regarding
� as a subgroup of G; the map � there serves further as a disabling operation,
since it disables one of the two operations which de�ne ./ in G; as we see in
the following computation:

(st; x) = (st; stx) = (s; s(eX)) ./ (t; tx)

= �s ./ (t; x)

= �(s; tx) ./ (t; x):

Thus
(s; tx) � (t; x) = �1[�(s; tx) ./ (t; x)];

so that the binary operation of composition � in the space of arrows is re-
coverable via the representation ; from the projection � and the binary
operation ./ of G:
4. Continuing from the last computation of Example 3, we deduce, for

the composable pair of arrows � = (s; stx) and � = (t; x); that

(� � �) = �(�) ./ (�):

Thus �xing �; the following relation, for any � right-composable with �;
holds in G = ��

�(�) = (� � �)(�)�1:
We are about to recognize, in Section 3, the right-hand side (independent
here of �) as a cocycle �, the main concept in the Uniform Boundedness
Theorems.
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2 Metric aspects of duality: regular variation

In any group X we de�ne the group-norm by jjxjjX := dX(x; eX). If dX is
right- or left-invariant, then we have jjx�1jj = jjxjj, i.e. the group-norm is
symmetric. Assuming either right- or left-invariant dX , we have the triangle
inequality in the form

jjxyjj � jjxjj+ jjyjj;
since, for instance, for the (preferred) right-invariant case

d(xy; e) = d(x; y�1) � d(x; e) + d(e; y�1):

(On its own symmetry is not helpful, though easily arranged using the sym-
metrization jjxjj := jjxjjX + jjx�1jjX :) Normed groups are of fundamental
importance to regular variation; see [BOst12] for an exploration of the the-
ory, the earlier literature on the subject, and an alternative approach to the
duality of topological �ows.
If the group is abelian the de�ning inequality reduces to the usual triangle

inequality. If the group is a vector space (e.g. R, or C), then the group-norm
is just the usual norm. For a less obvious, but signi�cant, example note that
if T is a subgroup of the bounded elements in Auth(X); with composition as
the group operation, then the group-norm is symmetric, as

jjhjj = sup
x
d(h(x); x) = sup

y
d(y; h�1(y)) = jjh�1jj;

and the triangle inequality is satis�ed, because

jjh0hjj = sup
x
d(h0h(x); x) = sup

y
d(h(y); h�1(y)) � jjhjj+ jjh0jj;

an argument which draws on the fact that the metric dT is in fact right-
invariant, since

dT (hg; h
0g) = sup

x
dX(h(g(x)); h

0(g(x))) = sup
y
dX(h(y); h

0(y)) = dT (h; h
0):

We may give the phase-group G = T ./ X the metric

dG((t; x); (s; y)) = dT (s; t) + dX(x; y); (1)

so that if dX is right-invariant, then so is dG:Here dT (s; t) = supz dX(s(z); t(z)):
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Before investigating metric connections between T ./ X and T � X we
note that sequential convergence is a topological notion, whereas the notions
of divergence are metric. We are thus more concerned with divergence, es-
pecially so in the following cases: divergence de�ned in X by jjxnjj ! 1;
and in T by either a uniform condition jjtnjj ! 1; or a pointwise condition
jjtnxjj ! 1; for each x: The �rst lemma below is concerned with T �X and
is followed by a result for T ./ X:

Proposition (Duality of divergence) Let the topological group X have
right-invariant metric. For s a bounded member of Auth(X) and a 2 X;

jjs(a)jj � jjsjj+ jjajj and jjajj � jjsjj+ jjs(a)jj:

Hence, for s and ftng bounded members of Auth(X);
(i) jjxnjjX !1 i¤ jjs(xn)jjX !1; and
(ii) if jjtn(x)jjX !1;then jjtnjjT !1:
Moreover, if T � X and the action is multiplicative, then

jjsjj � jjsajj+ jjajj;

so that here

jjtnjj ! 1 i¤ jjtn(x)jj ! 1; for all/for some x 2 X:

Proof. All three results follow from inversion-invariance and the triangle
inequality. The second and third follow from the identities: a = s�1s(a);
se = saa�1: The �rst inequality shows (ii) because jjtn(x)jj � jjtnjj + jjxjj
and x is �xed. The third shows that jjtnjj � jjtnxjj+ jjxjj: �

Proposition (Triangle inequality with a parameter cf. [Ra] 2.2).
Let G = T ./ X be metrized by (1); then

jj�xjjG = jjxjjX and jj�tjjG = jjtjjT + dX(t(eX); eX);

so that

jjtjjT � jj�tjjG � 2jjtjjT and jj�t ./ �xjj � 2(jj�tjj+ jj�xjj):

