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Abstract
The key vehicle of the recent development of a topological theory of

regular variation based on topological dynamics [BOst13], and embrac-
ing its classical univariate counterpart (cf. [BGT]) as well as fragmen-
tary multivariate (mostly Euclidean) theories (eg [MeSh], [Res], [Ya]),
are groups with a right-invariant metric carrying �ows. Following the
vector paradigm, they are best seen as normed groups. That concept
only occasionally appears explicitly in the literature despite its fre-
quent disguised presence, and despite a respectable lineage traceable
back to the Pettis closed-graph theorem, to the Birkho¤-Kakutani
metrization theorem and further back still to Banach�s Théorie des
opérations linéaires. We collect together known salient features and
develop their theory including Steinhaus theory uni�ed by the Cate-
gory Embedding Theorem [BOst11], the associated themes of subaddi-
tivity and convexity, and a topological duality inherent to topological
dynamics. We study the latter both for its independent interest and
as a foundation for topological regular variation.
Classi�cation: 26A03
Keywords: multivariate regular variation, topological dynamics,

�ows, convexity, subadditivity, quasi-isometry, Souslin-graph theorem,
automatic continuity, density topology.
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1 Introduction

Group norms, which behave like the usual vector norms, except that scaling
is restricted to the basic scalars of group theory (the units �1 in an abelian
context and the exponents �1 in the non-commutative context), have played
a part in the early development of topological group theory. Although ubiq-
uitous they lack a clear and uni�ed exposition. This lack is our motivation
here, since they o¤er the right context for the recent theory of topological reg-
ular variation. This extends the classical theory (for which see, e.g. [BGT])
from the real line to metrizable topological groups. Normed groups are just
groups carrying a right-invariant metric. The basic metrization theorem for
groups, the Birkho¤-Kakutani Theorem of 1936 ([Bir], [Kak], see [Kel], Ch.6
Problems N-R, [Klee], [Bour] Part 2, Section 3.1, and [ArMa], compare also
[Eng] Exercise 8.1.G and Th. 8.1.21) is usually stated as asserting that
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a �rst-countable Hausdor¤ group has a right-invariant metric. It is prop-
erly speaking a �normability�theorem in the style of Kolmogorov�s Theorem
([Kol], or [Ru-FA2], Th. 1.39; in this connection see also [Jam], where strong
forms of connectedness are used in an abelian setting to generate norms), as
we shall see below. Indeed the metric construction in [Kak] is reminiscent
of the more familiar construction of a Minkowski functional (for which see
[Ru-FA2] Sect. 1.33), but is implicitly a supremum norm �as de�ned below;
in Rudin�s derivation of the metric (for a topological vector space setting,
[Ru-FA2] Th. 1.24) this norm is explicit. Early use by A. D. Michal and
his collaborators was in providing a canonical setting for di¤erential calculus
(see the review [Mich] and as instance [JMW]) and included the noteworthy
generalization of the implicit function theorem by Bartle [Bart] (see Section
5). In name the group norm makes an explicit appearance in 1950 in [Pet1] in
the course of his classic closed-graph theorem (in connection with Banach�s
closed-graph theorem and the Banach-Kuratowski category dichotomy for
groups). It reappears in the group context in 1963 under the name �length
function�, motivated by word length, in the work of R. C. Lyndon [Lyn2] (cf.
[LynSch]) on Nielsen�s Subgroup Theorem, that a subgroup of a free group is
a free group. (Earlier related usage for function spaces is [EH].) The latter
name is conventional in geometric group theory despite the parallel usage in
algebra (cf. [Far]) and the recent work on norm extension (from a normal
subgroup) of Bökamp [Bo].
When a group is topologically complete and also abelian, then it admits

a metric which is bi-invariant, i.e. is both right- and left-invariant, as [Klee]
showed in solving a problem of Banach. This context is of signi�cance for the
calculus of regular variation (in the study of products of regularly varying
functions with range a normed group) �see [BOst15].
Fresh interest in metric groups dates back to the seminal work of Milnor

[Mil] in 1968 on the metric properties of the fundamental group of a manifold
and is key to the global study of manifolds initiated by Gromov [Gr1], [Gr2]
in the 1980s (and we will see quasi-isometries in the duality theory of normed
groups), for which see [BH] and also [Far] for an early account; [PeSp] con-
tains a variety of generalizations and their uses in interpolation theory (but
the context is abelian groups).
The very recent [CSC] (see Sect. 2.1.1, Embedding quasi-normed groups

into Banach spaces) employs norms in considering Ulam�s problem (see [Ul])
on the global approximation of nearly additive functions by additive func-
tions. This is a topic related to regular variation, where the weaker concept
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of asymptotic additivity is the key. Recall the classical de�nition of a regu-
larly varying function, namely a function h : R! R for which the limit

@Rh(t) := lim
x!1

h(tx)h(x)�1 (1)

exists everywhere; for f Baire, the limit function is a continuous homomor-
phism (i.e. a multiplicative function). Following the pioneering study of
[BajKar] launching a general (i.e., topological) theory of regular variation,
[BOst13] has re-interpreted (1), by replacing jxj ! 1 with jjxjj ! 1; for
functions h : X ! H; with tx being the image of x under a T -�ow on X
(de�ned in Section 3), and with X;T;H all groups with right-invariant met-
ric (right because of the division on the right) �i.e. normed groups (making
@hX a di¤erential at in�nity, in Michal�s sense [Mi]). In concrete applications
the groups may be the familiar Banach groups of functional analyis, the as-
sociated �ows either the ubiquitous domain translations of Fourier transform
theory or convolutions from the related contexts of abstract harmonic analy-
sis (e.g. Wiener�s Tauberian theory so relevant to classical regular variation �
see e.g. [BGT, Ch. 4]). In all of these one is guaranteed right-invariant met-
rics. Likewise in the foundations of regular variation the �rst tool is the group
H(X) of bounded self-homeomorphisms of the group X under a supremum
metric (and acting transitively on X); the metric is again right-invariant and
hence a group norm. It is thus natural, in view of the applications and the
Birkho¤-Kakutani Theorem, to demand right-invariance.
We show in Section 3 and 6 that normed groups o¤er a natural setting

for subadditivity and for (mid-point) convexity.

