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Abstract

Motivated by the Category Embedding Theorem, as applied to
convergent automorphisms [BOst11], we unify and extend the multi-
variate regular variation literature by a reformulation in the language
of topological dynamics. Here the natural setting are metric groups,
seen as normed groups (mimicking normed vector spaces). We brie�y
study their properties as a preliminary to establishing that the Uni-
form Convergence Theorem (UCT) for Baire, group-valued slowly-
varying functions has two natural metric generalizations linked by the
natural duality between a homogenous space and its group of homeo-
morphisms. Each is derivable from the other by duality. One of these
explicitly extends the (topological) group version of UCT due to Ba-
j�anski and Karamata [BajKar] from groups to �ows on a group. A
multiplicative representation of the �ow derived in [Ost-knit] demon-
strates equivalence of the �ow with the earlier group formulation. In
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companion papers we extend the theory to regularly varying func-
tions: we establish the calculus of regular variation in [BOst14] and
we extend to locally compact, �-compact groups the fundamental the-
orems on characterization and representation [BOst15]. In [BOst16],
working with topological �ows on homogeneous spaces, we identify
an index of regular variation, which in a normed-vector space context
may be speci�ed using the Riesz representation theorem, and in a
locally compact group setting may be connected with Haar measure.
Classi�cation: 26A03
Keywords: group norm, multivariate regular variation, uniform

convergence theorem, equicontinuity principle, category, measure-category
duality, group-theoretic duality, topological dynamics, �ows, cocycles,
slowly-varying functions.

1 Introduction

Regular variation was described in 1987 as �essentially a chapter in classi-
cal real-variable theory�by [BGT], since then a standard reference for the
subject. That phrase precisely delimits the theory�s original scope: asymp-
totic behaviour of functions h : R ! R which, as in classical analysis, are
measurable, or alternatively have the property of Baire.
These dual foundations of the single-variable theory have recently been

uni�ed in two ways in [BOst4] and [BOst11]. In one they are uni�ed struc-
turally by their identical combinatorics. In the other, both are derived from
a single source: Baire category. Both views translate immediately to Rd:
However, more recent developments in probability theory go beyond the do-
main R to the domain Rd (e.g. [dHOR], [Om], [BalEmb]) and further still
(see e.g. [Res1], [Res2], [Res3], and [HLMS]). Our purpose here is to derive
from general category considerations a foundation for a topological theory of
regular variation, as a better �t to the current broader needs. We employ
the language of topological dynamics, speci�cally two key terms: �ow and
cocycle (see [GoHe], [Be], or the more recent [Ell1], for the former, and [Ell2]
for the latter). The �rst term refers to the action of a group T with identity
element eT on a space X. A continuous �ow ' : T � X ! X has, as its
de�ning characteristic, the �ow equation:

'(st; x) = '(s; '(t; x)) with '(eT ; x) = x:
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The cocycle of h : R ! R, as it occurs in classical regular variation in the
study of the asymptotic behaviour of h, is

�h(t; x) = h(tx)h(x)�1:

In topological dynamics the de�ning characteristic of the cocycle is the co-
cycle equation:

�(st; x) = �(s; tx)�(t; x):

In this language, whenever it exists, the limit function of a regularly varying
h is just the limit cocycle, de�ned by:

@Xh(t) := lim
x!1

�h(t; x):

The cocycle equation implies the multiplicative equation

@Xh(st) = @Xh(s) � @Xh(t);

so that, for h Baire, @Xh is a power function. (For an algebraic view, see
[Mac] Section 3.8 where the cocycle is introduced to measure deviation from
homomorphism and motivates the de�nition of an obstruction in the exten-
sion problem of group theory; compare also [As] Section 17.) The �exible
notation of topological dynamics on the one hand denotes '(t; x) by t(x)
and so points to the group of homeomorphisms on X; with composition as
multiplication:

st(x) = s(t(x)) and eT = idX ;

(t is a homeomorphism since its group inverse t�1 provides the continuous
inverse function.) The alternative notation of 't(x); suggesting an orbit,
may be abbreviated to xt and the latter makes intuitive the connection with
powers (the focus of regular variation); here the �ow equation reads:

xst = (xt)s and xe = x (or even, x1 = x):

The �rst uni�cation mentioned above �generic regular variation �works
in a wider space of functions including both of the classical ones, and de-
pends on the Kestelman-Borwein-Ditor theorem; see [BOst4]. The second
uni�cation, for which see [BOst11], derives the measure and category forms
of Kestelman-Borwein-Ditor Theorem from a single topological result, the
Category Embedding Theorem (reviewed in Section 4 below), by specializa-
tion to two topologies �the Euclidean topology and the density topology (for
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which see [BOst11]). Both uni�cations have immediate generalizations to Rd:
The reason in the �rst case is that both the Steinhaus and Piccard theorems
(that the distance set of a measurable/Baire set contains an interval) may
be derived using subuniversality (for which see [BOst3]). The reason in the
second case is that Rd is a Baire space both in the usual and in the density
topology.
It was realized by Baj�anski and Karamata [BajKar] in 1969 that some of