Hence, for x 2 X; t 2 T
(i) jjxjj ! 1 i¤ jj�xjj ! 1; and
(ii) jjtjj ! 1 i¤ jj�tjj ! 1:
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Proof. Indeed jj�xjj = dG((eT ; x); (eT ; eX)) = jjxjj: Now

jj(t; t(x))jj = dG((t; t(x)); (eT ; eX)) = sup
z
dX(t(z); z) + dX(t(x); eX)

= jjtjj+ dX(t(x); eX) � 2jjtjj+ jjxjj

so, in particular, jj�tjj = jjtjj+ dX(t(eX); eX):Thus

jj�t ./ �xjj = jj(t; t(x))jj � 2jjtjj+ jjxjj+ jjxjj
� 2(jj�tjj+ jj�xjj):

Clearly the parameter 2 does not disturb divergence considerations. �

Interest in divergence structures is motivated by the following.

De�nitions. Given groups T;X;H and a T -�ow on X; we say that the
function h : X ! H is regularly varying on T , resp. regularly varying on
X; if the respective limit below exists. (For a development of the theory, see
[BOst13]).

@Xh(s) = lim
jjxjj!1

h(sx)h(x)�1; (s 2 T )

@Th(x) = lim
jjsjj!1

h(sx)h(s(eX))
�1; (x 2 X):

In the next section we begin a study of the relation of these ideas to the
phase-group.

3 Cocycles and the transfer principle

Recall (cf. [Ell2]) that for a T -�ow on X; a function � : T � X ! H is a
cocycle on X if

�(st; x) = �(s; tx)�(t; x): (2)

(This says, according to Example 3 of Section 1, that � preserves the com-
position of composable arrows of the action groupoid.) Let

�h(t; x) = h(tx)h(x)�1: (3)

Then �h is a cocycle (the h-cocycle), since

h(stx)h(x)�1 = h(stx)h(tx)�1h(tx)h(x)�1;
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and this permits an interlea�ng idempotent of H; a projection, � to be in-
serted into the formula for �h to yield the cocycle h(tx)�h(x)�1: A cocycle
is a coboundary on X if there is continuous h : X ! H such that

h(tx) = �(t; x)h(x):

We will then say that the cocycle is a h-coboundary on X. Thus, for h
continuous on X, �h is a h-coboundary on X. (Equipping the space of
arrows T � X of Example 3 of Section 1 with the product topology, the
cocycle �(�; �) of Example 4 is a -coboundary, since  is continuous.)
Before investigating boundedness properties of cocycles, we show how to

lift cocycles from T �X to T ./ X:

Proposition (Transfer Principle). Given a T -�ow on X; and a func-
tion h : X ! H into the group H; de�ne its extension hG to the phase-group
G by

hG((t; x)) = h(x):

Then the corresponding cocycle �G de�ned on ��G by hG(�s ./ g)hG(g)�1

satis�es

�G(�s; (t; x)) = �h(s; x) and, in particular, �G(�s; �x) = �h(s; x):

Hence, if h is regularly varying on T , then hG is regularly varying on �;
and likewise, if h is regularly varying on X, then hG is regularly varying on
�. That is,

@Xh(s) = lim
x
h(sx)h(x)�1 = lim

g
hG(�s � g)hG(g)�1;

@Th(x) = lim
s
h(sx)h(s(eX))

�1 = lim
s
hG(�s � �x)hG(�s)�1:

Proof. Interpreting G as the internal direct product of T and X in the
sense of the representation theorem, we have

hG(�t ./ �x) = hG((t; t(x))) = h(tx); and hG(�x) = hG((eT ; x)) = h(x);

and, for g = (t; x); we have

hG(�s ./ g) = hG((s; s(eX)) ./ (t; x)) = hG((st; st(t
�1x)) = h(sx) = hG(�s ./ �x):
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Also hG(�s) = hG((s; s(eX))) = h(s(eX)): Thus

�h(s; x) = h(sx)h(x)�1 = hG(�s ./ g)hG(�x)
�1 = �G(�s; �x);

Thus we do indeed have

@Xh(s) = lim
x
h(sx)h(x)�1 = lim

x
hG(�s � �x)=hG(�x);

@Th(x) = lim
s
h(sx)h(s(eX))

�1 = lim
s
hG(�s � �x)=hG(�s);

as asserted. Here it is important to bear in mind that jjxjj ! 1 i¤ jj�xjj !
1; and jjtjj ! 1 i¤ jj�tjj ! 1: �

Remark. Recall that TX is isomorphic to G under xt! �x�t = (t; t(x)):
The natural extension of h : X ! H from X to TX is via point-evaluation
as given by

hTX (�) := h(�(eX)) = h(t(x)); for � = tx 2 TX :

This is consistent with the transfer principle, since

hG(�x�t) = h(t(x)) = hTX (xt):