2 Metric versus normed groups

This section is devoted to group-norms and their associated metrics. We
collect here some pertinent information (some of which is scattered in the
literature). A central tool for applications is the construction of the subgroup
of bounded homeomorphisms of a given group G of self-homeomorphisms of
a topological group X; the subgroup possess a guaranteed right-invariant
metric. This is the archetypal example of the symbiosis of norms and metrics,
and it bears repetition that, in applications just as here, it is helpful to work
simultaneously with a right-invariant metric and its associated group norm.
We say that the group X is normed if it has a group-norm as de�ned

below (cf. [DDD]).
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De�nition. We say that jj � jj : X ! R+ is a group-norm if the following
properties hold:
(i) Subadditivity (Triangle inequality): jjxyjj � jjxjj+ jjyjj;
(ii) Positivity: jjxjj > 0 for x 6= e;
(iii) Inversion (Symmetry): jjx�1jj = jjxjj:
If (i) holds we speak of a group semi-norm; if (i) and (iii) and jjejj = 0

holds one speaks of a pseudo-norm (cf. [Pet1]); if (i) and (ii) holds we speak
of a group pre-norm (see [Low] for a full vocabulary).
We say that a group pre-norm, and so also a group-norm, is abelian, or

more precisely cyclically permutable, if
(iv) Abelian norm (cyclic permutation): jjxyjj = jjyxjj for all x; y:
Other properties we wish to refer to are :
(i)K for all x; y : jjxyjj � K(jjxjj+ jjyjj)
(i)ult for all x; y : jjxyjj � maxfjjxjj; jjyjjg

Remarks 1
1. Mutatis mutandis this is just the usual vector norm, but with scal-

ing restricted to the units �1: The notation and language thus mimick the
vector space counterparts, with subgroups playing the role of subspaces; for
example, for a symmetric, subbadditive p : X ! R+; the set fx : p(x) = 0g
is a subgroup. Indeed the analysis of Baire subadditive functions (see Sec-
tion 3) is naturally connected with norms, via regular variation. That is why
normed groups occur naturally in regular variation theory.
2. When (i)K , for some constant K; replaces (i), one speaks of quasi-

norms (see [CSC], cf. �distance spaces�[Rach] for a metric analogue). When
(i)ult replaces (i) one speaks of an ultra-norm, or non-Archimedean norm.
3. Note that (i) implies joint continuity of multiplication, while (iii) im-

plies continuity of inversion. (Montgomery [Mon1] shows that joint continuity
is implied by separate continuity when the group is locally complete.) See
below for the stronger notion of uniform continuity invoked in the Uniformity
Theorem of Conjugacy.
4. Abelian groups with ordered norms may also be considered, cf. [JMW].
Remarks 2
Subadditivity implies that jjejj � 0 and this together with symmetry

implies that jjxjj � 0; since jjejj = jjxx�1jj � 2jjxjj; thus a group norm
cannot take negative values. Subadditivity also implies that jjxnjj � njjxjj;
for natural n: The norm is said to be 2-homogeneous if jjx2jj = 2jjxjj; see
[CSC] Prop. 4.12 (Ch. IV.3 p.38) for a proof that if a normed group is
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amenable or weakly commutative (de�ned in [CSC] to mean that, for given
x; y; there is m of the form 2n; for some natural number n; with (xy)m =
xmym), then it is embeddable as a subgroup of a Banach space. In the
case of an abelian group 2-homogeneity corresponds to sublinearity, and here
Berz�s Theorem characterizes the norm (see [Berz] and [BOst5]). The abelian
property implies only that jjxyzjj = jjzxyjj = jjyzxjj; hence its alternative
name. Harding [H], in the context of quantum logics, uses this condition to
guarantee that the group operations are continuous and calls this a strong
norm. See [Kel] Ch. 6 Problem O (which notes that a locally compact group
with abelian norm has a bi-invariant Haar measure). We note that when
X is locally compact continuity of the inverse follows from the continuity of
multiplication (see [Ell]). The literature concerning when joint continuity of
(x; y)! xy follows from separate continuity reaches back to Namioka [Nam]
(see e.g. [Bou], [HT], [CaMo]).
Remarks 3
If f : R+ ! R+ is increasing, subadditive with f(0) = 0; then

jjjxjjj := f(jjxjj)

is also a group-norm. See [BOst5] for recent work on Baire (i.e., having the
Baire property) subadditive functions.

Proposition 1 (Symmetrization) If jxj is a group pre-norm, then the
symmetrization

jjxjj := jxj+ jx�1j
de�nes a group-norm
Proof. Positivity is clear, likewise symmetry. Also

jjxyjj = jxyj+ jy�1x�1j � jxj+ jyj+ jy�1j+ jx�1j
= jjxjj+ jjyjj: �

Proposition 2. If jj � jj is a group-norm, then d(x; y) := jjxy�1jj is a
right-invariant metric; equivalently, ~d(x; y) := d(x�1; y�1) = jjx�1yjj is the
conjugate left-invariant metric on the group.
Conversely, if d is a right-invariant metric, then jjxjj := d(e; x) = ~d(e; x)

is a group-norm.
Thus the metric d is bi-invariant i¤ jjxy�1jj = jjx�1yjj; i.e. i¤ the group-

norm is abelian.
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Proof. Given a group-norm put d(x; y) = jjxy�1jj: Then jjxy�1jj = 0
i¤ xy�1 = e; i.e. i¤ x = y: Symmetry follows from inversion as d(x; y) =
jj(xy�1)�1jj = jjyx�1jj = d(y; x): Finally, d obeys the triangle inequality,
since

jjxy�1jj = jjxz�1zy�1jj � jjxz�1jj+ jjzy�1jj:

As for the converse, given a right-invariant metric d; put jjxjj := d(e; x):
Now jjxjj = d(e; x) = 0 i¤ x = e: Next jjx�1jj = d(e; x�1) = d(x; e) = jjxjj;
and so

d(xy; e) = d(x; y�1) � d(x; e) + d(e; y�1) = jjxjj+ jjyjj:

Also d(xa; ya) = jjxaa�1y�1jj = d(x; y):
Finally d is bi-invariant i¤ d(e; yx�1) = d(x; y) = d(e; x�1y) i¤ jjyx�1jj =

jjx�1yjj: Inverting the �rst term yields the abelian property of the group-
norm. �

The two conjugate metrics separately de�ne a left and right uniformity;
taken together they de�ne what is known as the ambidextrous uniformity,
the only one of the three to be complete �see [Hal-ET, p. 63] and [Br-2].
We will be concerned with special cases of the following de�nition.