the foundational work of regular variation can in fact be conducted in a group-
theoretic framework. More speci�cally, the context may be functions h : G!
H with G;H topological groups, provided category or measure assumptions
are placed on a subgroup T of G; and, furthermore, either continuity or
measurability in t for t 2 T is demanded of the map t! h(tx) for �xed x 2 G:
(There are additional technicalities, e.g. H needs to be second countable in
the second case and hence a separable metric group.) We show below that
the subgroup T should be interpreted as a group of actions on G.
In their framework, provided the usual limit procedure is followed (rel-

ative to a �xed countably generated �lter F on G), the Uniform Conver-
gence Theorem (UCT) relativized to T holds in relation to the limit function
@Gh(t) = F-limg2G �h(t; g) and the limit is taken over a �lter F on G (see
Section 3 for a statement of UCT), as does the Continuous Homomorphism
Theorem of the companion paper [BOst14] (which we derive from the Contin-
uous Coboundary Theorem). With this apparatus, Baj�anski and Karamata
were able to develop a representation theorem for the case h : Rd ! R;
thus widening the scope of regular variation to Euclidean spaces, a new
step in its time; however, they left untouched the issue of representation
in a more general context. Furthermore, with the aim of demonstrating the
strength of their approach, they deduced the Equicontinuity Principle from
the UCT. This was one of their purposes in formulating the UCT as rela-
tivized to a subgroup T ; another was the implied need (not explicitly stated
in [BajKar]) to capture the scaling tx of a vector in Rd, as a product te � x;
(with T = ft1 : t 2 Rg and 1 = (1; 1; :::; 1)):
A �ow approach necessarily includes the formulation of Baj�anski and

Karamata when T is a subgroup of a topological group X; here the multi-
plicative �ow � : (t; x) ! � t(x) := tx; i.e. a left-translation through t under
the group multiplication in the space X; describes exactly their setting. Our
reformulation sits well with modern applications of regular variation and
answers the need for a richer setting of actions such as a¢ ne actions (cf.
self-similarity, for which see [BGT] Section 8.5, or the work of Balkema and
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Embrechts on high risk scenarios, [BalEmb]); we shortly mention a lead ex-
amples. We show in [Ost-knit] that any continuous �ow on a topological
group may in fact be represented as a multiplicative �ow on an appropri-
ately constructed group. (Although we have more structure here, this is
similar in spirit to the semi-direct product of group theory, which describes
a �split extension�of a group G by a group A of automorphisms of G; see
eg [As] Sect. 10.) We thus have some �exibility as to which of the �ow and
group formulations to use. We generally use �ow language, on grounds of
directness, intuitiveness and convenience.
We illustrate how the current theory encompasses modern applications

in probability. For X a normed vector space, consider the usual action
in the function space L1(X;A; �) de�ned on an element f by the formula
� t(f)(x) := f(t�1x), or just (tf)(x) = f(t�1x); with � t referring now to a
left-translation of the domain. In the subspace of indicator functions 1B with
B a measurable set in a measure space (X;A; �); we observe that, for non-
zero scalars t; 1tB(x) = 1 i¤1B(t�1x) = 1; thus the translate t1B corresponds
to the scaled set tB: (The transformation group, T; here is the multiplicative
group R�of strictly positive reals). More recent work in multivariate stochas-
tic processes de�nes regular variation of the distribution of a random element
X by reference to the limit as t!1 of the ratios

P(jjXjj > xt;X=jjXjj 2 A)
P(jjXjj > t)

=
P((xt)�1X 2 Bc

1; X 2
S
r>0(rA \ Sr))

P(t�1X 2 Bc
1)

;

for x; t 2 R� (again the strictly positive reals), with A � S1, where Sr is
the r-sphere, and Bc

1 the complement of a unit ball (see [Lind] and [HLMS]).
This expression takes the form �(txB \C)=�(tB) and so may be interpreted
as

h(xt1B1C)h(t1B)
�1

(where tx1B denotes the translate � tx1B of the function 1B; not its multiple).
Applications in harmonic analysis based on the above action are given in
[Ost-knit].
There is a natural duality between the space X and the action of T on

X : indeed on a formal level one may interpret X via its topological second
dual as acting on T (see [Ost-knit], or [BOst12] for details). On an informal
level it is already clear that there are two possible interpretations of cocycles
for h : X ! H; with H a group, according as one holds the space variable
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�xed (as in [BajKar]), or the action variable �xed:

h(tx)h(x)�1 or h(tx)h(teX)�1; with eX a distinguished point of X:

Specializing to X a group (with its identity as eX) and T a subgroup, we
obtain the two cocycles

h(tx)h(x)�1; or h(tx)h(teX)�1;

o¤ering a strong limit @Xh(t) over X; or a weak limit @Th(x) over T; once a
�lter F onX or T is given. It is the metric context which most easily supplies
the notion of limit. (We restrict to the metric case for convenience only �
the theory might readily be developed in the setting of uniform spaces.)
Corresponding to the space-action duality, we develop a primal and a

dual UCT, both in fact being examples of a single Action UCT. In the primal
UCT, uniformity of convergence to @Th(x) holds on compact subsets of the
space X; in the dual UCT, uniformity of convergence to @Xh(t) holds on
compact subsets of the action group T (the Baj�anski-Karamata case). We
demonstrate that the Equicontinuity Principle also follows from the primal
UCT.
In companion papers we extend the theory to regularly varying functions:

we establish the calculus of regular variation in [BOst14] and we extend to
locally compact, �-compact groups the fundamental theorems on characteri-
zation and representation [BOst15]. In [BOst16], working with topological R-
�ows on homogeneous spaces, we identify an index of regular variation, which
in a normed-vector space context may be speci�ed using the Riesz represen-
tation theorem, and in a locally compact group setting may be connected
with Haar measure; this embraces the representation results of Meerschaert
and Sche er (cf. [MeSh]).