4 Uniform boundedness theorems for cocy-
cles

In the theorems of the next section we will be concerned with boundedness of
cocycles. We say that � is locally bounded (resp., locally essentially bounded)
at t 2 T if, for some open neighbourhood U � T of t; the set f�(s; x) : s 2
U; x 2 Xg is bounded in H (resp. the set f�(s; x) : s 2 U; x 2 XnEg is
bounded in H, for a meagre set E).
We will invoke somewhat less than continuity, placing instead conditions

on the separate behaviours of �(t; :) and �(:; x): Examples below illustrate
how these conditions may arise; however, it is as well to pause and consider
the general signi�cance of the separate continuity on T of the map t! �(t; x):
We note it is a natural assumption in the theory of integral equations (for
which see [MS]) including the renewal equation of probability (see [Le]).
Speci�cally, consider the situation in a multiplicative framework, when

T � X; so that eT = eX : Since T may act on T (being a subgroup), we
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examine the restriction of cocycles from T�X down to T�T: Let h : T ! H:
Note that �h(t; eT ) = h(t)h(eT )

�1; from where hmay be recaptured. Observe
also the standardizations

h(t) = �h(t; eT )h(e); and �h(eT ; eT ) = eH ;

and additionally, w.l.o.g., we may also require h(eT ) = eH (since H(t) =
h(t)h(eT )

�1 generates the same cocycle as h on T ):
Now let � be an arbitrary cocycle from T �T ! H (implying association

with the multiplicative T -�ow on T ); save only that it satis�es �(eT ; eT ) = eH :
Put k(t) = k�(t) := �(t; eT ); then �k(s; t) is a k-coboundary on T provided
�(:; eT ) is continuous. But,

�k(s; t) = k(st)k(t)�1 = �(st; eT )�(t; eT )
�1

= �(s; teT )�(t; eT )�(t; eT )
�1 = �(s; t):

So if �(:; eT ) is continuous, then � itself is a k-coboundary on T; as k(:) is
continuous on T (cf. [Ell2] Prop. 2.4). To go in the opposite direction by
taking T = X is, generally, over-restrictive. For a more searching analysis,
played out in a compact space setting, see [Ell2]; there (X;T ) is extendable
to (M;T ); a �universal minimal set�, where the extended cocycle � is a k�-
coboundary.
A special case of the �rst uniform boundedness theorem below, when T is

a subgroup of X and � = �h; with t! �(t; x) continuous on T; was proved
by Baj�anski and Karamata; they stated only conclusion (ii), but a close
inspection of their proof reveals the stronger, unstated, result (i). The brief
proof for their case is reproduced here, for convenience and to document
a new environment and the stronger conclusion, stronger than asserted in
[BajKar].
In the second uniform boundedness theorem we weaken the continuity

hypothesis to merely the Baire property and obtain only the weaker original
conclusion of Baj�anski and Karamata. We prove this in a group setting and
from that deduce the more general �ow version.
The paradigm is of course the Banach-Steinhaus Theorem (for which see

[Ru] Th. 2.5, p. 44), where X;H are topological vector spaces and � is a
collection of continuous linear maps t : X ! Y with bounded �orbits�ftx :
t 2 �g: (Embed � in the �nitely generated subgroup T which it generates
in the additive group of bounded linear maps B(X;H); this gives a T -�ow
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(t; x) ! t(x).) Example 1 demonstrates that the weaker hypothesis here
yields in general (say in an in�nite-dimensional Hilbert space) a weaker result.
We say that T is a Baire group when T is a Baire space ([Eng]; see espe-

cially p.198, Section 3.9 and Exercises 3.9.J). The three distinct conditions
appearing as pairs in Theorems 1 and 2 may be called Baire Carathéodory
conditions after the three conditions of (Co) continuity, (M) measurability
and (Bo) boundedness, applied by Carathéodory to the initial value problem
(for details see [Good], and for a more recent example [BB]); here, these are
Baire analogues, obtained by replacing �measurable�with �Baire property�.
Recall that jjhjj := d(h; eH) and note that �for quasi all t�means �for all t o¤
a meagre set�.

Theorem 1 (First, or Continuous, Cocycle Uniform Bounded-
ness Theorem, cf. [BajKar], Th. 3). Let X and H be topological groups
and T a Baire group acting on X: Suppose the cocycle � : T � X ! H is
such that
(Bo) for quasi all t 2 T; the mapping x! �(t; x) is bounded over X;
i.e. there a meagre set ET and function m : T ! ! such that, for all
t 2 TnET ; jj�(t; x)jj � m(t); for all x 2 X;
(Co) for quasi any x 2 X; the mapping t! �(t; x) is continuous on T:
Then
(i) �(t; x) is essentially-bounded on the unit ball of T; and so
(ii) �(t; x) is uniformly essentially-bounded for t in compact subsets K avoid-
ing ET :
Moreover, replacing �quasi all�with �all�yields the stronger conclusion ob-

tained by replacing �essentially-bounded�with �bounded�and �compact subsets
K avoiding ET�with �all compact subsets K�.