De�nition ([Gr1], [Gr2], [BH] Ch. I.8) For constants � � 1; 
 � 0;
the metric spaces X and Y are said to be (�-
)-quasi-isometric under the
mapping � : X ! Y; if

1

�
dX(a; b)� 
 � dY (�a; �b) � �dX(a; b) + 
 (a; b 2 X);

dY (y; �[X]) � 
 (y 2 Y ):

Corollary. For � a homomorphism, the normed groups X; Y are (�-

)-quasi-isometric under � for the corresponding metrics i¤ their norms are
(�-
)-quasi-equivalent, i.e.

1

�
jjxjjX � 
 � jj�xjjY � �jjxjjX + 
 (a; b 2 X);

dY (y; �[X]) � 
 (y 2 Y ):

Proof. This follows from �(eX) = eY and �(xy�1) = �(x)�(y)�1: �
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The following result (which we use in [BOst14]) clari�es the relationship
between the conjugate metrics and the group structure. We de�ne the "-
swelling of a set K in a metric space X; for a given right-invariant metric
dX ; to be

B"(K) := fz : dX(z; k) < " for some k 2 Kg
and for the conjugate left-invariant case we can write similarly

~B"(K) := fz : ~dX(z; k) < " for some k 2 Kg:

We write B"(x0) for B"(fx0g); so that

B"(x0) := fz : jjzx�10 jj < "g:

When x0 = eX ; the ball B"(eX) is the same under either of the conjugate
metrics, as

B"(eX) := fz : jjzjj < "g:

Proposition. (i) In a locally compact group X; for K compact and for
" > 0 small enough so that the closed "-ball B"(eX) is compact, the swelling
B"=2(K) is pre-compact.
(ii) B"(K) = fwk : k 2 K; jjwjjX < "g = B"(eX)K; where the notation

refers to swellings for dX a right-invariant metric; similarly, for ~dX ; the
conjugate metric, ~B"(K) = KB"(e).

Proof. (i) If xn 2 B"=2(K); then we may choose kn 2 K with d(kn; xn) <
"=2: W.l.o.g. kn converges to k: Thus there exists N such that, for n > N;
d(kn; k) < "=2: For such n; we have d(xn; k) < ": Thus the sequence xn lies in
the compact closed "-ball centred at k and so has a convergent subsequence.
(ii) Let dX(x; y) be a right-invariant metric, so that dX(x; y) = jjxy�1jj. If

jjwjj < "; then dX(wk; k) = dX(w; e) = jjwjj < "; so wk 2 B"(K): Conversely,
if " > dX(z; k) = dX(zk

�1; e); then, putting w = zk�1; we have z = wk 2
B"(K): �

The signi�cance of the following simple corollary is manifold. It explicitly
demonstrates that small either-sided translations do not much alter the norm
nor either of the pair of conjugate metrics d; ~d. Its main e¤ect is on the
analysis of subadditive functions.
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Corollary. With jjxjj := dX(x; e); where dX is a right-invariant metric
on X;

j(jjxjj � jjyjj)j � jjxyjj � jjxjj+ jjyjj:
Proof: By Proposition 2, the triangle inequality and symmetry holds for

norms, so jjyjj = jjx�1xyjj � jjx�1jj+ jjxyjj = jjxjj+ jjxyjj: �

We now generalize (1), by letting T;X be subgroups of a normed group
G with X invariant under T:

De�nition. We say that a function h : X ! H is slowly varying on X
over T if @Xh(t) = eH ; that is, for each t in T

h(tx)h(x)�1 ! eH ; as jjxjj ! 1 for x 2 X:

We omit mention of X and T when context permits. In practice G will be
an internal direct product of two normal subgroups G = TX:We may verify
the property of h just de�ned by comparison with a slowly varying function.

Comparison criterion. h : X ! H is slowly varying i¤ for some slowly
varying function g : X ! H and some � 2 H;

lim
jjxjj!1

h(x)g(x)�1 = �:

Proof. Use

h(tx)h(x)�1 = h(tx)g(tx)�1g(tx)g(x)�1g(x)h(x)�1 ! �eH�
�1 = eH : �

Theorem. For dX a right-invariant metric on X; the norm jjxjj :=
dX(x; e); as a function from X to the multiplicative positive reals R�+; is
slowly varying in the mutiplicative sense, i.e., for any t 2 X;

lim
jjxjj!1

jjtxjj
jjxjj = 1:

More generally, for T a one-parameter subgroup of X; any sub-additive Baire
function p : X ! R�+ with

jjpjjT := lim
x2T; jjxjj!1

p(x)

jjxjj > 0
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is multiplicatively slowly varying. (The limit exists by the First Limit Theo-
rem for Baire subadditive functions, see [BOst5].)

Proof: By the corollary, for x 6= e;

1� jjtjj
jjxjj �

jjtxjj
jjxjj � 1 +

jjtjj
jjxjj ;

which implies slow variation. We regard p as mapping to R�+; the strictly
positive reals (since p(x) = 0 i¤ x = eX). If jjpjjT > 0, we may then take
� = jjpjjT and the assertion follows from the Comparison criterion above.
Explicitly, for x 6= e;

p(xy)

p(x)
=
p(xy)

jjxyjj �
jjxyjj
jjxjj �

jjxjj
p(x)

! jjpjjT � 1 �
1

jjpjjT
= 1: �

Corollary. If � : X ! Y is a group homomorphism and jj � jjY is ( 1-

)-quasi-isometric to jj � jjX ; then the subadditive function p(x) = jj�(x)jjY is
slowly varying. For general ( 1-
)-quasi-isometry the function p is extended
regularly varying, i.e. satis�es, for some constants c; d;

zd � p�(z) � p�(z) � zc;

where

p�(z) = lim sup
jjxjj!1

p(zx)p(x)�1 p�(z) = lim inf
jjxjj!1

p(zx)p(x)�1:

Proof. Subadditivity of p follows from homomorphism, since p(xy) =
jj�(xy)jjY = jj�(x)�(y)jjY � jj�(x)jjY + jj�(y)jjY : Assuming that, for � = 1
and 
 > 0; the norm jj � jjY is (�-
)-quasi-isometric to jj � jjX ; we have, for
x 6= e;

1� 


jjxjjX
� p(x)

jjxjjX
� 1� 


jjxjjX
:

So

lim
jjxjj!1

p(x)

jjxjj = 1 6= 0;

and the result follows from the Comparison criterion and the Theorem.
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If, for general � � 1 and 
 > 0; the norm jj � jjY is (�-
)-quasi-isometric
to jj � jjX ; we have, for x 6= e;

