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Abstract

We develop further the topological theory of regular variation of
[BOst13]. There we established the uniform convergence theorem
(UCT) in the setting of topological dynamics (i.e. with a group T'
acting on a homogenous space X), thereby unifying and extending
the multivariate regular variation literature. Here, working with real-
time topological flows on homogeneous spaces, we identify an index
of regular variation, which in a normed-vector space context may be
specified using the Riesz representation theorem, and in a locally com-
pact group setting may be connected with Haar measure.
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[BOst13] establishes the Uniform Convergence Theorem (UCT) in a topo-
logical dynamics setting and so provides the foundations for a topological
theory of regular variation. Let X be a phase space, a homogeneous met-
ric space, specifically a group with identity ex. If a topological group T
acts on the space X by mapping (¢,x) to t(x), then we say that T is an
action space for X; we treat it as a subgroup of Auth(X), the group of
auto-homeomorphisms of X (this follows the notation of [BePe]). We say
that x — tx is bounded if ||t||r = dr(t, er) is finite, where dr(¢,t) denotes
the supremum metric sup, dx(t(z),t'(z)). We restrict 7' to be a subgroup
of H(X), the group of bounded elements of Auth(X), with supremum met-
ric. We say that h : X — R is reqularly varying on the action space if
Oxh(t) = lim h(tz,)h(z,)"" exists for every divergent sequence {r,} (with
||zn||lx = d(x,, ex) — 00). Also we say that h : X — R is reqularly varying
in the phase space if Orh(z) = lim h(tz)h(tex) " exists for every divergent
sequence of homeomorphisms ¢ in 7. Here divergent may be taken either in
the uniform sense that ||t||;z — oo, or in the pointwise sense that, for each
x, d(t(x),ex) — oo. Then the Primal and Dual UCT assert that each of the
two limit functions Oh(.), on the state or action space, is a homomorphism
and convergence to the limit is uniform on compact sets (for h Baire, but a
theorem of Kodaira in [Kod| permits the substitution of measurable in the
sense of Haar measure — see below; for further details see [BOst12] Section 5).
It is this duality which marks out the topological dynamics theory from the
group-theoretic approach advanced by Bajsanski and Karamata [BajKar].
Actually, however, the essential difference between them reduces to the ques-
tion of what divergence structures each theory admits. ([Ost-knit] demon-
strates this, through an intermediary, an inner direct product construction,
which reduces flows to multiplicative actions by subgroups.) Notwithstand-
ing, the topological theory yields direct and immediate interpretations of
current uses of regular variation.

In the present paper we develop further the topological dynamics theory
with the goal of identifying an index of variation. When flows are directed by
an additive group, for instance by the real line R, and so interpreted as pro-
viding a notion of direction, the homomorphism theorem takes on a sharper
form, leading to a representation theory for the limit function dh of a regu-
larly varying function h, the basis of which is the spectral theorem. In this
respect we go beyond the Euclidean case established in the [BajKar| theory
and the Meerschaert and Scheffler [MeSh] theory for invertible matrices, i.e.
in GL(R,n). We refer to R in its capacity to direct flows as the time domain
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and the associated flows as real time flows.

The theory established in our first paper [BOst13| is concerned with
slowly varying functions. This is further developed in two companion pa-
pers. In [BOst14] we investigate the Fundamental Theorems of regular vari-
ation (UCT, Characterization and Representation Theorems) in particular
the UCT in the form of Goldie’s Bounded Equivalence Theorem in order to
clarify its standing in relation to [BOst13]; Goldie’s theorem implicitly uses
flows in discrete time in considering the limit lim,, A(e’e™)/h(e™). In [BOst15]
we are concerned with regularly varying functions (e.g., we show these obey
the chain rule, and in the non-commutative context we characterize pairs
of regularly varying functions whose product is regularly varying. The lat-
ter requires the use of a ‘differential modulus’ akin to the modulus of Haar
integration.)

Taken together our five papers, this and [BOst13], [BOst14], [BOst15],
[Ost-knit], firmly and fully establish the foundations for an extension of the
classical theory rich enough to capture all of its modern applications both
in R? and in classical function spaces (cf. [dHOR], [Om], [BalEmb], [Resl],
[Res2], [Res3], and [HLMS]).

