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Abstract

This paper extends the topological theory of regular variation of
the slowly varying case of [BOst13] to the regularly varying functions
between metric groups, viewed as normed groups (see also [BOst14]).
This employs the language of topological dynamics, especially �ows
and cocycles. In particular we show that regularly varying functions
obey the chain rule and in the non-commutative context we charac-
terize pairs of regularly varying functions whose product is regularly
varying. The latter requires the use of a �di¤erential modulus�akin to
the modulus of Haar integration.
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1 Introduction

In [BOst13] and [BOst14] we developed the basic theory of regular variation
up to the Uniform Convergence Theorem (UCT) for functions h de�ned on a
metric (topological) group X with values in a metric group H:We employed
the language of topological dynamics (for which see [Ell1]), speci�cally T -
�ows on X, for T a group, that is continuous maps ' : T �X ! X satisfying

'(st; x) = '(s; '(t; x)); with '(eT ; x) = x;

where eT is the identity element of T: With tx denoting t(x) := '(t; x),
this enabled us to de�ne the dual cocycles (for which see [Ell2]) of regular
variation as

�h(t; x) := h(tx)h(teX)
�1 and ~�h(x; t) := h(tx)h(x)�1;

leading to the formulas

@Th(x) = lim
x!1

~�h(x; t) and @Xh(t) = lim
x!1

�h(x; t); i.e., as d(x; eX)!1:

Here we assume the limits are de�ned and exist. (The Characterization The-
orem of [BOst14] asserts that it su¢ ces for the limits to exist on a non-meagre
set.) When either limit is identically the identity element, respectively of X
or T; the function h is said to be slowly varying; two corresponding theorems
assert uniform convergence on compacts. When X = R and T = R� (the
multiplicative group of strictly positive reals), these formulas yield one and
the same classical de�nition of regular variation, for which see [BGT].
Here we extend the theory to regularly varying functions and consider the

their �calculus�: matters such as factorization of a regularly varying function
into a multiplicative function and a slowly varying one, and circumstances
under which products of regularly varying functions are regularly varying.
These matters are straightforward in an abelian-group setting. Here we �nd
that there is a satisfactory non-commutative theory, provided the metric is
appropriately invariant, although on occasion a Haar-like modulus function
is required (cf. [Na]).
We recall a number of de�nitions from [BOst12], to which we refer for

justi�cation and proof in the absence of other citations. Let X be a metric
group with identity element eX and with a metric dX ; which we assume
is right-invariant (the Birkho¤-Kakutani Metrization Theorem secures this
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property, cf. [Bir], [Kak]). It is helpful to refer to the associated group-norm
jjxjj := dX(x; eX); an equivalent way of describing the right-invariant metric
structure, where a group-norm jj � jj : X ! R+ is de�ned by the following
three properties:
(i) Subadditivity (Triangle inequality): jjxyjj � jjxjj+ jjyjj;
(ii) Positivity: jjxjj > 0 for x 6= e;
(iii) Inversion (Symmetry): jjx�1jj = jjxjj:

We can thus be guided by the normed vector-space calculus paradigm. We
denote by Auth(X) the group of self-homeomorphisms of X under composi-
tion. H(X) denotes the subgroup

fh 2 Auth(X) : jjhjj <1g;

where, in turn,

jjhjj := d�X(h; eH(X)) = sup dX(h(x); x))

denotes the group-norm on H(X); which metrizes it by the right-invariant
metric d(g; h) = jjgh�1jj:

2 Topological regular variation : Fréchet case

De�nitions. Let X be a metric space with a distinguished point z0: This
will usually be eX ; but on occassion other choices are convenient. As usual G
is the ground group of homeomorphisms of X into itself acting transitively on
X: Thus X is a homogeneous space. Let ' = f'ng be a divergent sequence
in G: Let H be a normed group.
We say that h : X ! H is '-regularly varying, or if context permits, just

Fréchet regularly varying, if for some function k(:) = @'h(:) and, for each t;

h('n(t))h('n(z0))
�1 ! k(t):

We have thus preferred division on the right and so, strictly speaking, have
de�ned right�regular variation (left-regular requiring division on the left);
we return to this matter below. The de�nition of �-regularly varying follows
that of �-slowly varying (for which see [BOst13]), to which this case reduces
when k(t) � eH . In particular, for � generated from a divergent sequence
' = f'ng by composing 'n with the bounded homeomorphisms of H(X); we
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will say that h is strongly '-regularly varying. We refer to the function k as
the limit function, or the �-limit function.
We will be exclusively concerned with Baire functions (functions with the

Baire property). When h : X ! Y and X; Y are locally compact topological
groups it is natural to consider h measurable in the sense of Haar measures
on X and Y: Then the limit function k is also measurable. We shall soon
see that k is then a homomorphism. According to Kodaira�s theorem ([Kod],
corollary to Satz 18. p. 98) k is measurable i¤ k is continuous (so i¤ Baire),
since the Weil topology determined by a measure is the original topology of
the group �see [We], and [Hal1] Ch. XII.
In a companion paper [BOst16], we study R-�ows, i.e. group actions

specializing T to R, and so one needs to discriminate between cases. By
analogy with the theory of di¤erentiation in functional analysis (compare
[HP] Ch. III and [Ru-FA1] 1st ed., omitted in 2nd ed.) we shall there call
these cases Fréchet, Gâteaux and Hadamard. The limit function k here will
there be called the Fréchet limit function.
Given a bounded homeomorphism � we will later identify the point (im-

age) t = �(z0) in the de�nition above with � . Thus

k(�); or k(�(z0)) = limh('n(�(z0)))h('n(eX))
�1: (RV)

This enables us to interpret k as a mapping from H(X) to H: Our �rst
proposition shows the e¤ect of changing the distinguished point.