��1 � 


jjxjjX
� p(x)

jjxjjX
� �� 


jjxjjX
:

So

p(xy)

p(x)
=
p(xy)

jjxyjj �
jjxyjj
jjxjj �

jjxjj
p(x)

�
�
�� 


jjxjjX

�
� jjxyjjjjxjj �

�
��1 � 


jjxjjX

��1
;

giving

p�(y) := lim sup
x!1

p(xy)

p(x)
� �2: �

Remark. The meaning of the abstract de�nition of slow variation is
open to varying interpretations according to choice of structures. Thus if
X = H = R is construed additively, so that eH = eX = 0 and jjxjj :=
jx�0j = jxj in both cases, and with the action tx denoting t+x; the function
f(x) := jxj is not slowly varying, because (x+ t)� x = t9 0 = eH : On the
other hand a multiplicative construction on H = R�+; for which eH = 1 and
jjhjjH := j log hj; but with X = R still additive and tx still meaning t + x;
yields f as having slow variation (as in the Theorem), in the sense that

f(tx)f(x)�1 = (x+ t)=x! 1 = eH as x!1:

We note that in this context the regularly varying functions h on X behave
asymptotically as h(x) := eax; for some constant a:
Note that, for X = H = R�+; and with tx meaning t:x; since again

jjxjj = j log xj is the group norm, we have here

f(tx)f(x)�1 = jjtxjj=jjxjj = j log txj
j log xj =

j log t+ log xj
j log xj ! 1 = eH ; as x!1;

which again illustrates the content of the Theorem. Here the regularly vary-
ing functions take the form h(x) = xa for some constant a: See [BGT] Ch.
1 for background on additive and multiplicative formulations of regular vari-
ation in the classical setting of functions f : G ! H with G;H = R or
R+:
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De�nition. We say that � 2 X is in�nitely divisible if, for each positive
integer n; there is x with xn = �:We say that the in�nitely divisible element
� is embeddable if, for some one-parameter subgroup T in X; we have � 2 T:
When such a T exists it is unique (the elements �m=n; for m;n integers, are
dense in T ); we write T (�) for it. Clearly any element of a one-parameter
subgroup is both in�nitely divisible and embeddable. For results on this see
[D], Heyer [Hey], McCrudden [McC]. With these de�nitions, our previous
analysis allows the First Limit Theorem to be stated in the context of normed
groups.

Proposition. Let � be in�nitely divisible and embeddable in T (�); a one-
parameter subgroup of X. Then for any Baire subadditive p : X ! R+ and
t 2 T (�),

@T (�)p(t) := lim
s2T; jjsjj!1

p(ts)

jjsjj = jjpjjT ;

i.e., treating the subgroup T (�) as a direction, the limit function is determined
by the direction.

Proof. By subadditivity, p(s) = p(t�1ts) � p(t�1) + p(ts); so

p(s)� p(t�1) � p(ts) � p(t) + p(s):

For s 6= e; divide through by jjsjj and let jjujj ! 1 :

jjpjjT � @Tp(t) � jjpjjT : �

De�nition (Supremum metric, supremum norm). Let X have
a metric dX : Following [BePe] we denote by Auth(X) the group of auto-
homeomorphisms of X under composition. We denote by idX the identity
map idX(x) = x: As before G is a �xed subgroup of Auth(X); for example
TrL(X) the group of left-translations �x; de�ned by

�x(z) = xz:

(We consider this in detail in the next section.) For g; h 2 G; de�ne the
possibly in�nite number

d�X(g; h) := sup
x2X

dX(g(x); h(x)):
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Put
H(X) = H(X;G) := fg 2 G : d�X(g; id) <1g:

For g; h in H(X), we call d�X(g; h) the supremum metric and

jjhjj = jjhjjH(X) := d�X(h; id) = sup
x2X

dX(h(x); x)

the supremum norm. Our next result justi�es these terms.

Proposition 3 (Group-norm properties in H(X)).
jj � jj is a group-norm: that is, for h; h0 2 H(X);

jjhjj = 0 i¤ h = e; jjh � h0jj � jjhjj+ jjh0jj and jjhjj = jjh�1jj:

Proof. Evidently d�(h; id) = supx2X d(h(x); x) = 0 i¤ h(x) = idX : We
have

jjhjj = d�(h; id) = sup
x2X

d(h(x); x) = sup
y2X

d(y; h�1(y)) = jjh�1jj:

Next note that

d�(id; h � h0) = sup
x2X

d(hh0(x); x) = sup
y2X

d(h(y); h0�1(y)) = d�(h; h0�1): (2)

But

d�(h; h0) = sup
x2X

d(h(x); h0(x)) � sup
x2X

[d(h(x); x)+d(x; h0(x))] � d�(h; id)+d�(h0; id) <1:

�

Theorem 1. The set H(X) of bounded auto-homeomorphisms of a met-
ric group X is a group under composition, metrized by the right-invariant
supremum metric d�X .
Proof. The identity, idX ; is bounded. For right-invariance (cf. (2)),

d�(g�h; g0�h) = sup
x2X

d(g(h(x)); g0(h(x)) = sup
y2X

d(g(y); g0(y)) = d�(g; g0): �

We apply the above construction in the next result to deduce that right-
invariance may be arranged if every x 2 X has �nite right-translation sup-
norm:

sup
z2X

dX(xz; z) <1:
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We consider the norm induced by a single left-translation in the next section.

Proposition 4 (Right-sup-norm).
For any metric dX on a group X; put

H = HX = fx 2 X : sup
z2X

dX(xz; z) <1g;

jjxjj1 : = sup dX(xz; z); for x 2 H:

For x; y 2 H; let �dH(x; y) := supz dX(xz; yz): Then �dH is a right-
invariant metric on H; and �dH(x; y) = jjxy�1jj1:
If dX is right-invariant, then H = X and �dH = dX :

Proof. The argument relies implicitly on the natural embedding of X in
Auth(X) as TrL(X) (made explicit in the next section). For x 2 X; put

jj�xjj� := sup dX(xz; z):

For x 6= e; we have 0 < jj�xjj � 1: By Proposition 3,H(X) = H(X;TrL(X)) =
f�x : jj�xjj� <1g is a subgroup of H(X;Auth(X)) on which jj � jj� is thus a
norm. Identi�ying H(X) with the subset H = fx 2 X : jj�xjj < 1g of X;
we see that on H