There is a natural connection between regular variation as a branch of
analysis and as a branch of the part of algebra concerned with topological
dynamics, although the focus of research is inverted as we now explain (see
particularly [ElI2]). For T" a topological group, X a topological space and a
fixed flow ¢ : T'x X — X, context usually allows the notation ¢(¢,x) to be
abbreviated in algebraic fashion to tz (or xt as is preferred in [Ell1]). Then
a continuous o : T' x X — K, with K a topological group, is said to be a
cocycle if

o(st,x) =o(t,z)o(s,tz).

(Compare [Ost-knit].) In the multiplicative formulation of classical regular
variation (i.e., with X =T = K = R% = R;\{0}), for continuous f : R} —
R, let us put

o(t,2) = f(t2) f(x) "

Then o is a cocycle, with range (= co-domain) the group K = R* , since

[(ste) _ [(tx) [(sta)
f@) " F@) flw)

Thus f is regularly varying if there is a function g : R} — R such that, for




each t,
of(t,x) — g(t), as ©z — oo.

In the context of topological dynamics the study of cocycles o may be reduced
to those of the form o : T' x T"' — K; by embedding 7" in a larger compact
group, limit objects such as g(t) may then be identified with o (¢, p) for p a
limit point of 7" outside 7" That is, the limiting function of regular variation
is just a section of a cocycle; however, it is all of the cocycle, not its section,
that is of interest in topological dynamics, and one may ask whether a cocycle
o is a coboundary, that is, whether for some continuous f : X — K

ftx) = f(x)o(t, x),

so that o is then the coboundary of f. When K is a compact group in
certain situations (X,7’) has a ‘minimal’ extension on which the answer is
affirmative and the solution is the naturally associated function f,(t) :=
o(t,e)), made unique by the condition f,(e) = e — see [Elll]. (The natural
setting is 7T discrete, as the choice T' = Z is consistent with the classical
context where one may w.l.o.g. take limits over  running through Z; then
T is embedded in BT, the Stone-Cech compactification, and this leads to
taking the minimal extension M to be a fixed minimal right ideal in 87T
these notions are defined in [Elll]. A critical part here is played by the
assured existence of an idempotent v in M and by subgroups of the group
G = Mu.)

Definitions-1. Let X be a homogeneous metric space with distinguished
points 2o and sg (e.g. a metrizable topological group). A continuous function
¢ :Rx X — X is said to be a real flow if

@(tv 90(7_7 :E)) = (p(t +7, CL’)

and (0, z) = x. (See e.g. [GoHe] for the general theory, or the more recent
[Ell1]; [Be], especially Ch.1, is dedicated to real flows).

Thus each of the functions ¢'(x) := ¢(t,x) is a homeomorphism of X,
having as inverse ¢ (). Moreover, G(¢) = {p' € R} is a subgroup of
Auth(X), the group of all auto-homeomorphisms of X. We refer to it as the
transformation group of the flow. For any subgroup ® of Auth(X), we will
say that the flow ¢ is a ®-flow if G(p) is a subgroup of ®.

We denote by O(z) the orbit {p'(x) : t € R}.



We say that ¢ is a monotone divergent flow with source sq if the following
properties holds:
(i) convergence to the source:

d(p(t,z),s9) — 0, as t — —o0,

(ii) the homeomorphisms ¢’ are (monotonically) divergent to infinity,
namely, for each x

d(p(t, z), z) — oo monotonically, as t — 400,

which corrresponds to the simple divergence notion introduced earlier.

Remark. The latter property implies that {'(.)} is a divergent sequence
on each of the orbits regarded as subspaces of X. It also guarantees the
crimping property on each of these. We recall from [BOst13] the definition
that (X, d) is locally H-crimping, or simply has the crimping property, if,
for any a € X and any sufficiently small ¢ > 0, there is 9 > 0 such that for
all b with d(a,b) < § there exists h € H(X) with ||h|| < € and b = h(a).
This is a form of strong local homogeneity, as defined by [For| (see [vM] and
[BOst13]).

Lemma. Fach orbit regarded as a subspace has the crimping property.

Proof. For x, — xg a sequence in the orbit of xy, suppose that z, =
o(ty,, xo) for some t,,. Then ¢, — 0. Indeed, suppose w.l.o.g that 7 = inf ¢,, >
0; then, for ¢t > 7, we have by monotonicity

d((t, o), x0) > d(o(T,20),70) > 0,

and so d(z,, o) = d(p(tn, o), z0) > d(¢(T,20),20) > 0, which contradicts
d(zn, o) — 0. Now put
Un() = @(tn, T);

then ¢, (x) — z for each x. In general this will be uniform convergence on
compact sets of z. [

Examples.

