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Abstract

This paper investigates fundamental theorems of regular variation
(Uniform Convergence, Representation, and Characterization Theo-
rems) some of which, in the classical setting of regular variation in R,
rely in an essential way on the additive semi-group of natural num-
bers N (e.g. de Bruijn�s Representation Theorem for regularly varying
functions). Other such results include Goldie�s direct proof of the Uni-
form Convergence Theorem and Seneta�s version of Kendall�s theorem
connecting sequential de�nitions of regular variation with their contin-
uous counterparts (for which see [BOst15]). We show how to interpret
these in the topological group setting established in [BOst13] as con-
necting N-�ow and R-�ow versions of regular variation, and in so doing
generalize these theorems to Rd: We also prove a �ow version of the
classical Characterization Theorem of regular variation.

Classi�cation: 26A03
Keywords: multivariate regular variation, uniform convergence

theorem, topological dynamics, �ows.
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1 Introduction

In its classical setting regular variation is concerned with the asymptotic
behaviour of �h(t; x) := h(tx)h(x)�1 for h : R+ ! R+ with t �xed and
x going to in�nity. The foundation stone of the theory is the Uniform
Convergence Theorem (UCT) which asserts that, for h Baire, if the limit
@Xh(t) := limx!1 h(tx)=h(x) exists for all t, then convergence is uniform for
t on compact sets. It is thus no surprise that there are as many eight or ten
proofs (this count depends on what further assumptions are admitted), of
which �ve are given in [BGT] Section 1.2 and a sixth referred to. Of these
two (one due to Csiszár and Erd½os, the other due to Elliott [E] Ch. 1) are
known to give an extension of UCT to multivariate regular variation in Rd;
or, in the case of Elliott in C: The ninth has a strong hypothesis on h (the
continuity of t ! h(tx)) aimed at using the Baire Category Theorem, the
tenth in similar spirit employs the Weil topology (but requires the strong
assumption of T locally compact and H second countable). These last two
were used by Baj�anski and Karamata [BajKar] (cf. [BGT] Appendix 1 and
[Ba] ) in a ground-breaking approach to provide a �rst proof of the UCT in
their chosen general setting: a group theory formulation of regular variation
wherein h : G ! H with G;H groups and with x going to in�nity along a
�lter in G (and t restricted to a co-meagre subgroup T of G): Recall for com-
parison the seven proofs establishing the functional equation of the Riemann
zeta function given by Titchmarsh in Chapter 2 of [Ti].
The Csiszár and Erd½os idea taken together with the (Baire) Category

Embedding Theorem of [BOst11] has provided a �rst proof for the strongest
form yet of the UCT in the topological-�ow formulation of regular variation
wherein, for groups X;H; T , the term tx results from a T -�ow acting on X;
and h : X ! H. Here there are actually two, dual UCTs, corresponding
to a transposition of t and x a¤orded by the dual X-�ow acting on T (so
that respectively one of T or X is assumed to be a co-meagre group). In
[Ost-knit] it is shown that the essential distinctions between �ow and group
formulations reside in the notions of divergence which the two theories admit.
The present paper explores, in the �ow setting, the one and only direct

proof of the UCT, due to Goldie, capable of topological generalization (the
only other direct proof is Delange�s, but lacks this capability, since it uses
quantitative measure theory). We do so in two ways. With only the usual
�co-meagre group� hypothesis, the �rst direct step of his proof yields the
�ow version of the UCT (unfortunately, one needs a reductio ad absurdum
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to complete this step); this is the argument leading to what we observed
in [BOst1] in the Euclidean setting was the Bounded Equivalence Principle.
Just as there, so too here it yields the UCT. We are able to reproduce the
completing second, direct step of Goldie in a locally compact, �-compact
topological group; specializing to the abelian, connected, locally connected
case, this is very nearly the Euclidean setting (in view of the Pontryagin
theory, for which see [Pont], [MZ], [We] and also [Ru] Ch. 2); when so
specialized, this provides an eleventh proof!
Along the way, however, we have been able to clarify and unify other