�dH(x; y) := sup
z
dX(xz; yz)

de�nes a right-invariant metric, as �dH(xv; yv) = supz dX(xvz; yvz) = supz dX(xz; yz).
Moreover,

jj�xjj� = �d(x; e) = jj�xjj1;
hence by Proposition 3

jj�x��1y jj� = �d(x; y) = jjxy�1jj1;

as asserted. If dX is right-invariant, then of course jj�xjj� = dX(x; e) = jjxjjX
and H = X: �

Example. Let S; T be normed groups. For � : S ! T we de�ne the
possibly in�nite number

jj�jj := supfjj�(s)jjT=jjsjjS : s 2 Sg = inffM : jj�(s)jj �M jjsjjg:

14



� is called bounded if jj�jj is �nite. The bounded elements form a group G
under the pointwise multiplication ��(t) = �(t)�(t): Clearly jj�jj = 0 implies
that �(t) = e; for all t: Symmetry is clear. Also

jj�(t)�(t)jj � jj�(t)jj+ jj�(t)jj � [jj�jj+ jj�jj]jjtjj;

so
jj��jj � jj�jj+ jj�jj:

We say that a function � : S ! T is multiplicative if � is bounded and

�(ss0) = �(s)�(s0):

A function 
 : S ! T is asymptotically multiplicative if 
 = ��; where �
is multiplicative and bounded and � is bounded. In the commutative situa-
tion with S; T normed vector spaces, the norm here reduces to the operator
norm. This group norm is studied extensively in [CSC] in relation to Ulam�s
problem.

Proposition 5 (Magni�cation metric) Let T = H(X) with group
norm jjtjj = dT (t; eT ) and A a subgroup (under composition) of Auth(T )
(so, for t 2 T and � 2 A; �(t) 2 H(X) is a homeomorphism of X): For
any " � 0; put

d"A(�; �) := sup
jjtjj�"

d�T (�(t); �(t)):

Suppose further that X distinguishes the maps f�(eH(X)) : � 2 Ag; i.e.,
for �; � 2 A; there is z = z�;� 2 X with �(eH(X))(z) 6= �(eH(X))(z):
Then d"A(�; �) is a metric; furthermore, d

"
A is right-invariant for trans-

lations by 
 such that 
�1 maps the "-ball to the "-ball.
Proof. To see that this is a metric, note that for t = eH(X) = idT we

have jjtjj = 0 and

d�T (�(eH(X)); �(eH(X))) = sup
z
dX(�(eH(X))(z); �(eH(X))(z))

� dX(�(eH(X))(z�;�); �(eH(X))(z�;�)) > 0:

Symmetry is clear. Finally the triangle inequality follows as usual:

d"A(�; �) = sup
jjtjj�1

d�T (�(t); �(t)) � sup
jjtjj�1

[d�T (�(t); 
(t)) + d
�
T (
(t); �(t))]

� sup
jjtjj�1

d�T (�(t); 
(t)) + sup
jjtjj�1

d�T (
(t); �(t))

= d"A(�; 
) + d"A(
; �):

15



One cannot hope for the metric to be right-invariant in general, but if 
�1

maps the "-ball to the "-ball, one has

d"A(�
; �
) : = sup
jjtjj�"

d�T (�(
(t)); �(
(t)):

= sup
jj
�1(s)jj�"

d�T (�(s); �(s)): �

In this connection we note the following.

Proposition 6. In the setting of Prop 5, denote by jj:jj" the norm induced
by d"A; then

sup
jjtjj�"

jj
(t)jjT � " � jj
jj" � sup
jjtjj�"

jj
(t)jjT + ":

Proof. By de�nition, for t with jjtjj � "; we have

jj
jj" : = sup
jjtjj�"

d�T (
(t); t) � sup
jjtjj�"

[d�T (
(t); e) + d�T (e; t)] � sup
jjtjj�"

jj
(t)jjT + ";

jj
(t)jjT = d�T (
(t); e) � d�T (
(t); t) + d�T (t; e)

� jjtjj+ jj
jj" � "+ jj
jj": �

Theorem 2 (Invariance of Norm Theorem) (for (b) cf. [Klee]).
(a) The group-norm is abelian (and the metric is bi-invariant) i¤

jjxy(ab)�1jj � jjxa�1jj+ jjyb�1jj;

for all x; y; a; b; or equivalently,

jjuabvjj � jjuvjj+ jjabjj;

for all x; y; a; b:
(b) Hence a metric d on the group X is bi-invariant i¤ the Klee property

holds:
d(ab; xy) � d(a; x) + d(b; y): (Klee)

In particular, this holds if the group X is itself abelian.
(c) The group norm is abelian i¤ the norm is preserved under conjugacy

(inner automorphisms).
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Proof (a) If the group-norm is abelian, then by the triangle inequality

jjxyb�1 � a�1jj = jja�1xyb�1jj
� jja�1xjj+ jjyb�1jj:

For the converse we demonstrate bi-invariance in the form: jjba�1jj =
jja�1bjj: In fact it su¢ ces to show that jjyx�1jj � jjx�1yjj; for then bi-
invariance follows, since taking x = a; y = b we get jjba�1jj � jja�1bjj; whereas
taking x = b�1; y = a�1 we get the reverse jja�1bjj � jjba�1jj: As for the claim,
we note that

jjyx�1jj � jjyx�1yy�1jj � jjyy�1jj+ jjx�1yjj = jjx�1yjj:

(b) Klee�s result is deduced as follows. If d is a bi-invariant metric, then
jj � jj is abelian. Conversely, for d a metric, let jjxjj := d(e; x): Then jj:jj is a
group-norm, as

d(ee; xy) � d(e; x) + d(e; y):

Hence d is right-invariant and d(u; v) = jjuv�1jj. Now we conclude that the
group-norm is abelian since

jjxy(ab)�1jj = d(xy; ab) � d(x; a) + d(y; b) = jjxa�1jj+ jjyb�1jj:

Hence d is also left-invariant.
(c) Suppose the norm is abelian. Then for any g; by the cyclic prop-

erty jjg�1bgjj = jjgg�1bjj = jjbjj: Conversely, if the norm is preserved under
automorphism, then we have bi-invariance, since jjba�1jj = jja�1(ba�1)ajj =
jja�1bjj: �

Remark. Note that, taking b = v = e; we have the triangle inequality.
Thus the result (a) characterizes maps jj � jj with the positivity property
as group pre-norms which are abelian. (The extended web-site version of
this paper o¤ers alternative proofs using a metric formulation.) In regard to
conjugacy , see also the Uniformity Theorem for Conjugation in Section 10.
We close with the following classical result.