i) Radial flow p(t,z) = tx := (tx1,txs) in the plane has source 0. In the
extreme-value literature, for which see [Resl], [Res2] and [Res3], the plane is
replaced by a cone with vertex 0.



ii) Shift flow in the plane, in direction e, namely ¢, (¢, z) := = + te. Two
special cases arise when we take the direction to be one of the natural base
vectors, e = e;. These yield horizontal and vertical flows. Under a logarith-
mic transformation (¢,x) — (logt, (logz1,logz3)), the punctured quadrant
RZ\{0} is homeomorphic to the plane R? and the radial flow tz of (i) is
represented by ¢ 1y(t,7) = (21 + t,22 + t). The source is now at minus
infinity.

iii) Direct sum flow in the positive quadrant R%. Let r(¢) and s(t) be
strictly increasing continuous functions from R to R. The flow

o(t,x) == (r(t)zy, s(t)xs)

corresponds to the definition of regular variation of [dHOR] Section 2. It
is the sum of the flows © — (r(t)x1,22) and x — (x1, s(t)xs) in the sense
defined later.

The case r(t) = t*, s(t) = t°, say with 3 = Aa, may be simplified in two
steps. First, by re-parametrization the flow may be replaced by

o(r,x) == (ray, T’\JSQ).

This flow may in turn be transformed by conjugacy to a radial flow, as follows.
Define the homeomorphism 7(zy, 72) = (71, z3). Thus

p(r,n(@)) = (rey, ray) = (rey, (ree)?),

and so

pu(r,z) =07 (p(r,n(x))) = 07" (rey, (re2)*) = (reg, ra).

Remark. The choice of such a flow is dictated by the need to simplify the
function x%7°.

iv) Vector flows. For a vector field V' : R? — R? that is Lipschitz con-
tinuous, there exists locally at ¢ = 0 a unique solution ¢(t,z) = ¢y (t,x) of
the equation ¢(t,z) = V(¢(t,x)) with initial condition ¢(0,x) = . For the
linear field V(z) = Ax, the flow is given globally by ¢ 4(t,z) := exp(At)z.
Linear fields and thereby their flows may be added; for future reference note
that if A, B commute then ¢, 5(t, ) = exp(At) exp(Bt)x = @ (t, ¢5(t, z))
and, since ¢ 4(t,z) = Ap,(t, x), we then have

Parp(t,z) = (A+ B)oap(t z)
= SbA(tv @B(tvx))+9b3(t’ SOA(tax))'
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For general A the orbits may be represented by combinations of exponential
functions e corresponding to eigenvalues of A multiplied by polynomials in
t, i.e. factors that are slowly varying (in a relative sense). Thus without
loss of generality one may as well assume that A = A a diagonal matrix; in
this case writing e” for x; we obtain the additive formulation ¢, (¢, x) =
(exp(Ait + x;)). That is, under a canonical transformation of the underlying
space we obtain an affine flow ¢ 4 (¢, z) := (\;t+x;). See later for consequences
of this.

v) Semi-flows. Identifying the Borel sets of R? as the subspace of corre-
sponding indicator functions in L' one may consider intersection as defining
a semi-group directed flow (¢, ) — ¢ N z. The natural base point here is the
set e = R%.

Definition-2. Let H be a topological group, (in applications, usually
R) and X a homogeneous space, for instance R and R?, or a normed vector
space or a locally compact abelian group in the Bajsanski-Karamata context.
We say that k : X — H is flow homogeneous w.r.t. the flow ¢ if there is a
(conjugate) flow ¢, on H such that for all ¢, z,

k}(gp(t, :L‘)) = @k(t’ k(l‘))

Note that if k is a surjection, then the flows ¢ and ¢, are said to be
topologically semiconjugate (cf. [Sm], [Yan]).

Example 1 (Multiplicative homogeneity). For X = R?\{(0,0)} and
with zop = (1,1) and s¢o = (0,0), consider the standard radial flow (¢, z) =
tr = (tzy,tzy). The function k(z) = z* := 2{*25? is flow homogeneous
with a conjugate flow which is also radial, namely ¢, (t,x) = t’x, where
p = (a1 + a3). Indeed

k(p(t,2)) =t )adag? = oy (t, k(2)).

This is the standard notion of multiplicative homogeneity for a function F)
namely

F(tr) = t*F(z).