Proposition (Concatenation Formula). If h is '-regularly varying
for the distinguished point z = z0; then for any w the corresponding Fréchet
limit kw(x) = limh('n(x))h('n(w))

�1 exists and

kz(x) = kz(w)kw(x):

Proof. We have

kz(x) = limh('n(x))h('n(w))
�1h('n(w))h('n(z))

�1

= kw(x)kz(w): �

Our next result demonstrates that we may identify k(x) and k(�x); despite
the fact that there will be more than one homeomorphism mapping z0 to x:

De�nition. Here (as in Section 4 of [BOst13]) let H0 = f� 2 H(X) :
�(z0) = z0g be the stabilizer subgroup (of the distinguished null point). Note
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that this is conjugate to the stabilizer of any other point of the (homogeneous)
space X: Thus, for �; � in H(X) with �(z0) = �(z0); we have ��1� 2 H0:We
will regard two homeomorphisms �; � in H(X) that are H0-equivalent (i.e.
both in the same coset of H0; e.g. � 2 �H0) as equal. Whenever convenient
we will denote by �x the unique homeomorphism (up to equivalence) taking
z0 to x: This is particularly useful when G is a topological group, where the
canonical choice is

�u(g) = �u(g) = ug;

as we then have �u�v = �uv: The following result justi�es use ofH0-equivalence.

Proposition. If h is strongly '-regularly varying and � is a bounded
homeomorphism with �(z0) = z0, then the corresponding Fréchet limit func-
tion satis�es k(�(t)) = k(t).

Proof. We have

k(�(t)) = limh('n(�(t)))h('n(z0))
�1 = limh('n(�(t)))h('n(�(z0)))

�1 = k(t):

�

Now consider the homeomorphism

�(x; y) := �y�
�1
x :

Since �(x; y)(x) = y; this is just the canonical homeomorphism taking x to
y: Moreover,

�y = �(x; y)�x;

so that � is a coboundary cocycle (the de�ning property being the last equa-
tion) given the present context which treats the homeomorphism t from x to
y as unique so that y and xt are indistinguishable (see e.g. [Ell2]). Of course,
in the group context we have �(x; y) := �yx�1 :

Proposition (Coboundary Property). If k is strongly '-regularly
varying, then k is a homomorphism from the group of bounded homomor-
phisms H(X) into the normed group H, that is

k(��) = k(�)k(�):

In particular, k has the coboundary property,

k(�y) = k(�(x; y))k(�x);
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and hence, if X is a topological group, then

k(�uv) = k(�u)k(�v):

Proof. For bounded �; � we have

k(��) = limh('n(�(�(z0))))h('n(z0))
�1

= limf[h('n(�(�(z0))))h('n(�(z0)))]�1 � [h('n(�(z0)))h('n(z0))]�1g
= k(�)k(�):

The coboundary property follows from taking � = �x and �(x; y) = �y�
�1
x

so that �� = �y:
As to the �nal equation, take v = x; u = yx�1 to obtain uv = y and note

�(x; y) = �yx�1 = �u: �

Our last results in this section assert continuity. One of the ingredients
is an idea due to Banach (see [Ban] 1.3.4, p. 40 in collected works, cf. [Meh],
see also the Banach-Mehdi Theorem in the companion paper [BOst14] and
associated literature cited there). We recall a de�nition from [BOst13].

De�nitions.
1. Let  n : X ! X be auto-homeomorphisms. We say that a sequence

 n in H(X) converges to the identity if

jj njj = d�( n; id) := sup
t2X

d( n(t); t)! 0:

2. Say that X has the crimping property at z0 if for any null sequence
zn ! z0; there is a sequence of homeomorphisms  n converging to the identity
(so necessarily in H) with  n(z0) = zn: We refer to the  n as a crimping
sequence at z0: Say that X has the crimping property globally if it has the
crimping property at all points.

Theorem (Continuous Coboundary Theorem). Suppose that X is
a Baire space with the crimping property (as in the UCT). If h is Baire
regularly varying with limit function k, then k is Baire, has the coboundary
property

k(�y) = k(�(x; y))k(�x);

equivalently
k(�x�y) = k(�x)k(�y);
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and is continuous.

Proof. First observe that k(:) is Baire. Indeed, for each r > 0; the
corresponding level set Tr := ft : jk(t)j < rg may be expressed as

Tr =
[
k2!