The Normability Theorem for Groups (Kakutani-Birkho¤). Let
X be a �rst-countable group and let Vn be a balanced local base at eX with

V 4
n+1 � Vn:
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Let r =
P1

n=1 cn(r)2
�n be a terminating representation of the dyadic number

r; and put

A(r) :=

1X
n=1

cn(r)Vn:

Then
p(x) := inffr : x 2 A(r)g

is a group-norm. If further X is locally compact, non-compact, then p may
be arranged such that p is unbounded on X, but bounded on compact sets.

For a proof see that o¤ered in [Ru-FA2] for Th. 1.24 (p 18-19), which
derives a metrization of a topological vector space in the form d(x; y) = p(x�
y) and makes no use of the scalar �eld, That proof may be rewritten verbatim
with xy�1 substituting for the additive notation x� y (cf. Proposition 1).

Remarks.
1. If the group-norm is abelian, then we have the commutator inequality

jj[x; y]jj � 2jjx�1yjj;

because

jj[x; y]jj = jjx�1y�1xyjj � jjx�1yjj+ jjy�1xjj = 2jjx�1yjj:

The triangle inequality gives only

jj[x; y]jj = jjx�1y�1xyjj � jjx�1y�1jj+ jjxyjj = jjxyjj+ jjyxjj:

2. Taking u = f(tx); v = f(x)�1 etc., assuming the Klee Property, we have

jjf(tx)g(tx)[f(x)g(x)]�1jj = jjf(tx)g(tx)g(x)�1f(x)�1jj
� jjf(tx)f(x)�1jj+ jjg(tx)g(x)�1jj;

showing that the product of two slowly varying functions is slowly varying,
since

f(tx)f(t)�1 ! e i¤ jjf(tx)f(t)�1jj ! 0:
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3 Subadditivity

Recall from [Kucz] p. 140 the de�nitions of upper and lower hulls of a function
p :

Mp(x) = lim
r!0+

supfp(z) : z 2 Br(x)g;

mp(x) = lim
r!0+

inffp(z) : z 2 Br(x)g:

(Usually these are of interest for convex functions p:) These de�nitions re-
main valid for a normed group. (Note that e.g. inffp(z) : z 2 Br(x)g is a
decreasing function of r:) We understand the balls here to be de�ned by a
right-invariant metric, i.e.

Br(x) := fy : d(x; y) < rg with d right-invariant.

These are subadditive functions if the group G is Rd: We reprove some re-
sults from Kuczma [Kucz], thus verifying the extent to which they may be
generalized to normed groups. Only our �rst result appears to need the Klee
property (bi-invariance of the metric); fortunately this result is not needed in
the sequel. The Main Theorem below concerns the behaviour of p(x)=jjxjj:

Lemma 1 (cf. [Kucz] L. 1 p. 403). For a normed group G with the Klee
group; mp and Mp are subadditive.

Proof. For a > mp(x) and b > mp(y) and r > 0; let d(u; x) < r and
d(v; y) < r satisfy

inf[p(z) : z 2 Br(x)] � p(u) < a; and inf[p(z) : z 2 Br(y)] � p(v) < b:

Then, by the Klee property,

d(xy; uv) � d(x; u) + d(y; v) < 2r:

Now
inf[p(z) : z 2 B2r(xy)] � p(uv) � p(u) + p(v) < a+ b;

hence

inf[p(z) : z 2 B2r(xy)] � inf[p(z) : z 2 Br(x)] + inf[p(z) : z 2 Br(x)];

and the result follows on taking limits as r ! 0 + : �
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Lemma 2 (cf. [Kucz] L. 2 p. 403). For a normed group G; if p : G! R
is subadditive, then

mp(x) �Mp(x) and Mp(x)�mp(x) �Mp(e):

Proof. Only the second assertion needs proof. For a > mp(x) and b < Mp(x);
there exist u; v 2 Br(x) with

a > p(u) � mp(x); and b < p(v) �Mp(x):

So

b� a < p(v)� p(u) � p(vu�1u)� p(u) � p(vu�1) + p(u)� p(u) = p(vu�1):

Now
jjvu�1jj � jjvjj+ jjujj < 2r;

so vu�1 2 B2r(e) and hence

p(vu�1) � sup[p(z) : z 2 B2r(e)]:

Hence, with r �xed, taking a; b to their respective limits,

Mp(x)�mp(x) � sup[p(z) : z 2 B2r(e)]:

Taking limits as r ! 0+; we obtain the second inequality. �

Lemma 3. For any subadditive function f : G ! R, if f is locally
bounded above at a point, then it is locally bounded at every point.

Proof. We repeat the proof in [Kucz] p. 404 Th. 2, thus verifying that
it continues to hold in a normed group.
Supppose that p is locally bounded above at t0 by K: We �rst show that

f is locally bounded above at e: Suppose otherwise that for some tn ! e we
have p(tn)!1: Now tnt0 ! et0 = t0 and so

p(tn) = p(tnt0t
�1
0 ) � p(tnt0) + p(t�10 ) � K + p(t�10 );

a contradiction. Hence p is locally bounded above at e; i.e. Mp(e) < 1:
But 0 �Mp(x)�mp(x) �Mp(e); hence both Mp(x) and mp(x) are �nite for
every x: That is, p is locally bounded above and below at each x: �
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Proposition (cf. [Kucz] p 404 Th 3). For a Baire group G and a Baire
function f : G! R, if f is subadditive, then f is locally bounded.

Proof. By the Baire assumptions for some k; Hk = fx : jf(x)j < kg
is non-meagre Suppose that f is not locally bounded; then it is not locally
bounded above at some point u; i.e. there exists un ! u with

f(un)! +1:

By the Category Embedding Theorem ([BOst11], and Section 4), for some
k 2 !; t 2 Hk and an in�nite M, we have

funt : n 2Mg � Hk:

For n in M, we have

f(un) = f(untt
�1) � f(unt) + f(t�1) � k + f(t�1);

which contradicts f(un)! +1: �

De�nition. We say that a normed group G has a vanishingly small
word-net (which may be also compactly generated, as appropriate) if, for any
" > 0; there is � > 0 such that, for all � with 0 < � < � there is a set (a
compact set) of generators Z� in B�(e) and a constant M� such that, for all
x with jjxjj > M�; there is some word w(x) = z1:::zn(x) using generators in
Z� with jjzijj = �(1 + "i); with j"ij < "; where

d(x;w(x)) < �

and

1� " � n(x)�

jjxjj � 1 + ":