2 Strong local homogeneity in normed groups

In the UCT of Section 5 we are concerned with metric, topological homoge-
neous spaces (de�ned below). As [MZ] say �homogeneous spaces although
topologically more general than group manifolds form a very restricted class
of spaces�. So, with the exception of Section 5, we develop the theory of
regular variation in the context of metric groups. Indeed, when one surveys
the literature of applications of multivariate regular variation, the context is
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most usually Rd or a function space, most usually C[0; 1]; D[0; 1] with various
norms, and also U [0; 1] the space of upper semicontinuous functions consid-
ered by T. Norberg [Nor]. These easily fall under the scope of our theory,
which embraces the multivariate theory of regular variation developed in Rd.
In a way these examples are cannonical, since any metric space is isometri-
cally embeddable as a closed linearly independent subset of a normed vector
space and, furthermore, any separable complete metric space is algebraically
and topologically isomorphic to a Hilbert space `2 (see [BePe] Ch. 2.1 and
Ch. 6 Prop 7.10).
As a matter of convenience, but again without loss of generality (in view

of the Birkho¤-Kakutani Theorem, for which see [Bir], [Kak], or [Kel, Ch. 6
Problem O] or [Ru-FA2, Th. 1.24]), we restrict ourselves to normed groups:
groups equipped with a group norm de�ned as follows.

De�nition. We say that jj � jj : X ! R+ is a group-norm if the following
properties hold:
(i) Subadditivity (Triangle inequality): jjxyjj � jjxjj+ jjyjj;
(ii) Positivity: jjxjj > 0 for x 6= e;
(iii) Inversion (Symmetry): jjx�1jj = jjxjj:
We say that a group-norm, is abelian, or more precisely cyclically per-

mutable if
(iv) Abelian norm (strong norm): jjxyjj = jjyxjj for all x; y:
A normed group gives rise to a right-invariant metric dX(x; y) = jjxy�1jj

and a right-invariant metric gives rise to the norm jjxjj := dX(e; x) where eX
is the group identity. The group norm is abelian i¤

jjxa(yb)�1jj � jjxy�1jj+ jjab�1jj;

cf. [Klee]; for details and a wider discussion see [BOst12], in particular
we note that when the group is metric, the Birkho¤-Kakutani Theorem
Metrization (in fact Normability) Theorem assures the existence of a group
norm which in the case of a non-compact group is unbounded (but of course
bounded on compact subsets). So in what follows we may assume without
loss that all metric groups are normed.
We denote by Auth(X) the group of self-homeomorphisms of X under

composition. H(X) denotes the subgroup

fh 2 Auth(X) : jjhjj <1g;
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where, in turn,

jjhjj := d�X(h; eH(X)) = sup dX(h(x); x))

denotes the group-norm on H(X); which metrizes it by the right-invariant
metric d(g; h) = jjgh�1jj: This is for us the canonical example of a normed
group.
Ametric space (X; d) with distinguished point z0 is said to be algebraically

H-homogeneous, if H acts transitively on X; i.e. for any pair of points a; b
there is a (bounded) homeomorphism h 2 H(X) with b = h(a) ([Kur-I]
Ch. I. 13. XI). Of interest here is the theorem which goes back to work of
van Dantzig and van der Waerden that for X a connected, locally compact
metric space the isometries under the pointwise convergence topology form a
locally compact group (acting properly), for which see [KoNo]. The space X
is said to be a topological H-homogeneous space, or a H-coset space, if X is
homeomorphic to H=Hz0 ; where Hz0 = fh 2 H : h(z0) = z0g is the stabilizer
of z0 (see [Na] Ch. III. 3). Ford�s Theorem ([For]) below identi�es usefully
for us when a homogeneous space is a coset space; we note in this connection
Arens�Theorem referring in the locally compact case to the component of
the identity ([Ar], or [MZ] Ch. II Th. 2.13) and results due to Freudenthal
[Fr1],[Fr2], [Fr3]. Evidently, if Hz0 is a normal subgroup of H, then X is a
topological group; thus, for Hz0 trivial, X is a group, then referred to as a
principal homogeneous space (cf. e.g. [Na] Ch. III. 3 p. 128). When this
circumstance does not obtain, it may be possible to �cut down�H to the
principal case. See [MZ] for the following scenario: for H locally compact
and �rst countable, H contains a normal subgroup H0 such that H=H0 is
metrizable, and so if H is e¤ective (that is, the equation h(x) = x holds
for all x 2 X i¤ h = eH; meaning �there is no identity but the Identity�),
thenH0 = feg: In all these circumstances the intuitive picture of the group of
actionsH is that of a group of topological shifts (i.e. continuous deformations
by, say, left-translations).
We are usually interested in the case when H acts continuously on X, i.e.