\
n�k

ft : jh('n(t))h('n(z0))�1j < rg;

and this is a Baire set, because the Baire sets form a �-algebra and each
set ft : jh('n(t))h('n(z0))�1j < rg is Baire by the continuity of 'n and the
assumption that h is Baire. Now

X =
[
r2Q+

Tr;

so since X is a Baire space, the set Tr for some r is non-meagre.
We have already demonstrated the coboundary property.
We �rst set out the proof of continuity at z0. Take zn ! z0; we will show

that k(zn)! k(z0) = 0: By the crimping property, we may choose a sequence
 n converging to the identity with zn =  n(z0): Being Baire, the function k
is continuous on a co-meagre set D: Now

T :=
1\
n=1

ft :  n(t) 2 Dg =
1\
n=1

 �1n (D)

is co-meagre and so non-empty, since each  n is a homeomorphism. Let
t0 2 T: Select � with �(z0) = t0: Put tn =  n(t0) =  n(�(z0)): Thus ftn : n 2
!g � D and tn ! t0; since  n converges to the identity. Writing  n for � in
the Coboundary Property, we obtain

k( n(�(z0))) = k( n(z0))k(�(z0));

or
k(tn) = k(zn)k(t0):

Since k is continuous on D at t0 we conclude that k(zn) ! k(t0)k(t0)
�1 =

e = k(z0): Thus k is continuous at z0:
To prove continuity at an arbitrary location x0; �rst choose a bounded

homeomorphism � with �(z0) = x0: Put zn = ��1(xn): Then zn ! z0; so
we may choose a (crimping) sequence  n converging to the identity with
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zn =  n(z0): As we wish to prove a topological result about k we may,
by the deGroot and McDowell Lemma ([dGMc]), assume w.l.o.g. that � is
uniformly continuous. Thus, by Lemma 2, the conjugate sequence � n =
� n�

�1 converges to the identity. As before,

T :=
1\
n=1

ft : � n(t) 2 Dg =
1\

n=1n

� 
�1
n (D)

is non-empty. For t0 2 T; we have tn = � n(t0)! t0; since � n converges to the
identity. So k(tn) ! k(t0); as tn 2 T: Writing � n for � in the Coboundary
Property, and noting that � n(z0) = xn; we obtain

k(� n(�(z0))) = k(� n(z0))k(�(z0)):

So
k(tn) = k(xn)k(t):

Thus k(xn) ! k(tn)k(t)
�1 ! k(t0)k(t)

�1 = k(x0); since with � replaced by
� in the Coboundary Property we have

k(t0) = k(��(z0)) = k(�(z0))k(�(z0)) = k(x0)k(t):

So again k(xn)! k(x0); and k is continuous. �

In particular specializing X to topological groups, and taking �x(z) =
�x(z) = xz; one has:

Corollary (Continuous Homomorphism Theorem). Suppose that
h is a Baire regularly varying function de�ned on a Baire topological group
X and h has a limit function k: Then k is a continuous homomorphism,
i.e.

k(xy) = k(x)k(y):

Comments.
1.When investigating limit function @'h in the topological group context

one should restrict attention to divergent sequences ' that are admissible
in the following sense. If K(G;R) � C(G;R) is the subspace of (continuous)
homomorphisms from a topological group G to the additive group of the reals
R, then we say that ' = f'ng is admissible if, for each k in K(G;R),

@'k := lim
n
k('n(g))k('n(z0))

�1 2 K(G;R):
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For example, when G = R with � comprising a¢ ne homeomorphisms, a
sequence 'n(x) = anx+bn is admissible if an ! a is convergent and jbnj ! 1.
Indeed, if k(x) = �x; then we have @'k(x) = ak(x); as

�(anx+ bn)� �bn = �anx! �ax:

2. Isometries are special, but Brouwer�s Plane Translation Theorem as-
serts that any orientation preserving �xed-point-free homeomorphism of R2
is topologically conjugate to a translation, e.g. 'e1(x) := x+e1 = (x1+1; x2):
See for example [Gu].

3 The calculus

We begin by recalling that h : X ! H is '-regularly varying in the weak
sense, for ' = f'ng a divergent sequence of auto-homeomorphisms of X; if,
for some function k : X ! H;

h('n(x))h('n(e))
�1 ! k(x) for all x 2 X; as n!1;

i.e.
dH(h('n(x))h('n(e))

�1; k(x))! 0:

In this section we work with this weaker form. When 'n(x) = unx; we
have jj'njj = d�X(eT ; 'n) = sup dX(x; unx) = dX(e; un) = jjunjj; and so the
de�nition reduces to

h(unx)h(un)
�1 ! k(x) for all x 2 X; as n!1:

We note that by the triangle inequality (cf. Corollary in Section 2 of [BOst13])

jjunjj � jjxjj � jjunxjj � jjunjj+ jjxjj;

so that, in some sense, a �xed x provides a relatively small increment to
the point at in�nity (however, here we do not have an upper bound on
jjxjj=jjunxjj); on that basis we may think of f(unx)f(un)�1 as a generalized
di¤erential quotient. These analogies are driven by the abelian case, when
we may write additively

d(h(un + x)� h(un); k(x))! 0; for all x 2 X; as n!1:
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Correspondingly, here k(x) is linear, and thus the di¤erential h(un+x)�h(un)
is linearly approximated. Passing to a normed vector space X; one has

jjh(un + x)� h(un)� k(x)jj ! 0; for all x 2 X; as n!1;

which is di¤erential calculus proper. This is the ultimate justi�cation for
borrowing di¤erential terminology; in particular, we write @'h for the limit
function, when it exists. Indeed topological groups were taken by A. D.
Michal and his collaborators as a canonical setting for di¤erential calculus
(see the review [Mich] and as instance [JMW]).