Proof. We give a streamlined version of the proof in [BajKar] for the
group version of the theorem; the transfer principle implies the �ow version
(see the second step of the second theorem below for an explicit deduction
of the �ow version). We suppose that (Co) and (Bo) holds o¤ the respective
meagre sets EX and ET of exceptions. For n 2 !; put Fn = fh 2 H : jjhjj �
ng: For n 2 !; put also

Kn(x) = ft : �(t; x) 2 Fng; Kn =
\
fKn(x) : x 2 XnEXg:

By assumption (Co), for each x 2 XnEX ; the mapping t! �(t; x) is contin-
uous. Hence Kn(x) is closed, for each x 2 XnEX : Hence also Kn is closed.

17



Now, for a given t =2 ET ; the set f�(t; x) : x 2 Xg; being bounded, is con-
tained in some Fm(t). Hence t 2 Km(t)(x) for each x 2 X in fact, and so
t 2 Km(t): Thus

T = ET [
[
n2!

Kn =
[
n2!

ETn [
[
n2!

Kn;

where each ETn is nowhere dense. By Baire�s Theorem, for some open U and
some p 2 !; we have U � Kp: Thus, for t 2 U and arbitrary x 2 XnEX ; we
have

jj�(t; x)jj � p;

i.e. � is locally uniformly-essentially bounded at t: But this local assertion
is true on sU for any s =2 ET ; because for any t 2 U

�(st; x) = �(s; tx)�(t; x);

and the set f�(s; y) : y 2 Xg is bounded, so that f�(st; x) : t 2 U; x 2
XnEXg is bounded.
This last result easily implies the weaker property of uniform essential-

boundedness on compact sets. Indeed, let K be compact in TnET : Since
(ET )�1 is meagre, being a homeomorphic image of ET , we may pick t 2
Un(ET )�1; thus t�1 =2 ET : Since e 2 t�1U we see that kt�1U is an open
neighbourhood of k: Thus there are �nitely many points k1; ::; kn 2 K such
that

K �
n[
i=1

kit
�1U:

So for k 2 K there is i � n and s 2 U such that k = kit
�1s: Again applying

the de�ning property that �(st; x) = �(s; tx)�(t; x); we obtain

�(k; x) = �(kit
�1s; x) = �(ki; t

�1sx)�(t�1s; x)

= �(ki; t
�1sx)�(t�1; sx)�(s; x):

Since s 2 U; the set f�(s; x) : x 2 XnEXg is bounded. By assumption (Bo)
the set f�(t�1; y) : y 2 Xg is bounded, and likewise, so is each of the sets
f�(ki; z) : z 2 Xg for i = 1; :::; n: Hence the set f�(k; x) : k 2 K; x 2 XnEXg
is bounded, i.e. �(k; x) is bounded uniformly for x 2 XnXE with K ranging
over compact sets in TnET .
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Taking ET = EX = ?; a re-reading of the arguments above yields the
asserted strengthenings. �

The assumption (Co) is weakened in the following theorem and conse-
quently the conclusion is also weaker. The proof is more involved as it em-
ploys the Category Embedding Theorem, a result that we quote below after
a de�nition from [BOst11] (to which we refer also for its proof).

De�nition (weak category convergence). A sequence of homeomor-
phisms  n satis�es the weak category convergence condition (wcc) if for any
non-empty open set U; there is an non-empty open set V � U such that, for
each k 2 !; \

n�k

V n �1n (V ) is meagre. (wcc)

Equivalently, for each k 2 !; there is a meagre setM such that, for t =2M;

t 2 V =) (9n � k)  n(t) 2 V:

Category Embedding Theorem. Let X be a Baire space. Suppose
given homeomorphisms  n : X ! X for which the weak category convergence
condition (wcc) is met. Then, for any non-meagre Baire set T; for locally
quasi all t 2 T; there is an in�nite set Mt such that

f m(t) : m 2Mtg � T:

Example. In any metrizable group with invariant metric d, for any
sequence tending to the identity zn ! e; the mappings de�ned by  n(x) =
znx satisfy the (wcc) holds. For a proof see [BOst13].

Theorem 2 (Second, or Baire, Cocycle Uniform Boundedness
Theorem, cf. [BajKar], Th. 3). Let X and H be topological groups and T
a Baire group acting on X: Suppose the cocycle � : T �X ! H is such that
(Ba) for each �xed x 2 X; the mapping t! �(t; x) is Baire on T;
(Bo) for quasi all t 2 T; the mapping x! �(t; x) is bounded over X;
i.e. there a meagre set ET and function m : T ! ! such that, for all
t 2 TnET ; jj�(t; x)jj � m(t); for all x 2 X:
Then
�(t; x) is uniformly bounded for t on compact subsets K avoiding ET :
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Moreover, replacing �quasi all� with �all� yields the stronger conclusion
obtained by replacing �compact subsets K avoiding ET� with �all compact
subsets K�.