X is given an H-�ow, so that Hz0 is closed.
For the purposes of the UCT we need to consider a strengthening of alge-

braic H-homogeneity which automatically leads, by Ford�s Theorem below,
to topological H-homogeneity. Recall that the action of H on X is weakly
transitive if fh(eX) : h 2 Hg is dense in X (cf. [Se] and [Itz]); see [RaoRao]
who examine its relation to a category version of the Hewitt-Savage zero-one
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law, a result closely connected to Kuratowski�s zero-one law ([Kur-I] Ch. I.
13. XII). In the metric setting this demands that, for any x0 2 X; there is a
sequence xn = hn(eX) with hn 2 H and xn ! x0: This property is assumed
in [Itz], where X is a uniform space, and is instrumental in making a locally
compact uniform space X topologically homogeneous. In the UCT we will
need the following strengthening.

De�nition. For any subgroup H of H(X), say that X has the H-
crimping property at x0 if, for any sequence xn ! x0; there is a sequence
of homeomorphisms  n in H converging to the identity, so necessarily in
H(X); with  n(z0) = zn: We refer to the  n as a crimping sequence at
x0: Say that X has the crimping property globally if it has the H-crimping
property at all points.

Note that weak transitivity would yield only a sequence hn(z0) with
d(hn(z0); zn) ! 0 without even having the H(X)-norms converge to zero.
Normed groups are a natural domain for regular variation theory, since left-
translations provide the crimping property when the metric is right-invariant.

Proposition 1. Let X be a normed group with the identity eX as its
distinguished point z0. Then:
(i) for zn ! z0; the sequence  n(x) = znz

�1
0 x is a H(X)-crimping se-

quence at z0;
(ii) �(x) := x0x is a bounded homeomorphism with �(z0) := x0, and

further:
(iii) for xn ! x0; ~ n(x) := xnx

�1
0 x is a H(X)-crimping sequence at x0;

such that, for the null sequence zn := x�10 xn, ~ n = � n�
�1; i.e. ~ n is a

conjugate of  n:
Thus X has the H(X)-crimping property globally.

Proof. Let dX be a right-invariant metric. For (i),

jj njj = sup
x
dX(znz

�1
0 x; x) = dX(znz

�1
0 ; eX) = d(zn; z0)! 0; as n!1:

For (ii), evidently jj�jj := d(x0x; x) = jjx0jj is bounded. Then (iii) follows
similarly. �

In the absence of a right-invariant metric, i.e. in a general topological
homogeneous space, we will demand the crimping property at all x0: How-
ever, one may sometimes pass from local crimping to global crimping, as the
following result shows.
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Proposition 2. If X is Hu(X)-homogeneous and has the crimping prop-
erty at z0, then X has the Hu(X)-crimping property globally. In particular, a
Klee group is Hu(X)-homogeneous and so has the Hu(X)-crimping property
globally.

Proof. Suppose X has the crimping property at z0: Suppose xn ! x0
with x0 any point in X: As X is Hu(X)-homogeneous, there is � 2 Hu(X)
with �(z0) = x0; so zn := ��1(xn)! ��1(x0) = z0: Suppose  n is a sequence
converging to the identity with  n(z0) = zn; then, by Lemma 2 of the pre-
vious section, ~ n = � n�

�1 is also convergent to the identity and so veri�es
the crimping property at x0:
In a Klee group, for �a(x) := a�1x; we have jj�ajj := jja�1jj = jjajj so

� 2 H(X): Furthermore, by Proposition 7,

d(�a(x); �a(y)) = jja�1xy�1ajj = jjxy�1jj = d(x; y);

so � 2 Hu(X): �

We recall here the algebraic treatment of homeomorphisms of X in the
Weil approach to homogeneity �for which we follow [Bour] Part I Sections
3.4 and 3.5 for group actions on a topological space X (cf. [Na] Ch. 3 Sect.
3) There the focal point is a topological group G which acts transitively, i.e.,
for each x; y in X; there is g with gy = x: For an arbitrary �xed z in X;
denote by Hz the stabilizer subgroup of elements h �xing z; i.e. with hz = z:
The coset mapping taking gHz to the point gz in X is a continuous bijective
mapping onto X (noting that gz = kz implies g�1k 2 Hz): If this mapping
happens to be a homeomorphism, then X is called a coset space (cf. e.g.
[vM]), or according to [Bour] a topologically homogeneous space; X is then
represented by the algebraic quotient G=Hz. (Note that if h is in Hz and
gy = z; then hgy = gy; i.e. g�1hgy = y; so g�1Hzg is the subgroup �xing
y; thus the conclusions do not depend on the choice of z:) Of interest here is
the necessary and su¢ cient condition for the bijection from G=Hz to X to
be a homeomorphism, that for each �xed x; the mapping g ! gx be open.
We compare the crimping property to a related notion: a homogenous

space X is strongly locally homogeneous if, for each point x and each su¢ -
ciently small "-ball around x; there is, for each pair of points a; b in the ball,
a homeomorphism h0 of the closed ball taking a to b and �xing its boundary;
that is, h0(a) = b and h0(z) = z for z with d(x; z) = " (cf. strong local
homogeneity as de�ned in [For]). By �xing the entire exterior of the ball we

10



may extend h0 to a homeomorphism h of X with jjhjj � "; therby achieving
h 2 H(X):
This latter consideration leads to a further de�nition. Say that (X; d) is

locally crimping, if, for any a 2 X and any su¢ ciently small " > 0; there
is � > 0 such that for all b with d(a; b) < � there exists h 2 H(X) with
jjhjj < " and b = h(a): (For a similar notion demanding also connected-
ness see [Mon2].) The argument of [For] (compare [AlpPras] Lemma 2.2
p. 10) referring to rotation around the midpoint of a; b shows that Euclid-
ean manifolds, and more generally locally convex spaces, are strongly locally
homogeneous. The local crimping property holds in any topological group
with a right-invariant metric, since again the mapping h(x) = ba�1x satis�es
jjhjj = supx d(ba�1x; x) = d(a; b):
The crimping property is critical to the UCT. We include the proof of the

key result here, Ford�s theorem, as it is short.