Thus Rd has a vanishingly small compactly generated word-net and hence
so does the sequence space l2:

Main Theorem. Let G be a normed group with a vanishingly small
word-net. Let p : G! R+ be Baire, subadditive with

� := lim sup
jjxjj!0+

p(x)

jjxjj <1:
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Then

lim sup
jjxjj!1

p(x)

jjxjj � � <1:

Proof. Let " > 0: Let b = � + ": Hence on B�(e) for � small enough to
gurantee the existence of Z� and M� we have also

p(x)

jjxjj � b:

By the Proposition, we may assume that p is bounded by some constant K
in B�(e): Let jjxjj > M�:
Choose a word w(x) = z0z1:::zn with jjzijj = �(1 + "i) with j"ij < "; with

p(xi) < bjjxijj = b�(1 + "i)

and
d(x;w(x)) < �;

i.e.
x = w(x)s

for some s with jjsjj < � and

1� " � n(x)�

jjxjj � 1 + ":

Now

p(x) = p(ws) � p(w) + p(r) =
X

p(zi) + p(s)

�
X

b�(1 + "i) + p(s)

= nb�(1 + ") +K:

So
p(x)

jjxjj �
n�

jjxjjb(1 + ") +
M

jjxjj :

Hence we obtain
p(x)

jjxjj � b(1 + ")2 +
M

jjxjj :

So in the limit

lim sup
jjxjj!1

p(x)

jjxjj < �;
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as asserted. �

We note a related result, which requires the following de�nition. For p
subadditive, put

p�(x) = lim inf
y!x

p(y); p�(x) := lim sup
y!x

p(y):

These are subadditive and lower (resp. upper) semicontinuous with p�(x) �
p(x) � p�(x):

Mueller�s Theorem ([Mue] Th. 3). Let p be subadditive on a locally
compact group G and suppose

lim inf
x!e

p�(x) � 0:

Then p is continuous almost everywhere.

4 Theorems of Steinhaus type and Dichotomy

If  n converges to the identity, then, for large n; each  n is almost an isome-
try. Indeed, as we shall see in Section 10, by the Proposition on Permutation
metrics, we have

d(x; y)� 2jj njj � d( n(x);  n(y)) � d(x; y) + 2jj njj:

This motivates our next result; we need to recall a de�nition and the Cat-
egory Embedding Theorem from [BOst11], whose proof we reproduce here
for completeness. In what follows, the words quasi everywhere (q.e.), or for
quasi all points mean for all points o¤ a meagre set (see [Kah]).

De�nition (weak category convergence). A sequence of homeomor-
phisms  n satis�es the weak category convergence condition (wcc) if:
For any non-empty open set U; there is an non-empty open set V � U

such that, for each k 2 !;\
n�k

V n �1n (V ) is meagre. (wcc)

Equivalently, for each k 2 !; there is a meagre setM such that, for t =2M;

t 2 V =) (9n � k)  n(t) 2 V:
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Category Embedding Theorem. Let X be a Baire space. Suppose
given homeomorphisms  n : X ! X for which the weak category convergence
condition (wcc) is met. Then, for any non-meagre Baire set T; for locally
quasi all t 2 T; there is an in�nite set Mt such that

f m(t) : m 2Mtg � T:

Proof. Suppose T is Baire and non-meagre. We may assume that T =
UnM with U non-empty and M meagre. Let V � U satisfy (wcc).
Since the functions hn are homeomorphisms, the set

M 0 :=M [
[
n

h�1n (M)

is meagre. Put

W = h(V ) :=
\
k2!

[
n�k

V \ h�1n (V ) � V � U:

Then V \W is co-meagre in V: Indeed

V nW =
[
k2!

\
k�n

V nh�1n (V );

which by assumption is meagre.
Let t 2 V \ WnM 0 so that t 2 T: Now there exists an in�nite set Mt

such that, for m 2 Mt, there are points vm 2 V with t = h�1m (vm): Since
h�1m (vm) = t =2 h�1m (M); we have vm =2 M; and hence vm 2 T: Thus fhm(t) :
m 2Mtg � T for t in a co-meagre set, as asserted. �

Examples. In R we may consider  n(t) = t + zn with zn ! z0 := 0: It
is shown in [BOst11] that for this sequence the condition (wcc) is satis�ed in
both the usual topology and the density topology on R. This remains true in
Rd; where the speci�c instance of the theorem is referred to as the Kestelman-
Borwein-Ditor Theorem; see the next section ([Kes], [BoDi]; compare also
the Oxtoby-Ho¤mann-Jørgensen zero-one law for Baire groups, [HJ] p. 356,
[Oxt], cf. [RR-1]). In fact in any metrizable groupX with right-invariant
metric dX , for a null sequence tending to the identity zn ! z0 := eX ; the
mapping de�ned by  n(x) = znx converges to the identity (see [BOst13],
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Corollary to Ford�s Theorem); here too (wcc) holds. This follows from the
next result, which extends the proof of [BOst11].

First Proposition on weak category convergence. If  n converges
to the identity, then  n satis�es the weak category convergence condition
(wcc).

Proof. It is more convenient to prove the equivalent statement that  �1n
satis�es the category convergence condition.
Put zn =  n(z0); so that zn ! z0: Let k be given.
Suppose that y 2 B"(z0); i.e. r = d(y; z0) < ": For some N > k; we have

"n = d( n; id) <
1
3
("� r); for all n � N: Now

d(y; zn) � d(y; z0) + d(z0; zn)

= d(y; z0) + d(z0;  n(z0)) � r + "n:

For y =  n(x) and n � N;

d(z0; x) � d(z0; zn) + d(zn; y) + d(y; x)

= d(z0; zn) + d(zn; y) + d(x;  n(x))

� "n + (r + "n) + "n < ":

So x 2 B"(z0); giving y 2  n(B"(z0)): Thus

y =2
\
n�N

B"(z0)n n(B"(z0)) �
\
n�k

B"(z0)n n(B"(z0)):

It now follows that \
n�k

B"(z0)n n(B"(z0)) = ?:

�

As a corollary we have the following important result known for topo-
logical groups (see [RR-TG], Rogers [Jay-Rog] p. 48, and [Kom1] for the
topological vector space setting) and here proved in the metric setting.