Proof. Our �rst step is to prove the result for T a subgroup of X: As a
second step we infer the result for �ows.
We suppose that (Bo) is satis�ed o¤ a meagre set ET of exceptions.

Suppose, by way of contradiction, that tn ! t0 =2 ET and f�(tn; xn) : n 2 !g
is unbounded. We may assume that t0 = e; indeed

�(t�10 tm; xm) = �(t�10 ; tmxm)�(tm; xm);

and by assumption (Bo), the set f�(t�10 ; z) : z 2 Xg is bounded, hence
f�(t�10 tn; xn) : n 2 !g is unbounded and here t�10 tn ! e:
For each n; the mapping hn(:) = �(:; xn) is Baire. Let Y := fxi : i 2 !g:

On a co-meagre set S � T each function hn(:) is continuous on S: We may
suppose that S is complementary to ET :We now adapt the proof in [BajKar]
by working with S and Y in place of T and X: Recalling that, as usual,
jjhjj = d(h; eH); put Fn = fh 2 H : jjhjj � ng and

Kn(xi) = ft 2 S : �(t; xi) 2 Fng; Kn =
\
fKn(xi) : i 2 !g:

Thus Kn is Baire. Now, for a given t 2 S; the set f�(t; x) : x 2 Y g; being
bounded, is contained by some Fm(t). Hence t 2 Km(t)(x) for each x; and so
t 2 Km(t): Thus

S =
[
n2!

Kn:

Now for some p; Kp is non-meagre. By the category embedding theorem
[BOst11], for some s 2 S (implying that s =2 ET ) and some in�nite M, the
set fstm : m 2Mg � Kp: Thus, in particular,

j�(stm; xm)j � p:

But
�(stm; xm) = �(s; tmxm)�(tm; xm):

Now again by assumption (Bo), the set f�(s; z) : z 2 Xg is bounded, as
s =2 ET . But this contradicts the unboundedness of f�(tm; xm) : m 2Mg.
Taking ET = EX = ?; a re-reading of the arguments above again yields

the asserted strengthenings. � (group setting)
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Our second step is to deduce the theorem from its group formulation. For
h : X ! H; and with G = T �X, de�ne the extension hG : G! H by

hG((t; x)) = h(x):

Then, interpreting G as the internal direct product of T and X in the sense
of the representation theorem, we have

hG(�t ./ �x) = hG((t; t(x))) = h(tx); and hG(�x) = hG((eT ; x)) = h(x);

and so
�(t; x) = hG(�s ./ �x)hG(�x)

�1 = h(tx)h(x)�1:

Now apply the group version of the theorem established in the �rst step. �

Theorem 3 (Third, or Asymptotic, Cocycle Uniform Bounded-
ness Theorem, cf. [BGT], Th. 2.0.1). Let X and H be topological groups
with right-invariant metric. Let T a Baire group acting on X: Suppose the
cocycle � : T �X ! H is such that
(Ba) for each �xed x 2 X; the mapping t! �(t; x) is Baire on T;
(ABo) for quasi all t 2 T; the mapping x! �(t; x) is asymptotically bounded
over X;
i.e. there a meagre set ET and functions m; k : T ! ! such that, for all
t 2 TnET ; jj�(t; x)jj � m(t); for all x with jjxjj � k(t):
Then
�(t; x) is uniformly bounded for t on compact subsets K avoiding ET :

Proof. We argue as in Theorem 2 and but now speci�cally suppose
jj�(un; xn)jj > n for chosen sequences fung in T and fxng in X with un ! u
and jjxnjj ! 1: Now boundedness at t implies that, for all n > k(t); we have

jj�(t; xn)jj < m(t) <
1

2
n:

Put
T = ET [

[
k

Tk with Tk =
\
n�k

ft : jj�(t; xn)jj <
1

2
ng:

By (Ba), for each k; the set Tk is Baire. For some K; we see that TK is
non-meagre, so there is s and an in�nite Ms > K such that

fsum : m 2Msg � TK :
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This gives, for m 2Mt; that

jj�(sum; xm)jj <
1

2
m:

We claim that jjumxmjj ! 1; otherwise, by inversion-invariance, jju�1m jj =
jjumjj is bounded, so boundedness of jjumxmjj would imply boundedness of
jjxmjj from

jjxmjj = jju�1m umxmjj � jju�1m jj+ jjumxmjj:
Now, for m 2Ms such that jjumxmjj > k(s); we have jj�(s; umxm)jj � m(s).
But, by the de�ning property of a cocycle,