As a �rst application of the concept of normed group we prove the fol-
lowing.

Proposition (Chain Rule of Regular Variation). Let X;G;H be
normed groups. Let g : X ! G and h : G ! H be regularly varying with g
diverging under the group-norm of G, i.e.

jjg(x)jjG !1; as jjxjjX !1;

and suppose that G is locally compact. Then

@X(h � g)(t) = @Gh@Xg(t):

Proof. Fix t: Put

g(tx) = a@Xg(t)g(x) with a = a(x)! eG; as jjxjj ! 1:

Then in the limit as jjxjj ! 1; we have with y = g(x) that jjyjj ! 1 and
so for s in a compact set

h(sy)h(y)�1 = b@Gh(s) with b = b(s; y)! eH ; as jjyjj ! 1:

We take s such that
s = a(x)@Xg(t);

which, for large x; remains in a compact neighbourhood of @Xg(t):
Now @Gh is a continuous homomorphism, so that @Gh(a)! eH as a! eG;

and so

h(g(tx))h(g(x))�1 = h(a@Xg(t)g(x))h(g(x))
�1 = b@Gh(a@Xg(t))

= b@Gh(a)@Gh(@Xg(t))! eH@Gh(@Xg(t)):
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Thus
@X(h � g) = @Gh � @Xg;

as asserted. �

Our main concern in this section is with products of regularly varying
functions. In the classical context of the real line it is obvious that the
product of two regularly varying functions is regularly varying. This is also
true in the context of functions h : X ! H when the group H is abelian and
the metric is invariant. What may be said if H is non-commutative? It has
to be appreciated that our de�nition of regular variation opted for division on
the right, so to be fair the question should address one-sided multiplication
(in fact on the left, see below). To guess the answer, focus on the special
case of two multiplicative functions k(x) and K(x) with K(x) = x; if the
product k(x)K(x) were to be regularly varying, one would expect it to be
multiplicative, and the latter property is equivalent to

k(xy)xy = k(x)xk(y)y; i.e. k(y)x = xk(y);

this asserts that each value k(y) commutes with each element x in the group
H. One guesses that the range of k must lie in the center Z(H) of the group
H: (We recall that the subgroup Z(H) = fa 2 H : ah = ha for all h 2 Hg is
the centre.)

De�nition. A function k : X ! H will be termed central if the range of
k is in the centre Z(H):

We show here that a non-commutative theory may be developed justify-
ing the guess and yielding a Left Product Theorem which characterizes the
admissible left factor as the product kh of a central function k with a slowly
varying function h (subject to a mild regularity assumption). The theory
requires that the group H exhibit a strong metric property, one satis�ed in
the usual abelian case of R and C; namely bi-invariance (two-sided invari-
ance). Thus our theory extends the classical case of R and C. Bi-invariance
is equivalent, as Klee [Klee] shows, to the existence of a metric possessing
what we term Klee�s property:

dH(ab; xy) � dH(a; x) + dH(b; y): (1)

This is equivalent to the norm property

jjab(xy)�1jj � jjax�1jj+ jjby�1jj:
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We recall also Klee�s result [Klee] that, when the group H is topologically
complete and abelian, then it admits a metric which is bi-invariant (i.e.
both right- and left-invariant). However, we work with the assumption of
bi-invariance occasionally only, and sometimes also require completeness.

De�nitions. We call a metric with Klee�s property (1) a Klee metric for
H: We call H a Klee group if its metric dH is a Klee metric.

The bi-invariance property acts as a replacement for commutativity, and
is exactly the condition which allows a proper development of the calculus of
regularly varying functions, mimicking the non-commutative development of
the Haar integral (see e.g. [Na]). Traditionally regular variation �nds its uses
in probability theory, where H = R (the result of probabilities being real), so
our restriction o¤ers an expansion of the theory which, in particular, takes in
its stride applications to complex analysis. For a discussion of bi-invariance
in the context of matrices see e.g. [Bha] Section 3. We begin with basic
factorization theorems where one factor, a right-factor, is slowly varying.
This way round is easy by virtue of the de�nition of regular variation on the
�right�(the division term being on the right). The other way about requires
the presence of some �central�features, as we shall see later.

Proposition (Preservation under inversion). Suppose H has a bi-
invariant metric. If h : X ! H is '-slowly varying, then the mapping
h�1 : x ! h(x)�1 is '-slowly varying. Hence the product of two '-slowly
varying functions is '-slowly varying.