Proposition 3 (Ford�s Theorem, [For], [vM]). Suppose that X is
strongly locally homogeneous, or more generally has the local crimping prop-
erty. Then, for any �xed x; the mapping g ! g(x) is open, and so X is
homogeneous in the sense of Weil with X = H(X)=H0(X); where H0(X) is
the stabilizer subgroup.

Proof. Let U be open and h0 2 U: There is "0 > 0 such that for all
h with d(h0; h) < "0; h 2 U: Fix x: Put z = h0(x): Let " � "0 be small
enough and positive so that pairs of points of the "-ball about z may be
mapped to each other by a homeomorphism of norm less than ". Then
fy : d(y; z) < "g � fg(x) : g 2 Ug: Indeed, for some h 2 H(X) with jjhjj � "
we have y = h(z): But d(h0; hh0) = d(id; h) = jjhjj < "; so hh0 2 U and
y = hh0(x): �

3 Unconditional Divergence

De�nition. Let  n : X ! X be auto-homeomorphisms.
We say that a sequence  n in H(X) converges to the identity if

jj njj = d�( n; id) := sup
t2X

d( n(t); t)! 0:

Thus, for all t; we have zn(t) := d( n(t); t) � jj njj and zn(t)! 0: Thus the
sequence jj njj is bounded.
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Examples. In R we may consider  n(t) = t+ zn with zn ! 0: In a more
general context, we note that a natural example of a convergent sequence of
homeomorphisms is provided by a �ow parametrized by discrete time (thus
also termed a �chain�) towards a sink. If  : N � X ! X is a �ow and
 n(x) =  (n; x), then, for each t; the orbit f n(t) : n = 1; 2; :::g is the image
of the real null sequence fzn(t) : n = 1; 2; :::g:
We note, in the context of normalizations of a sequence of random vari-

ables by a¢ ne transformations, two normalizations are said to be equivalent
if their transformations �n; �n are asymptotic in the sense that  n = ��1n �n
converges to the identity ([BalEmb] Example 0.2).

Proposition. (i) For a sequence  n in H(X),  n converges to the iden-
tity i¤  �1n converges to the identity.
(ii) Suppose X has abelian norm. For h 2 H(X); if  n converges to the

identity then so does h�1 nh:

Proof. For (i), note that jj njj =
���� �1n ���� ; the symmetry property of the

norm, veri�ed by

jj njj := sup
t
d( n(t); t) = sup

u
d(u;  �1n (u)) =

���� �1n ���� :
For (ii), note that jjh�1 nhjj = jjhh�1 njj = jj njj ; by the assumed cyclic
property. �
De�nitions.
1. For 'n : X ! X auto-homeomorphisms, we say that the sequence 'n

in G diverges uniformly if for for any M > 0 we have, for ultimately all n;
that

d('n(t); t) �M; for all t:

Equivalently, putting

d�(h; h
0) = inf

x2X
d(h(x); h0(x));

d�('n; id)!1:

2. More generally, let A � H(S) with A a metrizable topological group.
We say that �n is a pointwise divergent sequence in A if, for each s 2 S;

dS(�n(s); s)!1;
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equivalently, �n(s) does not contain a bounded subsequence.
3. We say that �n is a uniformly divergent sequence in A if

jj�njjA := dA(eA; �n)!1;

equivalently, �n does not contain a bounded subsequence.
Examples. In R we may consider 'n(t) = t + xn where xn ! 1: In a

more general context, a natural example of a uniformly divergent sequence of
homeomorphisms is again provided by a �ow parametrized by discrete time
from a source to in�nity. If ' : N �X ! X is a �ow and 'n(x) = '(n; x),
then, for each x; the orbit f'n(x) : n = 1; 2; :::g is the image of the divergent
real sequence fyn(x) : n = 1; 2; :::g; where yn(x) := d('n(x); x) � d�('n; id):
Remark. Our aim is to o¤er analogues of the topological vector space

characterization of boundedness: for a bounded sequence of vectors fxng
and scalars �n ! 0 ([Ru-FA2] cf. Th. 1.30) �nxn ! 0: However �nxn is
interpreted in the spirit of duality as �n(xn) with the homeomorphisms �n
converging to the identity.