�(sum; xm) = �(s; umxm)�(um; xm);

which implies that

jj�(um; xm)jj = jj�(s; umxm)�1�(sum; xm)jj � jj�(s; umxm)�1jj+jj�(sum; xm)jj:

So, using inversion-invariance and the triangle inequality of the group-norm,
we have, for m 2Ms such that jjumxmjj > k(s) that

m < jj�(um; xm)jj �
1

2
m+m(s) � 1

2
m+

1

2
m � m;

a contradiction. �

Remarks
1. When H is the real line there is the opportunity to interpret unbound-

edness in two directions.
2. There is an implicit a¢ nity between Theorem 3 and extensions of the

Karamata Theory of regular variation (for which see [BGT] Ch. 2). The
classical context places the asymptotic boundedness assumption on h : X !
H; which at its simplest requires that there exists m� : T ! !, such that

lim
n
sup
jjxjj�n

jjh(tx)h(x)�1jj < m�(t):

From this hypothesis, in the case when T = H = X = R, one deduction of
[BGT] Th. 2.0.1 p. 62 is a Uniform Asymptotic Boundedness Theorem, that
for K compact

lim
n
sup
jjxjj�n

sup
t2K
jjh(tx)h(x)�1jj <1:
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This is implied by Theorem 3. In the classical one-dimensional case, UABT
in turn yields a regularly varying function of t dominating h(tx)h(x)�1 for all
large x and t: I conjecture that the theorem generalizes to a multivariate form
with varying indices in the various �ow directions. It would be interesting to
see whether these indices would remain bounded when X is locally compact
(presumably so in the abelian case).

Illustrative Example (Euclidean equivalence of UBT with Uni-
form Convergence Theorem). For h : X ! H and a given T -�ow on
X; the map t ! �h(t; x) is continuous/Baire, if the function h is continu-
ous/Baire since (t; x)! tx is continuous (�i¤�when T = X):
Suppose now that X;H are normed vector spaces and T is a subspace of

X acting on X by translation. Assume �rst that h is linear. Reverting to
the abelian additive notation, we have

�h(t; x) = h(tx)� h(x) = h(t);

so that for �xed t the map x! �h(t; x) is bounded. More generally, assume
that h is Baire and regularly varying on T , that is, (Section 2 or [BOst13]),
the limit function

@Xh(t) := lim
jjxjj!1

�h(t; x) (4)

exists for all t: Indeed, according to the Uniform Convergence Theorem (see
[BOst13] for the general metrizable topological group setting of UCT, and
[BGT] for the special case of X = R); convergence to dh is uniform for t
restricted to compact sets. We take up this point in a later step.
For now �x t; then, for all x with jjxjjX large enough, for simplicity say

for jjxjjX > 1;

jj�h(t; x)jjH � jj@Xh(t)jjH + jj�h(t; x)� @Xh(t)jjH : (5)

If X is �nite-dimensional (Euclidean) and additionally h is continuous, then
jj�h(t; x)jjH is bounded on the unit ball jjxjjX � 1 and so again, for �xed t;
the map x ! �h(t; x) is bounded. Here both Theorem 1 and 2 assert that
�h(t; x) is bounded on the unit ball of T .
Here is an alternative proof from UCT. Observe that @Xh is additive by

(2), and, being Baire (4), is linear (by the Banach-Mehdi Theorem, see e.g.
[Ban] 1.3.4, p. 40 in collected works, cf. [Meh], or the literature cited in
[BOst14], or [BOst13]), since the Euclidean space T is Baire. Thus @Xh
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here is continuous, so has bounded operator norm, and hence jj@Xh(t)jjH �
jj@XhjjjjtjjX . This together with the UCT applied to (5) con�rms that, for
t restricted to the unit ball in T , i.e. when jjtjjX � 1; the function �h(t; x)
remains bounded as x varies arbitrarily. We have just shown the following
new result.

Proposition. For h continuous, the UCT and the UBT are equivalent
in the Euclidean setting.

Remark. A close inspection of the proofs above, shows that they depend
on the cocycle property and the convergence of the sequence tzn to t when
zn ! e: It seems plausible that the proof of Theorem 2 could be carried out
in a metrizable groupoid setting.

5 Applications in functional analysis

We give two examples of applications of the UBT to functional analysis.
The �rst clari�es the relationship between UBT for cocycles and the Banach-
Steinhaus Theorem. The other views group characters corresponding to max-
imal regular ideals as cocycles.