aspects of regular variation, namely the connections between discrete-time
�ow theory to the real-time �ow theory and the limitations of the de Bruijn
representation theory imposed by �nite dimensions. It is useful to recall that
one connection between this generalization of the representation theorem
and the classic univariate paradigm is in the theory of domains of attraction
([BGT] Section 8.3.2 p. 345), connecting in�nite divisibility to sequential
regular variation via Kendall�s Theorem (see [BGT] Section 1.9 p. 49, or
[Ken], [KH, Th. 16, p.110.]). We show that this latter theorem generalizes to
Rd (in fact, in much the same way as Goldie�s direct proof of the UCT, [BGT]
Section 1.2.2 �Second proof��by reference to a slowly varying �divergent net�
on the space). Its signi�cance lies in an immediate connection with recent
work (see e.g. [HLMS]) wherein regular variation analysis is applied in two
contexts: Euclidean (albeit with Rd replaced by its compacti�cation Rd;
where R = [�1;+1]) and topological, with the function h replaced by a
distribution function as below and the standard passage to the limit in the
format

nP(X=an 2 :)!v �(:);

for some increasing sequence an " 1 and with limits under the vague topol-
ogy on the space of measures. (Recall the latter is de�ned in the context of
the space of continuous functions with compact support, and their integrals.)
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2 Generalized Piccard-Pettis Theorem

We recall a number of de�nitions from [BOst13] to which we refer for justi-
�cation and proof. Let X be a metric group with identity element eX and
with right-invariant metric dX and associated group norm jjxjj := dX(x; eX):
We denote by Auth(X) the group of self-homeomorphisms of X under com-
position. H(X) denotes the subgroup

fh 2 Auth(X) : jjhjj <1g;

where, in turn,
jjhjj := sup dX(h(x); x));

denotes the group-normon H(X) which metrizes it by the right-invariant
metric d(g; h) = jjgh�1jj:

De�nition. (cf. [?]). Let f u : u 2 Ig for I an open interval in R be a
family of homeomorphisms in H(X). Let u0 2 I: Say that  u converges to
the identity as u! u0 if

lim
u!u0

jj ujj = 0:

This property is preserved under topological conjugacy; more precisely
we have the following result, whose proof is routine and hence omitted.

Lemma. Let � be a homeomorphism which is uniformly continuous, and
write u0 = �z0:
If f z : z 2 B"(z0)g converges to the identity as z ! z0; then, as u! u0;

so does the conjugate f u = � z�
�1 : u 2 B"(u0); u = �zg:

We recall that a subsetA of a metric space is Baire if it has the Baire prop-
erty, i.e., for an open set U and meagre sets M;N; we have A = (M [U)nN:
The result below generalizes the category version of the Steinhaus Theo-
rem [St] of 1920, �rst stated explicitly by Piccard [P] in 1939, and restated
in [Pet1] in 1950; in the current form it may be regarded as a �localized-
re�nement�of [RaoRao].

Generalized Piccard-Pettis Theorem ([P], [Pet1],[Pet2], [BGT] Th.
1.1.1, [BOst3], [RaoRao], cf. [Kel] Ch. 6 Prb. P). Let be X be a homogenous
space. Suppose that  u converges to the identity, as u ! u0; and that A is
Baire and non-meagre. Then, for some � > 0; we have

A \  u(A) 6= ?; for all u with d(u; u0) < �;
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or, equivalently, for some � > 0

A \  �1u (A) 6= ?; for all u with d(u; u0) < �:

Proof. We may suppose that A = V nM with M meagre and V open.
Hence, for any v 2 V nM; there is some " > 0 with

B"(v) � U:

By de�nition of convergence, there is � > 0 such that, for u with d(u; u0) < �;
we have

d�( u; id) < "=2:

Hence, for any such u and any y in B"=2(v); we have

d( u(y); y) < "=2:

From this it follows that

W :=  u(B"=2(z0)) \B"=2(z0) 6= ?;

and
W 0 :=  �1u (B"=2(z0)) \B"=2(z0) 6= ?:

For �xed u with d(u; u0) < �; the set

M 0 :=M [  u(M) [  �1u (M)

is meagre. Let w 2 WnM 0 (or w 2 W 0nM 0; as the case may be). Since
w 2 B"(z0)nM � V nM; we have

w 2 V nM � A:

Similarly, w 2  u(B"(z0))n u(M) �  u(V )n u(M): Hence

 �1u (w) 2 V nM � A:

In this case, as asserted,
A \  �1u (A) 6= ?:

In the other case (w 2 W 0nM 0), one obtains similarly

 u(w) 2 V nM � A:
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Here too
A \  �1u (A) 6= ?:

�
Remarks.
1. In the theorem above it is possible to work with a weaker condition,

namely local convergence at z0, where one demands that for some neighbour-
hood B�(z0) and some K

d( u(z); z) � Kd(u; u0); for z 2 B�(z0):

This implies that, for any " > 0; there is � > 0 such that, for z 2 B�(z0);

d( u(z); z) < "; for z 2 B�(z0):

2. The Piccard-Pettis Theorem for topological groups (named by Kelley,
[Kel] Ch. 6 Pblm P-(b), the Banach-Kuratowski-Pettis Theorem, say BKPT
for short) asserts the category version of the Steinhaus Theorem [St] that,
for A Baire and non-meagre, the set A�1A is a neighbourhood of the identity;
our version of the Piccard theorem as stated implies this albeit only in the
context of metric groups. Let dX be a right-invariant metric on X and take
 u(x) = ux and u0 = e: Then  u converges to the identity (see [BOst13]
Section 3), and so the theorem implies that B�(e) � A�1 \A for some � > 0;
indeed a0 2 A\ u(A) for u 2 B�(e) means that a0 2 A and, for some a 2 A;
also ua = a0 so that u = a�1a0 2 A�1A: It is more correct to name the
following important and immediate corollary, the BKPT, since it appears in
this formulation in [Ban], [Kur1], derived by di¤erent means, and was used
by Pettis in [Pet1] to deduce his Steinhaus-type theorem. A fundamental
result for regular variation follows. Recall that a set A is clopen if A is both
open and closed.

The Subgroup Dichotomy Theorem (Banach-Kuratowski-Pettis
Theorem) ([Ban] Satz 1, [Kur1] Ch. VI. 13. XII; cf. [Kel] Ch. 6 Pblm P;
cf. [BGT] Cor. 1.1.4 and also [BCS] and [1] for the measure variant).
Let X be a topological group which is non-meagre and let A any Baire

subgroup. Then A is either meagre or clopen in X:

The antecedent Kuratowski Theorem ([Kur1], Ch. I Para. 13.XI) and the
category analogue of the Hewitt-Savage zero-one law of [RaoRao] are related.
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The Characterization Theorem ([BGT] Thm. 1.4.1). Let X and H
be normed groups, T � H(X) be a connected non-meagre subgroup acting on
the group X; h : X ! H be Baire. If the limit

@X(t) := lim
jjxjj!1

h(tx)h(x)�1

exists on a non-meagre subset of T; then @X(t) exists on all of T and is a
continuous homomorphism from T to H:
Proof. The set

S := ft 2 T : lim
jjxjj!1

h(tx)h(x)�1exists}

is a non-meagre subgroup of T: Hence S is non-empty and clopen; but T is a
connected group, so S = T: The �nal assertion follows from the Continuous
Homomorphism Theorem of [BOst15]. �

Remark. With X = R and T the group of isometries, this theorem
implies the classical caracterization theorem of regular variation. The impli-
cation follows from the result of van Dantzig and van der Waerden that for X
a connected, locally compact metric space the isometries under the compact-
open topology form a locally compact group. For a proof see [KoNo] Th.
4.7 (cf [BH] Ch. I.Prop 8.7 for the compact case). More is known �see the
generalization by Strantzalos [Str] and [Itz] for an analogous result for locally
compact uniform spaces.

As a second corollary, we have a far-reaching generalization.