Example 2 (Additive homogeneity). This is significant in regular
variation whenever an additive formulation is used (implying an abelian
context). For X = R? and with 29 = (1,1) with so at infinity, consider
the shift flow p(t,x) = = + tzg = (21 + t,x2 + t). The linear function
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k(r) = ar = a1z + asxs is flow homogeneous with conjugate shift flow
ot x) = x 4+ (g + ao)t. Indeed

E(p(t,x)) = ar(z1 + 1) + ag(xe + 1) = k(x) + (a1 + ao)t.

We note that after the standard transformation f(z) = log F'(e™, ¢*?) addi-
tive homogeneity arising as shift—-flow homogeneity for f corresponds to the
standard multiplicative homogeneity for F' as in Example 1.

Definition-3. Let H be a topological group and X a homogeneous space
carrying a real low. We say that h : X — H is Gdteaux regqularly varying on
X relative to the flow ¢, with Gateaux limit function k := d,h (Oh, or, Orh
when ¢ is clear from context), if for all =

h(p(t, z))h(p(t, 20)) " — k(x), ast — oo.

Notice that
k(Zo) =0.

The definition remains valid for the case of the semi-flow (¢,2) — t Nz of
Example (v) above; here the limiting log conditional probability lim[log P(zN
h) —log P(e N h)] taken over half spaces h diverging to infinity is studied in
[BalEmb].

We think of a flow as determining a direction; to connect the real flow
definition of regular variation here with the general theory of [BOst13] one
needs the following result, whose proof is by specialization to the group of
actions 7" to R, hence is omitted.

Proposition. If h is Fréchet @-reqularly varying with respect to the
group @, then h is Gateaur @-reqularly varying for any ®-flow ¢.

Proposition (Concatenation Formula). If h is Géteaux regularly
varying relative to the flow @ for the distinguished point z = zy, then for any
w the Gateauz limit k,(z) = limh(o(t, z))h(o(t,w)) ™" exists and

k,(x) =k, (w)ky(z).
Proof. As before

ko(x) = limh(p(t, 2))h(e(t, w) " h(p(t, w)h(p(t, 2))
= ky(x)k.(w). O



Thus the distinguished point has no special role, other than fixing the
context. The concatenation formula shows that we can expect k. (.) typically
to be affine when X is a vector space, unless k. (0) = 0; so since k,(z) = 0, the
natural choice is zg = 0. The Index Theorem below will entitle us to define
the class R,(¢) with p € H of regularly varying functions (relative to ¢) with
index p, by analogy to the classical theory (cf. [BGT] Section 1.4.2); thus
when H = R, we have p € R, as in the classical theory. In fact, the result
below takes in Meerschaert and Scheffler’s context of work [MeSh], namely
G L(R?), the group of invertible linear operators from R? to R?, since this is
an open subset of the normed vector space H = L(R?) of all continuous linear
operators, regarded as an additive group (their index, once transformed to
the additive formulations, is in H).

On various occasions we refer to functions with properties related to the
classical property of Baire. For background on Baire sets (i.e., sets with the
Baire property) we refer to Kechris ([Kech]; see section 8.F p. 47) and on
Baire category and Baire spaces, we refer to Engelking ([Eng]; see especially
p-198 Section 3.9 and Exercises 3.9.J), although we prefer ‘meagre’ to ‘of
first category’. In our more general context we need to distinguish between
three possible interpretations of the Baire property in relation to functions,
as follows.

Definitions-4.

1. Say that a function f : X — Y between two topological spaces is
H-Baire, for H a class of sets in Y, if f~1(H) has the Baire property (i.e.
f~Y(H) is open in X modulo the meagre sets of X) for each set H in H.
Thus f is F(Y)-Baire if f~1(F) has the Baire property for all closed F in Y.
Since

fON\H) = X\f(H),
f is F(Y)-Baire iff it is G(Y')-Baire, when we will simply say that f is Baire
(‘f has the Baire property’ is the alternative usage).

2. We distinguish between functions that are F(Y')-Baire and those that
lie in the smallest family of functions closed under pointwise limits of se-
quences and containing the continuous functions (for a modern treatment see
[Jay-Rog] Sect. 6). We follow tradition in calling these last Baire-measurable.

3. We will say that a function Baire almost continuous, or just Baire-
continuous, if it is continuous when restricted to some co-meagre set.

The connections between these concepts are given in the theorems below.
See the cited papers for proofs.



Banach-Neeb Theorem ([Ban-T| Th. 4 pg. 35, and Vol I p. 206; [Ne]).

(i) A Baire-measurable f: X — Y with X a Baire space and Y metric
s Baire-continuous.

(ii) A Borel-measurable f: X — Y with X,Y metric and Y separable is
Baire-measurable.