Example 1. (Adaptation of the �equicontinuity example�of [BajKar].)
Let V and H be topological vectors spaces regarded as additive groups, with
V Baire (e.g. a Banach space). For simplicity, we consider a countable family
of continuous linear mappings from V to H; presented for convenience as
fLm : m 2 Zg: Suppose that, for each x 2 V; the set fLm(x) : m 2 Zg is
bounded in H: We deduce that the family is uniformly bounded on compact
subsets of V:
Form the direct product X = V � Z of V with the additive group of

integers. Take T := f(x; 0) : x 2 V g, a subgroup of X isomorphic to V;
hence a Baire group. De�ne the additive function h : X ! H by

h((x; n)) = Ln(x):

Consider the h-cocycle �h : T � X ! H; de�ned as in (3). Then, with
g = (y;m) and t = (x; 0); we have

�h(t; g) = �h((x; 0); (y;m)) = h((x; 0) + (y;m))� h((y;m))
= Lm(x+ y)� Lm(y) = Lm(x):
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Hence,
(i) for �xed g; the map t ! �h(t; g) is Baire; indeed, for �xed m; the map
x! Lm(x) is continuous;
(ii) for �xed t = (x; 1); the map g ! �h(t; g) is bounded in H; indeed, for
�xed x 2 V; the map (y;m)! Lm(x) is bounded on X.
Theorem 2 above asserts that fLm(x) : m 2 Zg is uniformly bounded in

H for x in any compact subset of V: On the other hand, Theorem 1, with its
stronger assumption that each map x! Lm(x) is continuous, implies that �h
is locally uniformly bounded, so that fLm(x) : jjxjj < 1;m 2 Zg is bounded.

Example 2. We refer to [Loo] for standard terminology used here. When
X = C(T ) is the Banach algebra of continuous, complex-valued functions on
a locally compact group T; consider the familiar continuous action of T on
X given by (t; x)! tx; where

(tx)(s) = x(t�1s):

Thus if h : G ! C is an algebra homomorphism (multiplicative, as well as
homogenous and additive), then, for any x =2 N (h); the formula �h(t) :=
�h(t; x) = h(tx)=h(x) de�nes a character on T corresponding to the kernel
N (h), viewed as a maximal regular ideal of functions (see e.g. [Loo] p. 135).
The notation for �h re�ects the known fact that h(tx)=h(x) is independent of
x:Here h is continuous and, as in Example 1, x! �h(t; x) is trivially bounded
as a function of x: As an immediate corollary we see that �h(t) is uniformly
bounded on compact subsets of T ; indeed, in view of the continuity, it is
locally uniformly bounded. In fact of course the cocycle equation (2) implies
that �h(t) is multiplicative (reducing in this case to Cauchy�s functional
equation). The conclusion here is a special case of the Uniform Convergence
Theorem (UCT) of regular variation (see [BGT] for the classical setting of
functions h : R! R and [BOst13] for a topological setting); the UCT asserts
that the limit function @Xh(t) := limx �h(t; x), if it exists, is multiplicative
(with uniform convergence on compacts), thus providing a representation for
@Xh(t) in the classical setting via Cauchy�s functional equation, or in the
topological setting via a Riesz Representation Theorem.
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6 Appendix -1 : Skew-product �ows

A �xed f 2 C(T �Z;Z); with T = R and Z a normed vector space (e.g. Rd),
gives rise to the non-autonomous di¤erential equation

_u(t) = f(t; u(t)) with u(0) = z:

For simplicity assume f is such that, for each z; the solution exists uniquely
and globally. Then, regarding f as a parameter, we may write the solution
in the form

u(t) = �(t; f; z):

The system is said to be linear if �(t; f; z) = �(t; f)z with �(t; z) a linear
operator. Note that for the system f(t; z) = Az; with A a constant matrix,
the operator �(t; f) = etA is invertible, a feature to which we return.
The non-autonomous system was reformulated in �ow terms by G. R.

Sell as follows (see [Se1], [Se2]). Put sf(t; z) := f(s+ t; z) and let Y = fy 2
C(T�Z;Z) : y = sf for some s 2 Tg; then the binary operation on Y de�ned
by

sf � s0f = (s+ s0)f

turns Y into a group. If Y is given a topology such that s! sf is continuous
Y becomes a topological group.
Time-shifting the d.e by s we have s _u(t) = f(s + t; su(t)) = sf(t; su(t))

with su(0) = z: Thus
su(t) = �(s+ t; sf; z);

and the analysis is reduced to the study of the T -�ow � on Y � Z given by:

�(s; y; z) = (sy; �(s; y; z));

known as a skew-product �ow.
There are two components in �: Now, for two commuting �ows U and V

on X, the action T = U � V is an internal direct product and the theorem
asserts that both �ows onX are representable by commuting multiplications.
Here we show that an analogous representation can be coaxed out for the
general linear skew-product �ow � de�ned as T -�ow on X = Y � Z with Y
a topological space and Z a normed vector space in which � takes the form

�(t; y; z) = (t(y); �(t; y)z):
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Here �(t; y) 2 L(Z) is an invertible linear operator from Z to Z with
�(eT ; eY ) = I whereas (t; y) ! t(y) is a �ow in Y . We may obtain a multi-
plicative representation starting from the equation