Corollary (cf. [1],[BCS] for the measure variant). Let X be a topological
group which is non-meagre. For A;B non-meagre and � 2 A; � 2 B; put
�(x) := ���1x: For  u convergent to the identity as u! u0; there is � > 0
such that

B \ � u(A) 6= ?; for all u with d(u; u0) < �:

In particular,
���1B�(e) � BA�1;

and hence, for any non-meagre set A; the set A2 = AA contains an open set.
Proof. W.l.o.g. A0 := ��1(B) � A and hence there is � > 0 such that

A0 \  u(A0) 6= ?; for all u with d(u; u0) < �:
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Hence

B \ � u��1(B) = �(A0) \ � u(A0) 6= ?; for all u with d(u; u0) < �;

So

B \ � u��1(B) = B \ � u(A) 6= ?; for all u with d(u; u0) < �:

Since inversion is a homeomorphism, we may replace A by A�1; then taking
B = A we obtain the �nal assertion. �
The �nal result of this section concerning subsemigroups is of interest

to regular variation in the Euclidean setting; for the role of subsemigroup
arguments, see for instance [BGT] Thms 2.0.1 p. 61 and 3.2.5 p. 141.
Clearly it is applicable to an ordered group setting such as developed in [Ru]
Ch. 8.

The Subsemigroup Theorem (cf. [BCS], [1]; cf. [BGT] Cor. 1.1.4).
Let X be a topological group which is non-meagre and let A any Baire sub-
semigroup. Then A contains an open set. In particular, if A = Rd; then
contains an open sector.

3 Bounded Equivalence Principle

We may now prove in a general context the following Bounded Equiva-
lence Principle (BEP) whose real-line version is implicit but embedded in
the course of the �Second direct proof of the UCT�in [BGT] (p. 7-8, and due
to Goldie). It was �rst isolated in [BOst1]. We give its proof below. Then, for
convenience, we reproduce the indirect proof of the general UCT which the
BEP also facilitates; a direct proof of the UCT can be deduced from the Prin-
ciple albeit in the narrower setting of a locally compact, �-compact group.
That proof is o¤ered in the next section. We recall, for X a metric space
with a distinguished point z0 and metric dX ; that a self-homeomorphisms '
of X is bounded if

jj'jj := sup
x2X

dX('(x); x) <1;

a sequnece f'ng of self-homeomorphisms is divergent if jj'njj ! 1; and
correspondingly a function h : X ! R is f'ng-slowly varying if, for each t;

h('n(t))� h('n(z0))! 0:
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Bounded Equivalence Principle (BEP). Suppose the following:
(i) X is a Baire space,
(ii) X is uniformly homogeneous, i.e. for any pair of points z; u there is

a uniformly continuous homeomorphism � such that �(z) = u;
(iii) For some � > 0; there is a family of homeomorphisms f z : z 2

B�(z0)g converging to the identity as z ! z0, such that  z(z0) = z:
Then for h : X ! R Baire slowly varying, the following are equivalent:
(a) hn(t) := h('n(t))�h('n(z0))! 0; uniformly in t on compact sets for

any divergent 'n;
(b) limn!1 jh('n(un))�h('n(z0))j = 0; whenever u = fung is a sequence

converging to z0, and 'n is divergent,
(c) limn!1 jh('n(un))�h('n(z0))j = 0; whenever u = fung is a bounded

sequence, and 'n is divergent.

Indirect Proof. Since (c) includes (a), it is enough to prove:
(I) that (a) implies (b) and
(II) that (b) implies (c).

(I) For brevity we write t = z0. Choose  k converging to the identity
with  z(z0) = z: For any " > 0; put

An;t :=
\
k�n

fy : jh('k(y))�h('k(z0))j < " and jh('k k(y))�h('k k(z0))j < "g:

Then each set An;t is Baire and

X =
[
n

An;t;

since for any �xed y we have both h('k(y))�h('k(z0))! 0 and h('k k(y))�
h('k k(z0)) ! 0 (as h is slowly varying). Hence, for some N = N(t); the
set A = AN(t);t is non-meagre. By the Generalized Piccard-Pettis Theorem,
there is � > 0 such that, for each n > N(t) and u = un; we have

A \  u(A) 6= ?; for all u with d(u; t) < �:

In particular, there is wn 2 A and an 2 A such that

wn =  u(an):
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So
h('k(wn)) = h('k( u(an)):

For such n; we have

jh('k(wn))� h('k(z0))j < ";

as wn 2 A (using the �rst condition), and also

jh('k k(an))� h('k k(z0))j < ";

as an 2 A (using the second condition). Hence

jh('k k(z0))� h('k(z0))j � jh('k(wn))� h('k(z0))j
+jh('k( k(an)))� h('k k(z0))j

< 2":