Theoretical examples motivated by duality
1. Evidently, if S = X; the pointwise de�nition reduces to functional

divergence in H(X) de�ned pointwise:

dX(�n(x); x)!1:

The uniform version corresponds to divergence in the supremum metric
in H(X):
2. If S = T and A = X = �; we have, by the Quasi-Isometric Duality

Theorem [BOst12], that

dT (�x(n)(t); �e(t))!1 i¤ dX(xn; eX)!1;

and the assertion reduces to ordinary divergence in X: Since

d�(�x(n); �e) = dX(xn; eX);

the uniform version also asserts that

dX(xn; eX)!1:

Recall that �x(s)(z) = s(x�1z); so � de�nes an action ' on T according to
the formula

'(�; t) = �x�1(t)(e) = t(x);

13



where � = �x: In lieu of '
�(t); with � = �x(n); one may write �x(n)(t) and then

�x(n)(t) = t(xn):

When interpreting �x(n) in � as xn in X acting on t; note that

dX(xn; eX) � dX(xn; t(xn)) + dX(t(xn); eX) � jjtjj+ dX(t(xn); eX);

so, as expected, the divergence of xn implies the divergence of t(xn):

De�nition. We say that pointwise (resp. uniform) divergence is uncon-
ditional in A if, for any (pointwise/uniform) divergent sequence �n,
(i) for any bounded �; the sequence ��n is (pointwise/uniform) divergent;
and,
(ii) for any  n convergent to the identity,  n�n is (pointwise/uniform) diver-
gent.

Remarks. In clause (ii) each of the functions  n has a bound depending
on n: The two clauses could be combined into one by requiring that if the
bounded functions  n converge to  0 in the supremum norm, then  n�n is
(pointwise/uniform) divergent.
By Lemma 3 of [BOst12] Section 4 uniform divergence in H(X) is uncon-

ditional. We move to other forms of this result.

Proposition. If the metric on A is left- or right-invariant, then uniform
divergence is unconditional in A.

Proof. If the metric d = dA is left-invariant, then observe that if �n is a
bounded sequence, then so is ��n; since

d(e; ��n) = d(��1; �n) � d(��1; e) + d(e; �n):

Since jj��1n jj = jj�njj; the same is true for right-invariance. Further, if  n is
convergent to the identity, then also  n�n is a bounded sequence, since

d(e;  n�n) = d( �1n ; �n) � d( �1n ; e) + d(e; �n):

Here we note that, if  n is convergent to the identity, then, so is  
�1
n by

continuity of inversion (or by metric invariance). The same is again true for
right-invariance. �

14



The case where the subgroup A of autohomeomorphisms is the transla-
tions �; though immediate, is worth noting.

Theorem 1. (The case A = �:) If the metric on the group X is left- or
right-invariant, then uniform divergence is unconditional in A = �.
Proof. We have already noted that � is isometrically isomorphic to X:

�

Remarks.
1. If the metric is bounded, there may not be any divergent sequences.
2. We already know from Lemma 3 that uniform divergence inA = H(X)

is unconditional.
3. The unconditionality condition (i) corresponds directly to the technical

condition placed in [BajKar] on their �lter F : In our metric setting, we thus
employ a stronger notion of limit to in�nity than they do. The �lter implied
by the pointwise setting is generated by sets of the form\

i2I
f� : dX(�n(xi); xi) > M ultimatelyg with I �nite.

However, whilst this is not a countably generated �lter, its projection on the
x-coordinate:

f� : dX(�n(x); x) > M ultimatelyg;
is.
4. When the group is locally compact, �bounded�may de�ned as �pre-

compact�, and so �divergent�becomes �unbounded�. Here divergence is un-
conditional (because continuity preserves compactness).
The supremum metric need not be left-invariant; nevertheless we still do

have unconditional divergence.

Theorem 2. For A � H(S); pointwise divergence in A is unconditional.
Proof. For �xed s 2 S; � 2 H(S) and dX(�n(s); s)) unbounded, suppose

that dX(��n(s); s)) is bounded by K: Then

dS(�n(s); s)) � dS(�n(s); �(�n(s))) + dS(�(�n(s)); s)

� jj�jjH(S) +K;

contradicting that dS(�n(s); s)) is unbounded. Similarly, for  n converging
to the identity, if dS( n(�n(x)); x) is bounded by L; then

dS(�n(s); s)) � dS(�n(s);  n(�n(s))) + dS( n(�n(s)); s)

� jj njjH(S) + L;
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contradicting that dS(�n(s); s)) is unbounded. �

Corollary 1. Pointwise divergence in A � H(X) is unconditional.
Corollary 2. Pointwise divergence in A = � is unconditional.

Proof. In Theorem 2, take �n = �x(n): Then unboundedness of dT (�x(n)(t); t)
implies unboundedness of dT (��x(n)(t); t) and of dT ( n�x(n)(t)); t): �

4 Category Embedding Theorem

If  n converges to the identity, then, for large n; each  n is almost an isom-
etry. Indeed by the Proposition on Permutation metrics [BOst12], we have

d(x; y)� 2jj njj � d( n(x);  n(y)) � d(x; y) + 2jj njj:

This motivates our next result; we need to recall a de�nition and the Cate-
gory Embedding Theorem from [BOst11]. In what follows, the words quasi
everywhere (q.e.), or for quasi all points mean for all points o¤ a meagre set.