(s; sa;�(s; sa)u) ./ (t; tb;�(t; tb)v) = (st; st(ab);�(st; st(ab))(u+ v));

since with v = �u and b = a�1 and t = s�1 we have

(s; sa;�(s; sa)u) ./ (t; tb;�(t; tb)v) = (e; e; 0):

But this requires that we work with the product f(s; y; q) : s; y; qg with the
equation q = �(s; y)v in mind. We put

(t; x; p) ./ (s; y; q) = (ts; ts(t�1xs�1y);�(ts; ts(t�1xs�1y))[�(t; x)�1p+�(s; y)�1q]:

Here
(t; t(e); u) ./ (e; y; 0) = (t; t(y);�(t; t(y))u) = �(t; y; u);

and moreover, since �(e; y) = I (see A spectral Theory p. 324 property (2))
we have

�s ./ �t = (s; s(e); 0) ./ (t; t(e); 0) = (st; st(e); 0) = �st;

�t ./ �y = (t; t(e); 0) ./ (e; y; 0) = (t; t(y); 0);

�t ./ �u = (t; t(e); 0) ./ (e; e; u) = (t; t(e); u);

�y ./ �u = (e; y; 0) ./ (e; e; u) = (e; e(y);�(e; y)u);

�t ./ �y ./ �u = �t ./ (e; e(y);�(e; y)u) = (t; t(e); 0) ./ (e; e(y);�(e; y)u)

= (t; t(y);�(t; ty)[0 + �(e; y)�1u])

= (t; t(y);�(t; ty)u) = (t; �(t; y; u)):

Here the �rst and last lines con�rm that the mutiplicative �ow '(t; g) =
�s ./ g is isomorphic to the T -�ow (homomorphic by the �rst lien with image
corresponding to the T -�ow image.)

�u ./ �v = (e; e; u) ./ (e; e; v) = (e; e; u+ v):

�s ./ �t ./ �y ./ �u = �st ./ �y ./ �u

�(st; x) = �(s; tx)�(t; x)
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(st; st(y);�(st; st(y))u) = �(st; y; u)

(t; t(y);�(t; t(y))u) = �(t; y; u)

(t; t(y);�(t; t(y))u) = �(s; �(t; y; u)) = (st; st(y);�(st; st(y))u)

(s; sa;�(s; sa)u) ./ (t; tb;�(t; tb)v) = (st; st(ab);�(st; st(ab))(u+ v));

(s; se;�(s; se)0) ./ (t; tb;�(t; tb)v) = (st; st(b);�(st; st(b))(0 + v))

�(s; �2(t; b; v)) = (s; tb;�(t; tb)v)

= �(st; b; v)

(s; t(y);�(t; t(y))v) ./ (t; t(y);�(t; t(y))u) = (st; (s�1ty)y

7 Appendix - 2 : action groupoids

We o¤er a brief explanation of an action-groupoid, side-stepping, as is pos-
sible for T -�ows on X, the language of category theory. For our purposes
a groupoid arises as a structure which resembles a group but with two de-
�ciencies: its binary operation is not necessarily de�ned on all pairs and
there are both left and right identities for each element of the groupoid, and
corresponding inverses. In principle a groupoid is presented as a space of
points (objects) together with a space of arrows (morphisms), but here we
can ignore the former. Indeed, in the case of a T -�ow on a topological group
X; with the space X taken as the space of objects (let�s agree to call points
locations) and T �X as the space of arrows (t; x) with source x and target
t(x); objects are super�uous, since the source map here is freely available as
a projection from T �X (so, the objects form the set of sources).
Adopting instead the vectorial language of linear algebra, we regard an

arrow as comprising a displacement together with a location to which the
displacement is applied (yielding the target). The binary operation is compo-
sition of two arrows, (t; x) followed by (s; y); and is possible if only if y = t(x)
(then the arrows are said to be a composable, ordered pair); that is, the target
of the �rst displacement provides the location for a subsequent displacement.
The composition (s; tx) � (t; x) is then (st; x) with target st(x): Here eT may
be regarded as providing null displacements; speci�cally, �y = (eT ; y) pro-
vides the right identity (under composition) for the source y of (s; y); while
(eT ; y) with y = tx provides the left identity under composition for the target
y = tx of (t; x): Accordingly we term the point �y in the group G a source.
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This intuition leads to the natural embedding  : T �X ! ��; of arrows
to the phase-group G is

(t; x) := (t; t(x)):

We call (t; eX) a basic displacement, as it is applied to the base point eX of X;
this is carried to (t; eX) = (t; t(eX)); i.e. to the point �t of �: We therefore
call �t a displacement. In consequence, we have the unique representation of
an arrow in G as a multiplicative decomposition

(t; x) = �t ./ �x;

i.e. the product in G of a displacement �t and a source �x:
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