(II) Let T be the closure of fung: Let t 2 T: We show how to reduce this
situation to that in (i) by using a uniformly continuous shift . Here we take
a uniform shift � such that �z0 = t and use a homeomorphism to repeat
the argument. In the expression for An;t; we need to replace the convergence
to the identity  z; with z near z0; by convergence to the identity  u; with
u near t: These movements are generated using the conjugate homeomor-
phism  u = � z�

�1 with u = �z: By the Lemma of Section 2 the conjugate
homeomorphisms also converge to the identity.
As before, for any " > 0; put

An;t :=
\
k�n

fy : jh('k(y))�h('k(z0))j < " and jh('k u(k)(y))�h('k u(k)(z0))j < "g:

Then each set An;t is Baire and

X =
[
n

An;t;

since for any �xed y we have both h('k(y))�h('k(z0))! 0 and h('k k(y))�
h('k k(z0)) ! 0 (as h is slowly varying). Hence, for some N = N(t); the
set A = AN(t);t is non-meagre. By the Generalized Piccard-Pettis Theorem,
there is � > 0 such that, for each n > N(t) and u = un; we have

A \  u(A) 6= ?; for all u with d(u; t) < �:
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In particular, there is wn 2 A and an 2 A such that

wn =  u(an):

So
h('k(wn)) = h('k( u(an)):

For such n; we have

jh('k(wn))� h('k(z0))j < ";

as wn 2 A (using the �rst condition), and also

jh('k u(k)(an))� h('k u(k)(z0))j < ";

as an 2 A (using the second condition). Hence

jh('k u(k)(z0))� h('k(z0))j � jh('k(wn))� h('k(z0))j
+jh('k( u(k)(an)))� h('k u(k)(z0))j

< 2":

i.e., since  u(k)(z0) = uk ,

jh('k(uk))� h('k(t))j � 2": �

The argument above and the compactness argument of [BGT] p. 8 may
now be repeated in the general context to yield another indirect proof of the
UCT. As promised, we reproduce the argument here for convenience.

Proof of the UCT via the BEP
Let 'n be divergent. Let h be '-regularly varying. By (c) of BEP we

must show that
lim
n!1

jh('n(un))� h('n(z0))j = 0;

whenever u = fung is a bounded sequence. Suppose otherwise. Then there
is a bounded sequence of points un; say in the compact set K; and " > 0
such that

jh('n(un))� h('n(e))j � 3":
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We deduce a contradiction. For each t 2 K; arguing as in the proof of the
BEP above, we may select � = �(t) > 0 such that, for uk with d(uk; t) < �(t);

jh('k(uk))� h('k(t))j � 2": (1)

Now fB�(t)(t) : t 2 Kg covers the compact set K: So we may choose a �nite
subset F of K such that fB�(t)(t) : t 2 Fg covers K: Thus � := minf�(t) :
t 2 Fg > 0. For t 2 F; since hn(t)! 0; there is N(t) such that for n > N(t)

jh('n(u))� h('n(e))j < ": (2)

Put N := maxfN(t) : t 2 Fg: Consider any n � N: The point un lies in
B�(t)(t) for some t 2 F; so by (1)

jh('n(un))� h('n(t))j � 2":

Combining with (2), we obtain

jh('n(un))� h('n(e))j < 3";

a contradiction. �

4 Generalized Goldie Theorem (Direct Proof
of UCT)

We work here with a metric groupX: The Birkho¤-Kakutani Theorem ([Bir],
[Kak]) asserts that a �rst-countable Hausdor¤ group has a right-invariant
metric (see [Klee], [Bour] Part 2, Section 3.1, and [ArMa], compare [?]
Exercise 8.1.G and Th. 8.1.21). We thus assume that X has a right-
invariant metric dX and as usual we denote the corresponding group-norm
by jjxjjX := dX(e; x); so that dX(x; y) = jjxy�1jj (see [?] for an exposition of
the relation between metric groups and groups carrying a group-norm). The
conjugate left-invariant metric, given by

~dX(x; y) = dX(x
�1; y�1);

makes an appearance in the de�nition below and consequently is critical to
the immediately following Theorem. It plays no further explicit role. We
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note that ~dX(e; x) = dX(e; x
�1) = dX(x; e) = jjxjj; so the norm may refer

ambiguously to either metric, however ~dX(x; y) = jjy�1xjj.