Remarks. In fact Banach shows that a Baire-measurable function is
Baire-continuous on each perfect set ([Ban-T| Vol. II p. 206). Neeb assumes
in addition that Y is arcwise connected, but, as Pestov remarks in [Pes|, the
arcwise connectedness may be dropped by referring to a result of Hartman
and Mycielski [HM] that a separable metrizable group embeds as a subgroup
of an arcwise connected separable metrizable group.

Baire Continuity Theorem. A Baire function f : X — Y is Baire-
continuous in the following cases:

(i) Baire condition (see e.g. [THJ] Th. 2.2.10 p. 346): Y is a second-
countable space;

(ii) Emeryk-Frankiewicz-Kulpa ([EFK]): X is Cech-complete and Y has
a base of cardinality not exceeding the continuum;

(iii) Pol condition ([Pol]):f is Borel, X is Borelian-K and Y is metrizable
and of nonmeasurable cardinality;

(iv) Hansell condition ([Han)): f is o-discrete and Y metric;

We will say that the pair (X,Y’) enables Baire continuity if the spaces
X, Y satisfy any one of the two conditions (i), or (ii). In the applications
below Y is usually the additive group of reals R, so satisfies (i). Building
on [EFK], Fremlin [Frem| Section 9, characterizes a space X such that every
Baire function f : X — Y is Baire-continuous for all metric Y in the language
of ‘measurable spaces with negligibles’; reference there is made to disjoint
families of negligible sets all of whose subfamilies have a measurable union.
For a discussion of discontinuous homomorphisms, especially counterexam-
ples on C(X) with X compact (e.g. employing Stone-Cech compactifications,
X = ON\N ) see [Da] Section 9.

Remarks. Hansell’s condition, requiring the function f to be o-discrete,
is implied by f being analytic when X is absolutely analytic (i.e. Souslin-
F(X) in any complete metric space X into which it embeds). Kuratowski
[Kur| first raised the general question of the circumstances when a Baire
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function is Baire-continuous. See Frankiewicz and Kunen [FrKu] for set-
theoretic independence results concerning Baire continuity of all Baire func-
tions f : X — Y in the category of metric spaces, where such assertions are
connected to certain large cardinal axioms. (See Frankiewicz [Fr] in regard to
consequences of the axiom of constructibility.) Compare also the comments
in [Frem] p. 86.

We will need the following result, whose proof is included as it is short
and elegant (cf. Continuous Cocycle Theorem of [BOst13] Section 5).

Banach-Mehdi Theorem (cf. [Ban-T] 1.3.4, p. 40 albeit for ‘Baire-
measurable’ functions, [Meh]). An additive Baire function between complete
normed vector spaces 1s continuous, and so linear, provided the image space
18 separable.

Proof. Suppose k is a Baire function, in the sense that inverse images
under k of open sets are sets with the Baire property. Thus by the Baire Con-
tinuity Theorem k is continuous on some co-meagre set D. Suppose further
that k is additive. If x,, — xg, then the set

T := ﬂ{t:t—i—anD}: m(D—xn)

ncw new

is co-meagre and so non-empty. Let ¢t € T. Thus {t + =, : n € w} C D, and
SO
k(t) + k(xn) = k(t 4+ x,) — k(t + x0) = k(t) + k(z0),

(
so that k(x,) — k(xg). Thus k is continuous. From additivity one has
k(rxz) = rk(z), for r rational, and so from continuity for all real r. That
is, k is linear. [

On this matter, compare Topsge and Hoffmann-Jgrgensen ([THJ] Th.
2.2.12 and 2.3.1, p. 348-350) in connection with generalizations of Banach’s
continuity theorem and the cautions of p. 339-40, and in connection with
the Ostrowski Theorem, see p. 368 and esp. p. 382. (See also [BOst8] for a
generalization of Banach’s argument.)

We will also need to refer to a general version of the Riesz Representation
Theorem (see [Rul] Ch. 6). For T" a topological space, recall that C.(T),
resp. Co(T), denotes the space of real-valued continuous functions which
have compact support, resp. vanish at infinity. Note that a positive linear
functional on C.(T") need not extend to a bounded linear functional on Co(7T').
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For this reason there are two versions of the abstract Riesz representation
theorem.

Theorem R1. Let T be a locally compact Hausdorff space. For any
positive linear functional k on X = C.(T), there is a unique reqular Borel
measure | on T such that

k(z) = / 2(B)du(t), for z € Cu(T).
T
We also have:

Theorem R2. Let T be a locally compact Hausdorff space. For any
continuous linear functional z* on Co(T), there is a unique reqular Borel
signed measure  on T such that

¥ (r) = /T:E(t)d,u(t), for x € Co(T).