Proof. Indeed, we have

dH(h('n(t))
�1h('n(z0); eH) = dH(h('n(z0); h('n(t))) = dH(eH ; h('n(t))h('n(z0)

�1);

so h(:) is slowly varying i¤ h(:)�1 is slowly varying. Using this we see that
for h; h0 slowly varying we have

dH(h('n(t))h
0('n(t))h

0('n(z0)
�1h('n(z0)

�1; eH)

= dH(h('n(t))h
0('n(t))h

0('n(z0)
�1; h('n(z0))

= dH(h
0('n(t))h

0('n(z0)
�1; h('n(t))

�1h('n(z0))

! d(eH ; eH) = 0:

Thus hh0 is slowly varying.�
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First Factorization Theorem. Suppose H has a bi-invariant metric.
If h : X ! H is '-regularly varying, then, with k = @Xh(t),
(i) k(t) is '-regularly varying and k(t) = @'k(t);
(ii) �h(t) := k(t)�1h(t) is '-slowly varying. Thus h(t) is the left product

of its limit function with a slowly varying function �h :

h(t) = @'h(t) � �h(t):

Proof. For �xed n; since 'n is bounded 'm('n(:)) is, by Lemma 3 of
[BOst13], a divergent sequence, so

k('n(t))k('n(z0))
�1 = lim

m
[h('m('n(t)))h('m(z0))

�1][h('m('n(z0)))h('m(z0))
�1]�1

= lim
m
[h('m('n(t)))h('m('n(z0)))

�1

= k(t):

So k is regularly varying and , as n!1;

dH(k('n(t))
�1h('n(t))[k('n(z0))

�1h('n(z0))]
�1; eH)

= dH(k('n(t))
�1h('n(t))h('n(z0))k('n(z0)); eH)

= dH(h('n(t))h('n(z0))]
�1; k('n(t))k('n(z0))

�1)

! dH(k(t); k(t)) = 0:

That is, k(t)�1h(t) is slowly varying. �

As a converse result, we have the following.

Second Factorization Theorem If H is a Klee group, g is regularly
varying and h is slowly varying, then g(t)h(t) is regularly varying with limit
@'g.
Proof. Put hn(t) = h('n(t)) and hn = hn(e) and let k = @'g: Then

dH(gn(t)hn(t)h
�1
n g�1n ; k) = lim dH(gn(t)hn(t)h

�1
n g�1n ; gn(t)g

�1
n )

= lim dH(hn(t)h
�1
n ; e) = 0: �

To progress further we need the idea of asymptotic conjugacy in a group
(cf. [KiKu] in the context of a C�-algebra where approximate inner auto-
morphism are obtained from a sequence of unitary elements). Our analysis
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is inspired by the non-commutative theory of the Haar integral (cf. [Na], Ch.
2.5). To motivate our de�nition we �rst consider a number of special cases.

Proposition. In a locally compact Klee group H, there exist divergent
sequences � = fhn : n 2 !g for which fhnah�1n g is convergent for some
a 6= eH :
Proof. We begin by observing that, for any (divergent) sequence � =

fhn : n 2 !g in a Klee group H and for any a 6= eH ;

jjhnah�1n jj = dH(hnah
�1
n ; e) = dH(hnah

�1
n ; hnh

�1
n ) = dH(a; e) = jjajj:

Thus, for any a 6= eH ; the sequence fhnah�1n g has a convergent subsequence;
passage to a convergent subsequence yields the conclusion. �

Of course, in an abelian group, asymptotic conjugacy is just the identity,
so convergence of the sequence fhnah�1n g holds at each a; likewise when fhng
lies in the centre Z(H); more signi�cantly, convergence holds at all points
when fhng is centrally asymptotic (i.e. asymptotic to the centre) in the two
senses captured in (i) and (ii) of the Proposition below. The summability
assumption in (ii) is motivated by a condition occurring in Kendall�s Theorem
([BGT], Th. 1.9.2 and its variants 1.9.3 & 4), namely

lim supxn =1 and limsup xn+1=xn = 1:

We recall Kendall�s Theorem: a continuous function f : R ! R for which
fanf(xnt)g converges to a continuous function of t; for some sequences fang
and fxng as above, is regularly varying. Thus here f is '-regularly varying
for the sequence 'n(t) = txn:We recall that jjhjj := dH(h; e); so that the con-
dition jjhn+1h�1n jj ! 0 (implied by the summability condition) is equivalent
to the second Kendall condition dH(hn+1h�1n ; e)! 0; when H is interpreted
as R�, the multiplicative group of strictly positive reals.