De�nitions.
1. For " > 0; we say that fxng is a divergent "-net of the space X, if
(i) jjxnjj ! 1;
(ii) for each x 2 X there is n = n(x) such that jjx�1n xjj < "; i.e.

dX(x
�1; x�1n ) < ":
2. The "-swelling is de�ned by B"(K) := fz : dX(z; k) < " for some

k 2 Kg:

We begin with a routine result, whose proof we include for completness,
as it is short.

Lemma. (i) If the closed "-balls are compact in the locally compact group
X and K is compact, then B"=2(K) is pre-compact.
(ii) B"(K) = fwk : k 2 K; jjwjj < "g:

Proof. (i) If xn 2 B"=2(K); then we may choose kn 2 K with d(kn; xn) <
"=2: W.l.o.g. kn converges to k: Thus there exists N such that, for n > N;
we have d(kn; k) < "=2: Then, for such n; we have d(xn; k) < ": Hence
the sequence xn lies in the compact closed "-ball centred at k and so has a
convergent subsequence.
(ii) If jjwjj < "; then dX(wk; k) = dX(w; e) = jjwjj < "; so wk 2 B"(K):

Conversely, if " > dX(z; k) = dX(zk
�1; e); then, putting w = zk�1; we have

z = wk 2 B"(K): �

Theorem. Let X be a locally-compact �-compact group with unbounded
metric. Then X possesses a divergent "-net for all small enough " > 0. In
particular, this is so for Rd

Proof. Here exceptionally we work with the metric ~dX : For some small
enough � > 0; the closed �-ball is compact. Write X =

S
Kn with Kn

increasing and compact. The mapping x ! jjxjj is continuous and hence
bounded on each Kn: Hence Mn := supfjjxjj : x 2 Kng de�nes an increasing
sequence. For " < �=2; select a �nite number of "-balls under the ~dX metric
covering the annular set An+1 := Kn+1nB"(Kn) whose centres thus form an "-
net. Enumerate these centres listing the nets of each annulus consecutively,
and we are done. Evidently, if X = Rd; then it is enough to decompose
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X into concentric annuli centered at the origin. In each annulus choose a
�nite "-net. Let xn be an enumeration of these nets listing the nets of each
consecutive annulus. �

Generalized Goldie Theorem. Let X be a locally compact group with
right-invariant metric, and suppose that, for some " > 0; X has the closed
2"-ball �B2"(eX) compact, and possesses a divergent "-net. Then the UCT
for X has a direct proof in the case of 'n(t) = snt, where sn is a divergent
"-net.
Proof. Let sn be a divergent "-net. Let 'n(t) = snt: Thus jj'njj =

supt d(snt; t) = d(sn; e) = jjsnjj ! 1: Let h : X ! R be '-slowly varying.
Since X is Baire, by the Bounded Equivalence Theorem, we have for any
precompact sequence un that

h('n(un))� h('n (e))! 0:

Let K be compact. We now claim that

supfu 2 K : jh('n(u))� h('n (e)) jg <1:

Indeed, for each integer n may select un 2 K either with the property that

jh('n(un))� h('n (e)) j � n;

when possible, or, when not (so that supfu 2 K : jh('n(u))� h('n (e)) jg <
n) with

jh('n(un))� h('n (e)) j � supfu 2 K : jh('n(u))� h('n (e)) jg �
1

n
:

Since h('n(un))�h('n (e))! 0; the latter alternative is impossible for large
enough n: It follows that, for large n;

supfu 2 K : jh('n(u))� h('n (0)) jg � jh('n(un))� h('n (e)) j;

and so h('n(u))� h('n (e))! 0; as n!1; uniformly on K:
Since sn is an "-net, for each x; we may �nd n(x) such that jjs�1n(x)xjj < ":