The norm of =* as a linear functional is the total variation of u, that is
||z*|| = |u|(T). Furthermore, x* is positive if and only if the signed measure
18 non-negative.

Corollary. Let X = Co(T) with T a locally compact Hausdorff space.
For ® the group of shift homeomorphisms, if h : X — R Baire ®-reqularly
varying with null point the zero of X, then, for some measure p on T we
have

k(z) = Oha(z) = / 2(#)dp(t).

T

In particular, if h:C[0,1] — R is Baire regularly varying, then, for some
signed measure (function of bounded variation) «, the ®-limit function is
given by

k(z) = Oph(z) — /0 +(#)da(t).

Proof. Referring to the shift homeomorphisms ¢, (z) := z + x, we may
identify = with ¢,. Since ¢, 0, = ¢, ,, we have by the Bounded Homomor-
phism Theorem ([BOst15], Section 2)

k(x +y) = k(o) = k(o 0p,) = k(p,) + k(p,) = k(x) + k(y),

12



since we regard X = Cy(T') as a (complete) normed vector space. By the
Banach-Mehdi Theorem £ is a continuous linear functional. The conclusion
follows from the Riesz Representation Theorems R1 and R2. [

Index Theorem. Let X, H be metrizable topological groups. The limit
function k(z) := 0,h(x) of a function h: X — H which is reqularly varying
relative to a flow ¢ on X s flow homogeneous, i.e., there is a flow ¢, on H
such that, for all t,x,

k(p(t x)) = @y(t, k(z)).

Furthermore, the conjugate flow is a time-multiplicative shift in H, i.e.

wi(t, 2) = 2p(t),

where p is multiplicative, and continuous if the pair (X, H) enables Baire
continuity. In particular, for h Baire, X and H complete normed vector
spaces with H separable, there is some constant p = p, € H such that the
conjugate flow takes the form

wk(tv Z) =zt ,Ot.
Proof. We have
k(p(r,2)) = lmh(p(t +7,2)h(p(t, 20)) "
= limh(p(t +7,2))h(p(t + 7, 20)) *h(p(t + 7, 20) ) h(e(
= limh(p(t +7,2))h(o(t + 7, 20)) " h(w(t, o(T, 20))h(p
= k(2)k(p(T, 20)).

Thus k£ is flow homogeneous with conjugate flow (see Definition-2)

- T+
N
=)
Ny
N
|
—

o(T,2) = 2k(p(T, 20)).

Put
p(t) == k(p(t, 20))-

Since @' = p*! a reference again to the Continuous Homomorphism The-
orem of [BOst15], Section 2 yields

k(plo +7,20)) = k(p(o, 20))k(e(7, 20)),

i.e., p is a homomorphism (is multiplicative), which is continuous if the pair
(X, H) enables Baire continuity (see the Remark after Definitions-3). When
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X and H are complete normed vector spaces, regarded as additive groups,
we regard the homomorphism p as additive. Thus if & is Baire, then so is &,
and hence p is Baire. By the Banach-Mehdi Theorem, p(t) = p,t for some

py- U

Example (Flow Indices for regular variation on a normed vector
space) For X a normed vector space, the natural choice of null point is
20 = 0. The canonical regularly varying functions are the continuous linear
functionals in X*, which we now investigate. Let ® denote the family of
shifts ¢, () = = + u, with u € X. Consider an arbitrary sequence in ® :

o, (T) = x + ).

Each shift is a bounded homeomorphism with d(p,,(z),id(z)) = d(x,,0) =
||z,||- The sequence is divergent provided ||x,|| — oo. Moreover, we have

(1) = 2%(,(0)) = 27(pn(2) = #,(0))
= z%(z).

Thus h := z* is $-regularly varying with limit function & := z* (i.e. inde-
pendent of the choice of divergent sequence). We may use this observation
to compute the flow index of variation p,, of z* provided the transformation
group is compatible, that is, is contained in ® : ®(p) C P, or ' € P, for all
t. Then we have, for some u(t) € X

o' () = up(r) = 2+ u(t).

Put u := u(1) and note that the group property requires that u(t) be additive,
namely
u(s +1t) =u(s) +u(t),

so that, since u(t) := ¢(t,0) is continuous,
u(t) = tu(1),
and so u is the direction of the flow, since
o'(z) = x + tu.