Proposition (Centrally asymptotic sequences).
(i) If kn 2 Z(H) and dH(kn; hn)! 0; then, for all a, limhnah�1n = a:
(ii) If H is complete and hn satis�es the summability conditionX

n

jjhn+1h�1n jj <1; (2)

then, for each a, fhnah�1n g is convergent, as are f(hnkn)a(hnkn)�1g and
f(knhn)a(knhn)�1g for kn 2 Z(H):

14



Proof. Since k�1n hn ! e we have

dH(hnah
�1
n ; a) = dH(hnah

�1
n ; knak

�1
n )

= dH(kn�1hnah
�1
n kn; a)! dH(a; a) = 0:

(ii) Here H is complete. Using the Klee property we obtain

dH(hnah
�1
n ; hn�1ah

�1
n�1) � 2dH(hn; hn�1) = 2dH(hnh

�1
n�1; eH)

= 2jjhnh�1n�1jj:

For general n > m; we have

dH(hnah
�1
n ; hmah

�1
m ) � dH(hnah

�1
n ; hn�1ah

�1
n�1) + :::+ dH(hm+1ah

�1
m+1; hmah

�1
m )

� 2
n�1X
j=m

jjhj+1h�1j jj:

Thus by the summability condition fhnah�1n g is a Cauchy sequence and hence
convergent (as H is complete). When kn is in the centre, hnknak�1n h�1n =
hnah

�1
n and so again the sequence f(hnkn)a(hnkn)�1g is convergent. Likewise

f(knhn)a(knhn)�1g is convergent, as kn(hnah�1n )k�1n = hnah
�1
n : �

We now show that in the non-commutative case the points a of conver-
gence of a sequence fhnah�1n g are well-structured. The choice of sign in the
notation below is motivated by the Modular Flow Theorem to be established
subsequently.

Asymptotic Conjugacy Theorem. Let � = fhng be any sequence of
elements in a Klee group H. The sets of the points of convergence de�ned by

D+(�) : = fa 2 H : hnah
�1
n is convergentg;

D�(�) : = fa 2 H : h�1n ahn is convergentg

are subgroups of H which are closed if H is complete. On D�(�) respectively
de�ne the asymptotically inner automorphisms:

A+(�; a) := limhnah
�1
n ; and A�(�; a) := limh

�1
n ahn:

Then A+(�; �) is a continuous isomorphism from D+(�) onto D�(�) and

A�(�; A+(�; a)) = a:

15



In particular, a 2 D�(�) i¤ A�(�; a) 2 D�(�):

Proof. We work with the plus versions. For a; b in D+(�) we have

limhnahnh
�1
n bh�1n = limhnah

�1
n limhnbh

�1
n = A+(�; a)A+(�; b);

hna
�1h�1n = (hnah

�1
n )

�1 ! A+(�; a)
�1;

showing that D+(�) is a subgroup of H on which A+(�; ) is a homomorphism.
Next we show that A+(�; a) = e has only one solution, namely a = e: Indeed
we have

dH(A+(�; a); e) = dH(limhnah
�1
n ; e) = lim dH(hnah

�1
n ; hnh

�1
n ) = lim dH(a; e) = jjajj:

Thus if A+(�; a) = e; then jjajj = 0; i.e. a = e: Finally, we deduce that the
homomorphism is onto D�(�); since

dH(hnah
�1
n ; A+(�; a)) = dH(a; h

�1
n A+(�; a)hn):

Suppose that am is a convergent sequence in D+(�) with limit a: Continuity
of A+(�; �) at a follows as

0 � dH(hnanh
�1
n ; A+(�; a)) � dH(an; h

�1
n A(�; a)hn)

� dH(an; a) + dH(a; h
�1
n A(�; a)hn)

= dH(an; a) + dH(hnah
�1
n ; A(�; a))! 0:

Finally, suppose that am 2 D+(�) and that am ! a: Put Am = A(�; am) and
choose Nm so that for n � Nm

dH(hnamh
�1
n ; A(am)) � 2�m:

As
dH(hnash

�1
n ; hnath

�1
n ) � dH(as; at);

by bi-invariance, we deduce that fAmg is Cauchy. For given integers s; t;
consider any n > max(Ns; Nt); here

dH(As; At) � dH(As; hnash
�1
n ) + dH(hnash

�1
n ; hnath

�1
n )

+dH(hnath
�1
n ; At)

� dH(As; hnash
�1
n ) + dH(as; at) + dH(hnath

�1
n ; At)

� 2�s + dH(as; at) + 2
�t:
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Thus fAmg is Cauchy. Suppose now that H is complete; then fAmg has a
limit, say, A: Now note that, for any m and any n > Nm; we have

dH(hnah
�1
n ; A) � dH(hnah

�1
n ; hnamh

�1
n ) + dH(hnamh

�1
n ; Am) + dH(Am; A)

� dH(a; am) + 2
�m + dH(Am; A):

So limhnah�1n = A: That is, a 2 D+(�): �

De�nition. We say that the Klee group H is asymptotically-invariant
for � = fhng if D+(�) = H; i.e. hnah

�1
n converges for all a 2 H to an

automorphism of X: We say that � is inner for A+ if for some h� 2 H

A+(�; a) = h�ah
�1
� ;

in which case � will be said asymptotically equivalent to h� for A+: The latter
condition implies that h�1� hn is inner and equivalent to the identity map idH ,
since

dH(limhnah
�1
n ; h�ah

�1
� ) = lim dH(hnah

�1
n ; h�ah

�1
� ) = lim dH(h

�1
� hna(h

�1
� hn)

�1; a):