De�nition (weak category convergence). A sequence of homeomor-
phisms  n satis�es the weak category convergence condition (wcc) if:
For any non-empty open set U; there is an non-empty open set V � U

such that, for each k 2 !;\
n�k

V n �1n (V ) is meagre. (wcc)

Equivalently, for each k 2 !; there is a meagre setM such that, for t =2M;

t 2 V =) (9n � k)  n(t) 2 V:

Category Embedding Theorem. Let X be a Baire space. Suppose
given homeomorphisms  n : X ! X for which the weak category convergence
condition (wcc) is met. Then, for any non-meagre Baire set T; for locally
quasi all t 2 T; there is an in�nite set Mt such that

f m(t) : m 2Mtg � T:

Examples. In R we may consider  n(t) = t + zn with zn ! z0 := 0: It
is shown in [BOst11] that for this sequence the condition (wcc) is satis�ed in
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both the usual topology and the density topology on R. This remains true in
Rd (where the speci�c instance of the theorem is referred to as the Kestelman-
Borwein-Ditor Theorem, see [Kes], [BoDi]). In fact in any metrizable groupX
with right-invariant metric dX , for a null sequence tending to the identity
zn ! z0 := eX ; the mapping de�ned by  n(x) = znx converges to the
identity (see the Corollary to Ford�s Theorem); here too (wcc) holds. This
follows from the next result, which extends the proof of [BOst11].

Proposition If  n converges to the identity, then  n satis�es the weak
category convergence condition (wcc).

Proof. Since  n converges to the identity i¤ 
�1
n converges to the identity

(see previous section), it is more convenient to prove the equivalent statement
that  �1n satis�es the category convergence condition.
Put zn =  n(z0); so that zn ! z0: Let k be given.
Suppose that y 2 B"(z0); i.e. r = d(y; z0) < ": For some N > k; we have

"n = d( n; id) <
1
3
("� r); for all n � N: Now

d(y; zn) � d(y; z0) + d(z0; zn)

= d(y; z0) + d(z0;  n(z0)) � r + "n:

For y =  n(x) and n � N;

d(z0; x) � d(z0; zn) + d(zn; y) + d(y; x)

= d(z0; zn) + d(zn; y) + d(x;  n(x))

� "n + (r + "n) + "n < ":

So x 2 B"(z0); giving y 2  n(B"(z0)): Thus

y =2
\
n�N

B"(z0)n n(B"(z0)) �
\
n�k

B"(z0)n n(B"(z0)):

It now follows that \
n�k

B"(z0)n n(B"(z0)) = ?: �

We refer the reader to [BOst12] for applications which include general-
izations to normed groups of the Steinhaus Theorem. In the real line the
latter asserts that A + A and A � A; for A Baire and non-meagre, contains
an interval (see [Kom] for the topological vector space setting and earlier
literature including the work of Piccard [P] and Pettis [Pet1]).
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5 The Uniform Convergence Theorems

De�nition. Let X be a homogeneous metric space with distinguished point
z0:We say that h : X ! H is unconditionally �-slowly varying on S if � is
divergent and

h(�0ns)h(�
0
nz0)

�1 ! 0; as n!1 (for each s 2 S), (1)

for any sequence �0 = f�0ng with �0n =  n��n; for any �xed bounded � and
any sequence  n convergent to the identity.

Example. Take X = C[0; 1] and for �(t) continuous, let f be de�ned by

f(x) =

Z 1

0

�(t) log(x(t))dt:

Then

f(u+ x)� f(x) =

Z 1

0

�(t) log

�
1 +

u(t)

x(t)

�
dt! 0;

as jjxjj ! 1: More particularly, suppose that fxng is a sequence in X with
jjxnjj ! 1: Put 'n(u) := u+ xn; then we have

f('n(u))� f('n(z0)) =

Z 1

0

�(t) log

�
'n(u(t))

'n(z0(t))

�
dt! 0:

Thus f is �-slowly varying for � the group of all shifts 'x(u) := u+ x:

To state and prove our �rst main theorem, we recall the notion of crimping
from Section 4.

The General Uniform Convergence Theorem for Actions (Gen-
eral UCT).
Suppose the following:
(i) A � H(S) is a (topological) group of homeomorphisms acting on the

metric space S such that S is of second category in itself;
(ii) for zn ! z0 in S; there is a crimping sequence of maps with  nz0 =

zn;
(iii) for each z 2 S there is a bounded shift �z with �zz0 = z, such that

~ n = �z n�
�1
z is a crimping sequence of maps with  nz0 = zn;
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(iv) divergence in A is unconditional;
(v) h : S ! H is Baire unconditionally �-slowly varying on S, so that

h(�ns)h(�nz0)
�1 ! eH ; as n!1 (for each s 2 S).

Then the convergence is uniform for s on compact subsets K of the space S:

Proof. If not, then, for some Baire function h; some " > 0; some divergent
sequence �n in A, and some convergent sequence of points
un ! u in S;

jh(�nun)h(�n)�1j � 2": (2)

Now, by (iii) there exists a bounded homeomorphism � = �u of A with
�(z0) = u:
Put zn = ��1(un), so that, by continuity, un ! u implies that zn ! z0:

Evidently we have un = �(zn)! �(z0) = u:
Let  n converging to the identity be selected with zn =  n(z0). Thus

�(zn) = �( n(z0)) = un: Moreover, note that

 n(un)! u;

as
dS( n(un); u) � dS( n(un); un) + dS(un; u) � "n + dS(un; u):

De�ne Baire sets Sk by

Sk :=
\
n�k

fs 2 S : jh(�n(�(s)))h(�n(z0))�1j < "g:

Then, by de�nition of slowly varying, we have

S =
[
k

Sk:

So, by (i), for some k the set Sk is non-meagre. Hence, by the Category
Embedding Theorem, there are t 2 Sk and an in�nite Mt such that

f n(t) : n 2Mtg � Sk:

Thus, for n 2Mt, we have

jh(�n(�( n(t)))h(�n(z0))�1j < ":
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In the case when u = z0 we have, as  n(z0) = zn, that

jh(�nzn)h(�n(z0))�1j = jh(�n n(t))h(�n n(z0)�1h(�n n(a))h(�n(z0))�1j
� jh(�n n(t))h(�n n(z0)�1j

+jh(�n n(a))h(�n(z0))�1j:

However, by (iv), �n n is divergent, so the �rst term is ultimately smaller
than " (h slowly varying at t); and so is the second, by the Category Embed-
ding Theorem. This contradicts the assumptions (2). For a general location
u; the argument is similar. Here, as �( n(z0)) = un (again by construction),
we have

jh(�nun)h(�n(z0))�1j � jh(�n� n(t))h(�n� n(z0)�1j
+jh(�n� n(t))h(�n(z0))�1j;

and this time �n� n is divergent (by (iv)), since � is a bounded homeomor-
phism. �

Since groups with invariant metrics have crimping sequences, and bounded
shifts, we conclude as follows.

The Primal Uniform Convergence Theorem (State UCT). Sup-
pose the following:
(i) X is a Baire space,
(ii) X is homogeneous under H(X), i.e., for any pair of points z; u; there

is a bounded homeomorphism � such that �(z) = u;
(iii) The crimping property holds: for any null sequence zn ! z0 in

X; there is a sequence of homeomorphisms converging to the identity with
 n(z0) = zn:
(iv) for each z 2 X there is a bounded shift �z with �zz0 = z, such that

~ n = �z n�
�1
z is a crimping sequence of maps with  nz0 = zn;

(v) h is Baire unconditionally '-slowly varying for divergent ' in T .
Then, for x in any compact set K � X; we have uniformly for x 2 K

the convergence
h('n(x))h('n(z0))

�1 ! eH ;

i.e. the convergence in (1) is uniform on compact subsets K of the space
X:
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Proof: Take S = X and A = T � H(X): Here eA = idX ; i.e. eA(x) = x
for x 2 X and eS = eX = z0:
As ' = f'ng diverges, for each x 2 X; we have

d('n(x); x)!1:

This notion is unconditional by Corollary 1. This completes our check of the
hypotheses of the General UCT. �

A brief inspection of the proof leads to the conclusion that the uniform
convergence theorem holds in a form where all the convergence assertions are
relativized to a subspace of X.
Corollary (Relativized Primal UCT) Suppose that (i)-(iv) of the

Primal UCT hold and also that
(v) Y is a Baire subspace of X; h : Y ! H is Baire unconditionally

'-slowly varying for divergent ' in T .on Y , i.e., for x 2 Y;

h('n(x))h('n(z0))
�1 ! eH :

Then, for x in any compact set K � Y; we have uniformly for x 2 K the
convergence

h('n(x))h('n(z0))
�1 ! eH ;

i.e. the convergence in (1) is uniform on compact subsets K of the sub-
space Y:

Application: Equicontinuity from the Relativized Primal UCT
(State UCT).
Consider Y a Baire topological group and form the direct product group

X = Y � N. Here
(t;m) � (s; n) = (ts;mn):

Identify Y with Y �f1g and let T = X so that X acts on itself. Suppose H is
also a topological group and that, for n 2 N; fn : Y ! H are homomorphisms
with fn(y)! f1(y) pointwise. For x = (s; n) 2 X; put

F (x) = fn(s):

Then, for y = (t; 1) 2 Y � f1g and x = (s; n) 2 X; we have, since fn is a
homomorphism, that

�F (x; y) = F (x)�1F (xy) = fn(s)
�1fn(st) = fn(t);
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i.e. the cocycle is independent of x: Hence, with F generated from Fm =
f(s; n) : n � mg; we have, for y �xed,

F- lim
x
F (x)�1F (xy) = f1(y):

Thus the limit cocycle on Y over X is k(y) = f1(y). Then UCT implies
equicontinuity, i.e. fn(y)! f1(y) on compact subsets of Y: �

The above is a modi�cation of the argument presented by Baj�anski and
Karamata in [BajKar]; however, we proceed dually, as here the limit taken is
with the �space�variable y held �xed (the action variable x goes to in�nity).
We now turn to the dual version of the UCT in which the space variable goes
to in�nity.

The Dual Uniform Convergence Theorem (Costate UCT).
Suppose the following:
(i) T � H(X) is a (topological) group of homeomorphisms acting on the

metric space X such that T is of second category in itself;
(ii) for zn ! e in T; the sequence of maps  n : t ! tzn satis�es the

condition (wcc);
(iii) the map �z : t! tz is bounded, for each z 2 T ;
(iv) h : X ! H is Baire slowly varying on T; i.e. h is Baire and, for

each divergent sequence xn in X;

h(txn)h(xn)
�1 ! eH ; as n!1 (for each t 2 T ).

Then the convergence is uniform on compact subsets of the transformation
group T:

Proof. Take S = T and A = � = f�x : x 2 Xg; which we identify with
X: Here eA = e� and e� = �e with e = eX : That is, eA(t) = t; for t 2 T:
To obtain the notion of divergence, write x(n) for xn and demand for �xed t
that

dT (�x(n)(t); t)!1:

Then by the Lemma this is equivalent to dX(xn; eX)!1:
By Corollary 2 this notion is unconditional. This completes our check of

the hypotheses of the General UCT. �
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