Now
p, = p(1) = k(p(1, 20)) = 2™ (u).
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Remark (Strong and weak derivatives). The equation p, = *(u)
just derived identifies the index p,, as a Gateauxr (directional) derivative (at
infinity) of a regularly varying function in the direction of the flow u. The
limit function x* is the Fréchet derivative at infinity, or ®-limit, of a regularly
varying function, hence our choice of terminology (compare [HP] Ch. IIT and
[Ru2] Ch. 10, Differentiation — omitted in 2nd ed. [Ru3], and for more
recent literature cf. [D1], [D2], [DN]). What we see here is in complete
analogy with notions of functional analysis. Fréchet differentiability is the
stronger concept (most useful in optimization theory); it is usual to identify
the strong derivative by computing the directional derivative as a ‘function of
the direction’. To motivate the following definition, recall that in the normed
vector space context a function h with domain D is Hadamard differentiable
at x ‘tangentially to a subset Dy’ if there is a continuous linear map (the
derivative) k(z) defined on Dy such that

h(x + tuy) — h(x) = tk(z)u, + o(|t]) for uy — u € Dy;

see [V] Section 20.2. (The concept is used in support of the Delta method;
see [BP1], [BP2] for examples.) The equivalent formulation is that

h(z + tu) — h(z) = tk(z)u + o(|t])

uniformly over compact sets of points u, justifying the term compactly dif-
ferentiable at x due to J.A. Reeds [Re].

Definition-5. For X homogeneous and H a topological group, we say
that h : X — H is Hadamard p-reqularly varying, with Hadamard limit
function k, if for each x in X

h(90<t7 Utl'))h(@(t, ZO))_I - k($)7

for any bounded homeomorphisms o; converging to the identity. This notion
occurs in course of the proof of the UCT under the guise of the crimping
property (see [BOst13]) and corresponds to a similar condition occurring in
Yakymiv [Ya]. That same proof now gives the following result. For the notion
of a Baire space see [Eng] (especially p.198, Section 3.9 and Exercises 3.9.J).

Uniform Convergence Theorem for Flows (Flow UCT). Suppose
the following:
(i) X is a Baire space, equipped with a flow p;
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(ii) X is homogeneous, i.e. for any pair of points z,u there is a bounded
homeomorphism o such that o(z) = u.

Let h be Baire and Hadamard @-slowly varying: for any bounded home-
morphisms oy tending to the identity,

hp(t, o)) h(o(t, )" — en.

Then, for x in any compact set K, we have uniformly in x the conver-
gence

h(e(t, 2))h(p(t, 20)) ™ — en.
This generalizes Yakymiv [Ya] Th. 1.1.2 (compare also [Om] Cor. 1.2.8).

Example (Flow Indices for h : C[0,1] — R) According to the Index
Theorem,

p(t) = k(p(t, 20))-
Thus for zyg = 0 we have

0= p(0) = k((0, 20)) = k(20)-

We previously identified & for the shift homeomorphisms ¢, (z) with the null
point zo = 0, which ensures that k(z) = 0.

As in the last example, the compatible choice of flow is any flow of the
form (t,2z) = z + tu. Thus with sy at —oo we have for u =1

p(t) = k(plt, 20)) = / 11+ z0(s)]da(s) = t(a(1) — a(0)).

Notice that for any other distinguished point w we obtain the affine form

k(p(t,w)) = /0 [t1 + w(s)]da(s) = t(a(l) — a(0)) +/0 w(s)da(s)
= p(t) + k(w).

Remark (Euler’s Theorem). As our notation suggests, for a fixed
function h the index of regular variation (when it exists) depends on the
flow. Indeed the limit function k in general depends on the flow. Consider the
special case h(z) = ayz1+asxs. For the shift flow ¢, (t, x) = (x1+ust, zo+ust)
we obtain

h(p,(t,z)) — h(p,(t,0)) = ai(z1 + wt) + az(zs + ust) — (cquit + apust)
= 1T1 + Q2l2,
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so that here k(x) = ajx1 + asxs, independently of the flow u. We see that
the horizontal flow ¢ .i,ontal(t; ) = (21 + ¢, 22) yields

k(Phorizontal (7)) = a1(@1 + 1) + aowy = k() + ant,

so that
Phorizontal — 1.

Similarly, pyeriica = Q2. For the shift flow ¢, (¢, ) = (x1 + uit, xo + ust) we
of course obtain
Pe = UL + U(ia.