De�nition. Let g; h : X ! H: In what follows we write hn = h('n(eX))
and gn = g('n(eX)): We say h is modular if H is asymptotically invariant
for � = fhng; i.e. if for each a in H the sequence of conjugates of a in H

hnah
�1
n

is convergent. Note that

dH(h
�1
n ahn; b) = dH(a; hnbh

�1
n );

so h�1 is modular if h is. Consider the case X = H: Here idX is modular i¤
X is asymptotically invariant for ' = f'n(eX)g:We will see later that when
H is non-abelian this cannot happen. This places a restriction on which
functions h : X ! X = H can be modular; their range must be in the centre
Z(H):

Let M = fh 2 C(H;H) : h is modular}. We give M the supremum
metric. Referring to the H-valued indicator function 1H(a) = eH ; we have
1H 2M: We put

�+(h; a) : = A+(fhng; a) = limhnah�1n ;

��(h; a) : = A�(fhng; a) = limh�1n ahn;

17



and term these the forward and backward (di¤erential) moduli of h (to dis-
tinguish them from the Haar integral moduli). Evidently �+(1H ; a) = a;
and

��(h
�1; a) = limh�1n ah�1n = ��(h; a):

Lemma Under a bi-invariant Klee metric, for all a; b; g; h H;

dH(a; b)� 2dH(g; h) � dH(gag
�1; hbh�1) � 2dH(g; h) + dH(a; b):

Proof. Referring to Klee�s property, we have via the cyclic property

dH(gag
�1; hbh�1) = jjgag�1hb�1h�1jj = jjh�1gag�1h�1b�1jj

� jjh�1gjj+ jjag�1h�1b�1jj
� jjh�1gjj+ jjab�1jj+ jjh�1gjj:

Hence substituting g�1ag for a etc., then g�1 for g etc., we obtain

dH(a; b) � 2d�H(g�1; h�1) + dH(gag
�1; hbh�1):

But dH is bi-invariant, so

dH(g
�1; h�1) = ~dH(g; h) = dH(g; h): �

Proposition Under a bi-invariant Klee metric on H the moduli, ��(:; :)
are uniformly jointly continuous on M�H; when M is given the supremum
metric.

Proof. By the Lemma

dH(a; b)� 2d�H(g; h) � dH(gnag
�1
n ; hnbh

�1
n ) � 2d�H(g; h) + dH(a; b): �

Modular Flow Theorem Let H have bi-invariant Klee metric. Then,
for h : X ! H modular (in M) the modular functions ��(h; �) are both
isomorphisms of H. M is a group with identity 1H and �+ is an M-�ow
on H, that is, for all a

�+(gh; a) = �+(g;�+(h; a)); and �+(1H ; a) = a;

moreover,
�+(h;��(h; a)) = a:

18



Proof. We may solve for a the equation �+(h; a) = b: The solution is
a = �+(h

�1; b): Thus

��(h; ab) = limh
�1
n abh�1n = limh�1n ah�1n limh�1n bh�1n = ��(h; a)��(h; b):

Moreover
a = limhnh

�1
n ahnh

�1
n = �+(h;��(h; a)):

Since knak�1n ! �+(k; a); we have by continuity of �+(h; �) that

�+(gh; a) = lim gnhnah
�1
n g�1n = �+(g;�+(h; a)):

This implies �rst that gh is modular, secondly that, since h�1 is modular,M
is a group, and thirdly that �+ is an algebraic �ow (i.e. without asserting
continuity). Finally, by the previous Proposition it is a continuous �ow
(whereas �� is the reversed �ow). �

Left Product Theorem. Suppose that g; h are '-regularly varying with
limit functions k and K; with g modular. Then gh is '-regularly varying
with limit

lim g('n(xz0))h('n(xz0))[g('n(z0))h('n(z0))]
�1 = k(x)�+(g;K(x)):

Proof. Writing gn(x) = g('n(x)); hn(x) = h('n(xeX)) and k = k(x); K =
K(x); then, for any z;

lim dH(gn(x)hn(x)h
�1
n g�1n ; kz) = lim dH(gn(x)hn(x)h

�1
n g�1n ; gn(x)g

�1
n z)

= lim dH(gnhn(x)h
�1
n g�1n ; z)

= dH(�+(g;K(x)); z):

Taking z = �+(g;K(x)); we obtain our result. �

Corollary 1 (Third Factorization Theorem) If H is a complete
Klee group, g is '-regularly varying and h is '-slowly varying and modular,
in particular if hn = h('neH) satis�es the summability condition (2), then
h(t)g(t) is '-regularly varying with limit �+(h; k(t)):

Proof. Since h is modular and regularly varying we may apply the
theorem. But we get more information by arguing directly as in the Second
Factorization Theorem, aided this time by the modulus of h. As before, put
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hn(t) = h('n(t)) and hn = hn(e) and let k = @Xg: Now h�1 is slowly varying,
so with �+ = �+(h; �) and since a = ��(h;�+(h; a)) we have

d(hn(t)gn(t)g
�1
n h�1n ;�+(k(t))) = lim d(gn(t)g

�1
n ; h�1n (t)�+(k(t))hn)

= lim d(gn(t)g
�1
n ; [h�1n (t)hn]h

�1
n �+(k(t))hn)