Put un = s�1n(x)x , then jjunjj < ": Thus x = snun:
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Now if u 2 K; then xu = sn(x)vn; where vn = vn(u) = unu: Thus by the
Lemma vn 2 B"(K) and B"(K) is pre-compact. Thus

sup
u2K

jh(xu)� h(x)j

� sup
u2K

�
jh(xu)� h(sn(x))j+ jh(sn(x))� h(x)j

�
= sup

u2K

�
jh(sn(x)vn)� h(sn(x))j+ jh(sn(x)un)� h(sn(x))j

�
= sup

u2K

�
jh('n(x)(vn)� h('n(x)(e))j+ jh('n(x)(un))� h('n(x)(e)j

�
� sup

v2B"(K)
jh('n(x)(v)� h('n(x)(e))j+ sup

u2B"(e)
jh('n(x)(u))� h('n(x)(e)j

! 0;

as n(x)!1: �

5 De Bruijn-Karamata Representation the-
orem

Using the UCT Karamata characterized slowly varying functions in an inte-
gral form (see below); his approach to the integral necessitated a restriction
of the slowly varying functions to measurable ones. De Bruijn�s later al-
ternative proof in [deB] (1959) carries the theorem over to a wider context.
Classically it was applied to Baire functions ([BGT] Section 1.3, p. 15) and
it gives rise to the Smooth Variation Theorem ([BGT] Section 1.8, Th 1.8.2
p.45). More recently it has been applied to the natural classical context of
regular variation to the functions of class �1

2 (those with graph ambiguously
analytic and co-analytic in the sense of classical descriptive set theory) �in-
deed to any class of functions closed under additive shift. Here we show how
to extend de Bruijn�s theorem to Euclidean spaces. We leave unanswered
the question of whether the theorem extends to locally compact �-compact
groups for lack of an appropriate theory of Stieltjes integration.

For x 2 Rd let
jjxjj = maxfjxj1; :::; jxdjg:

We let B(x) = fy : 0 � yi � xi for i = 1; :::; d:g and denote Lebesgue measure
by �d:
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Representation theorem (cf. de Bruijn [deB], [BGT] Section 1.3, p.
15)
For h : Rd ! R, h is Baire slowly varying i¤

h(x) = c(x) +

Z
B(x)

�(z)d�d(z);

for some Baire c(:) and C1 function �(:) such that.

c(x)! h(eX); �(x)! 0; as jjxjj ! 1:

Proof. For x 2 Rd; let

[x] := ([x1]; :::; [xd]) 2 Zd:

De�ne the square S(z) := fx : zi � 1 � xi < zi for i = 1; :::; dg and the
annulus

A(z) := fx : xi < zi for i = 1; :::; dgnfx : xi � zi � 1 for i = 1; :::; dg:

For x 2 S(z); we have [x] = z� 1d; where 1d = (1; :::; 1): Let p(x; z) be a C1
density on the unit square S(z). We may indeed take p(x; z) = p(x � [x]);
where p(x) = p(x; 1d):
For z 2 Zd; put �(z) = z1 + :::+ zd: For z 2 Zd and x 2 S(z); put

�h(x) :=
X

"2f�1;0gd
(�1)�(")h(z + "); �(x) := p(x; z)�h(x):

Thus, for d = 2; we have

�h((i; j)) = fh(i; j)� h(i� 1; j) + h(i� 1; j � 1)� h(i; j � 1)g:

Put

h1(x) = h(0) +

Z
B(x)

�h(y) � p(y � [y])d�d(y):

Then, for z 2 Zd;
h1(z) = h(z):

For � > 0; suppose that, for z 2 Zd and x 2 A(z); we have

j�h(x)j � �:
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For h slowly varying, this will be the case for jjzjj large enough, since the
unit ball is compact. Hence, for x 2 S(z);

h1(x) = h([x]) +

Z
A(z)

�h(y) � p(y � [y])d�d(y):

Thus

h(x)� h1(x) = h(x)� h([x])�
Z
A(z)

�h(y) � p(y � [y])d�d(y);

and, with our assumptions above,

j
Z
A(z)

�h(y) � p(y � [y])d�d(y)j �
Z
A(z)

j�h(y)j � p(y � [y])d�d(y)

� �

Z
A(z)

p(y � [y])d�d(y) = �:

Hence
h(x)� h1(x)! 0; as x!1:

Thus

h(x) = c(x) +

Z
B(x)

�(z)d�d(z);

where
c(x) = [h(0) + h(x)� h1(x)]! h(0):

Indeed

h(x) = h1(x) + h(x)� h1(x)

= [h(x0) + h(x)� h1(x)] +

Z
B(x)

�(z)d�d(z):
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