This result is just an instance of Euler’s Theorem for homogeneous functions.
Indeed

d d
p o= ot + k(@) = Zh(e,(t,2))
d
= %k(as1+u1t,x2+u2t)

= U101 + Ug0xs.

This analysis may be repeated, mutatis mutandis, in the space C|0, 1], with
the vector « replaced by a function of bounded variation.

When £ is differentiable and independent of the flows, as in the examples
above, the Chain Rule yields, since pt = k(¢(t, 20)),

pcp - Dk(@(t ZO))SO(tu ZO):

whenever the velocity ¢ exists. This opens the issue of determining how this
latter formula may be deduced from general manipulations of flows.

Consider first the case of flows ¢4 (¢, ) induced by a vector field V(x) =
Ax. We have, if A, B commute, that

Pasp = DE(oaip(t 20))Pasp(t 20)
= Dk(@A(ta @B(t ZO)))@A(ta (pB<t7 ZU)) + Dk((pB(ta QOA(ta ZO)))(:‘OB(ta SDA(ta ZO))
= pPatpp

In particular, for A in diagonal form: A = A; + ... + A, and k = (ky, ..., k)
where each A; has entries zero except for \; as the i7 entry, then A; describes
a flow in direction e; for which we have p, = k;\; so that we retrieve the
Euler formula:

PA = Kidl + oo + Kp Ay,
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as before. This result is at the heart of the Spectral Decomposition Theorem
of [MeSh], p. Cor 2.2.5 and Th 4.3.10.

Remark. The addition formula above holds more generally for commut-
ing flows with velocites as we now indicate.

Definition-6. We say that the ®-flows ¢ 4, w5 commute if, for all t € R
Y4 = PP

Evidently, this will hold if the group ® is commutative (for instance in R?
the group of translations © — x + wu). One may then show, by algebraic
manipulation, first for integers and then for rationals, that

O ey = VheReL v,

i.e. for any = and rational s,t that

QDA(S + 1, SDB(S + t7l‘)) = QDA(S’ @B(Sv @A(t’ @B(tv CL’))))

By continuity the identity holds for all s,¢ € R. Thus in the commuting case
one may define the sum flow ¢, 5 by the condition

OYrp = Pu¥s.

(The groups {¢Y : t € R}, {p}% : t € R} commute elementwise; compare
the multiplicative representation of flows in [Ost-knit].) In a normed vector
space, assuming the flow ¢, has velocities at all points z, defined by

Oy = =lm(gy™ —ph)/s
s 0
(P
= lm ( = A) P = Dopagy,

where
Do = lim(g%y — ©y)/s.

Thus if ¢4, ¢ commute and both have velocities any point x, then we have

0B = 0P arpPurn = G0 sl + Do sl
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Note that with A\p(t,z) := @(\t, ), for a commutative group ®, the ®-
flows form a vector space and if we restrict attention to flows with velocities,
0o acts linearly on these.

Remarks.

1. If o5 and ¢~ commute with ¢4, then so does pzp-. Hence the centre
of the group {pg : ¢ commutes with ¢4} is a commutative group of flows
on X.

2. The centralizer of a matrix A in the group of d x d matrices coincides
with the ring of polynomials in A if and only if the minimum polynomial
coincides with the characteristic polynomial — see [ST| 1.3 and the broader
connection with spectral decomposition, also [Hal2] Section 84.

3. A set of matrices that are normal (satisfying AA* = A*A), and so
diagonalizable, commute if and only they are simultaneously diagonalizable,
sharing the same orthonormal eigenvectors (see for example [MaMi]). This
is clear in the case of two matrices with distinct eigenvalues (as Av; = \v;
implies that A(Bwv;) = A\;Bv;, so that Bv; = p,;v; for some p;).

4. It seems that a parallel flow theory may be introduced. Say that the
orbits and so the flows ¢, and g are singly intersecting if for all x

Oa(z) N Op(x) = {z},
or equivalently, that p%x = @4z iff s =¢ = 0. Then the equation
PaPpz = PaPp?
implies for w = ¢’z that
o w = g,
so if the flows are singly interecting s — v = 0 = v — ¢t. Thus if ¢, and ¢p

commute and are singly intersecting, then the base point z defines the span
of the two flows as the set of points x such that for some s, ¢, we have

st
T = PAPB=-

The co-ordinates s, t are thus uniquely determined. Moreover, by the Cocycle
Theorem of [BOst15]

k(phppz) = k(0hz) + k(epz) = pals) + pp(t).

The limit functions £ then have a representation theory similar to that of
linear transformations on R
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