= lim d(k(t); e��(�+k(t))) = 0: �

Corollary 2. Suppose g is '-regularly varying and modular with limit
function k: Then for every '-regularly varying function h and for all x; y,
each element ��(h; k(y)) commutes with each element @Xh(x): In particular,
k is central, i.e. the rangefk(x) : x 2 Xg is a subset of the centre Z(H):

Proof. With the assumptions as stated, we have, for all x; y;

�(x) := k(x)�+(g;K(x)):

Write �(:) for �+(g; :): Now � is multiplicative, so since k and K are mul-
tiplicative we have, for all x; y;

�(xy) = k(xy)�(K(xy)) = k(x)k(y)�(K(x))�(K(y))

and
�(x)�(y) = k(x)�(K(x))k(y)�(K(y)):

These equations together imply that, for all x; y;

k(x)�(K(x))k(y)�(K(y)) = k(x)k(y)�(K(x))�(K(y)):

Hence for all x; y
�(K(x))k(y) = k(y)�(K(x)): (3)

Applying the result that �+ and �� are inverse isomorphisms, we obtain

K(x)��(h; k(y)) = ��(h; k(y)K(x): (4)

According to (3), for all x; y, each K(x) commutes with each ��(h; k(y)):
Taking h(x) = x which is regularly varying with limit K(x) = x; we deduce
that, since f�+(h;K(x)) : x 2 Xg = H; we have fk(y) : y 2 Xg � Z(H):
Likewise, according to (4), we see that f��(h; k(x)) : x 2 Xg � Z(H): �
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Remark. The corollary justi�es the initial guess that the product the-
orem is valid when the left factor is central. If he is inner and equivalent
to  the corollary says that each K(x) commutes with each k(y)�1: From
here it is easy to see that if the choices k(x) = x were admitted, it would
follow that H is abelian. Thus the theorem demonstrates how restrictive
modularity is.
Corollary 3. If H is asymptotically invariant for '; then H is abelian.
Proof. Indeed, then g = h = k = K = idH is modular; but then x2

is '-regularly varying which implies that for all x; y in H we have (xy)2 =
xyxy = x2y2 i.e. yx = xy; as asserted. �

We now restate the Proposition on centrally asymptotic sequences as a
partial converse to the Product Theorem, thereby characterizing modularity
for the regularly varying functions with our Kendall-like condition.

Theorem (Nearly central is modular). Let H be a complete Klee
group. Then, for h : X ! H '-slowly varying such that hn = h('neH)
satis�es the summability condition (2) and for k central, both hk and kh are
modular.

Theorem (Modular means �nearly central�). Let H be a complete
Klee group. Then, for h : X ! H '-slowly varying such that hn = h('neH)
satis�es the summability condition (2), kh is modular i¤ k is central.

4 Application: Seneta�s sequential criterion

As an application of these ideas we deduce a generalization of Seneta�s version
of Kendall�s Theorem concerning a sequential criterion for regular variation.

De�nition fxng is a divergent C-net inX if jjxnjj diverges monotonically
to in�nity and, for each x; there is n with jjxx�1n jj < C; i.e.

dX(xn; x) < C:

It is clear that Euclidean spaces have a divergent 1-net built from the corners
of an expanding sequence of cubes.

Seneta�s Theorem. ([Sen], [BGT] Th. 1.9.3) Let X be a locally compact
group with right-invariant norm and let fxng be a divergent C-net in X: Let
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H be a Klee group and let f : X ! H. Suppose that, for some modular
sequence an in H;

anf(�xn)! k(�);

convergence being uniform on compacts, and that k : X ! H is multiplica-
tive. Then f is regularly varying with limit function

@Xf(�) = ��(a; k(�)) = lim
n
a�1n k(�)an:

.

Proof. Let � be arbitrary. For any t; choose n = n(t) such that

d(t; xn) < C:

Now since
anf(�xn)! k(�)

on compact � sets and tx�1n lies in the C-ball around e (as jj�tx�1n jj � jj�jj �
jjtx�1n jj = jj�jjd(e; tx�1n ) < jj�jjC) we may make the substitution replacing �
with �tx�1n : Thus

anf(�t) = anf(�tx
�1
n xn)! k(�tx�1n );

as jjtjj ! 1 since jjxn(t)jj ! 1: We thus have uniformly in t that

hn(t) := anf(�t)k(�tx
�1
n(t))

�1 ! e:

Likewise replacing � with tx�1n we have (since (as jjtx�1n jj = d(e; tx�1n ) < C)

gn(t) = anf(t)k(tx
�1
n(t))

�1 ! e:

Thus hn(t) and gn(t) are asymptotically central sequences. Finally,

f(�t)f(t)�1 = a�1n an � f(�t)[anf(t)]�1an = a�1n hn(t)k(�tx
�1
n )[gn(t)k(tx

�1
n )]

�1an

= a�1n hn(t)k(�tx
�1
n )k(tx

�1
n )

�1gn(t)an

= a�1n [hn(t)g
�1
n (t) � gn(t)k(�)g�1n (t)]an

! ��(a; k(�));

and this is multiplicative, since ��(a; �) is a homomorphism.�
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