Piccard-Pettis Theorem (Piccard [Pic1], [Pic2], Pettis [Pet1], [RR-TG]
cf. [BOst14]). In a normed group, for A non-meagre, the sets AA�1 and
A�1A have non-empty interior.
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Proof. Suppose otherwise. We consider the set AA�1 and refer to the
right-invariant metric d(x; y) = jjxy�1jj: Suppose the theorem is false. Then,
for each integer n = 1; 2; ::; there is zn 2 B1=n(e)nAA�1; hence zn ! z0 = e.
By Proposition 1 of Section 2,  n(x) := znx converges to the identity (as
the metric is right-invariant) and so satis�es the (wcc); hence, there is a 2 A
such that for in�nitely many n

 n(a) 2 A; i.e. zna 2 A; or zn 2 AA�1;

a contradiction. Reference to the conjugate metric secures the same result
for A�1A: �

One says that a set A is thick if e is an interior point of AA�1 (see e.g. [HJ]
Section 2.4). The next result (proved essentially by the same means) applied
to the additive group R implies the Kesteman-Borwein-Ditor ([BOst11]) the-
orem on the line. The name used here refers to a similar (weaker) property
studied in Probability Theory (in the context of probabilities regarded as
a semigroup under convolution, for which see [PRV], or [Par] 3.2 and 3.5,
[BlHe], [Hey]). We need a de�nition.

De�nition. Say that a set A in G is right-shift compact if, for any
sequence of points an in A; there is a point t and a subsequence fan : n 2Mtg
such that ant converges through Mt to a point a0t in A; similarly for left-
shift compact. Evidently, �nite Cartesian products of shift-compact sets are
shift-compact. Thus a right-shift compact set A is pre-compact. (If the
subsequence amt converges to a0t; for m in Mt; then likewise am converges
to a0; for m in Mt:)

Proposition. In a normed group, if a subgroup S is locally right-shift
compact, then S is closed and locally compact. Conversely, a closed, locally
compact subgroup is locally right-shift compact.

Proof. Suppose that an ! a0 with an 2 S: If amt ! a0t 2 S down
a subset M then a0t(amt)

�1 = a0a
�1
m 2 S for m 2 M: Hence also a0 =

a0a
�1
m am 2 S for m 2M: Thus S is closed. �

Remark. Suppose that an = (ain) 2 A =
Q
Ai: Pick ti and inductively

in�niteMi �Mi�1 so that ainti ! ai0ti along n 2Mi with ainti 2 Ai for n 2 !:
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Diagonalize Mi by setting M := fmig; where mn+1 = minfm 2 Mn+1 : m >
mng: Then the subsequence fam : m 2Mg satis�es, for each J �nite,

prJtam �
Y
j2J

Aj for eventually all m 2M.

Shift-Compactness Theorem. In a normed group G, for A precom-
pact, Baire and non-meagre, the set A is right-shift compact, i.e., for any
sequence an 2 A; there are t 2 G and a 2 A such that ant 2 A and ant! a
down a subsequence. Likewise the set A is left-shift compact.

Proof. Suppose an 2 A � �A with �A compact. W.l.o.g. an ! a0 2
�A: Hence zn := ana

�1
0 ! eG: By the First Proposition on weak category

convergence above,  n(x) := znx converges to the identity. Hence, for some
a 2 A and in�nite M; we have fzma : m 2 Mg � A: Taking t = a�10 a; we
thus have ant 2 A and ant ! a 2 A along M. Replace A by A�1 to obtain
the other-handed result. �

The following theorem asserts that a �covering property modulo shift�is
satis�ed by bounded shift-compact sets. It will be convenient to make the
following

De�nitions. 1. Say that D:= fD1; :::; Dhg shift-covers X; or is a shifted-
cover of X if, for some d1; :::; dh in G;

(D1 � d1) [ ::: [ (Dh � dh) = X:

Say that X is compactly shift-covered if every open cover U of X contains a
�nite subfamily D which shift-covers X:
2. We say that D:= fD1; :::; Dhg strongly shift-covers A; or is a strong

shifted-cover of A if, there are arbitrarily small d1; :::; dh in R such that

(D1 � d1) [ ::: [ (Dh � dh) � A:

Say that A is compactly strongly shift-covered if every open cover U of A
contains a �nite subfamily D which strongly shift-covers A:

Example. Note that A � R is a dense-open (open in the density topol-
ogy) i¤ each point of A is a density point of A: Suppose a0 is a limit point of
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such a set A in the usual topology; then, for any " > 0; we may �nd a point
� 2 A to within "=2 of a0 and hence some t 2 A within "=2 of the point �
such that some subsequence t + am is included in A, with limit t + a0 and
with jtj < ": That is, a dense-open set is strongly shift-compact.

Compactness Theorem (Compactness modulo shift, [BOst8]). Let
A be a right-shift compact subset of a separable normed group G. Then A
is compactly shift-covered, i.e. for any norm-open cover U of A; there is a
�nite subset V of U , one for each member of V, such that the corresponding
translates of V cover A:

Proof. Let U be an open cover of A: Since G is second-countable we
may assume that U is a countable family. Write U = fUi : i 2 !g: Let
Q = fqj : j 2 !g enumerate a dense subset of G. Suppose, contrary to
the assertion, that there is no �nite subset V of U such that translates of V,
each translated by one element of Q; cover A: For each n; choose an 2 A
not covered by fUi � qj : i; j < ng: As A is precompact, we may assume,
by passing to a subsequence (if necessary), that an converges to some point
a0; and also that, for some t; the sequence ant lies entirely in A: Let Ui in U
cover a0t: Without loss of generality we may assume that ant 2 Ui for all n:
Thus an 2 Uit�1 for all n: Thus we may select V := Uiqj to be a translation
of Ui such that an 2 V = Uiqj for all n: But this is a contradiction, since an
is not covered by fUi0qj0 : i0; j0 < ng for n > maxfi; jg: �

The above proof of the compactness theorem for shift-covering may be
improved to strong shift-covering, with only a minor modi�cation (replacing
Q with a set Q" = fq"j : j 2 !g which enumerates, for given " > 0; a dense
subset of the " ball about e), yielding the following.

Strong Compactness Theorem (Strong Compactness modulo shift,
cf. [BOst8]). Let A be a strongly right-shift compact subset of a separable
normed group G. Then A is compactly strongly shift-covered, i.e. for any
norm-open cover U of A; there is a �nite subset V of U and arbitrarily
small translations, one for each member of V, such that the corresponding
translates of V cover A:

Next we turn to the Steinhaus theorem, which we will derive in Section 7
more directly as a corollary of the Category Embedding Theorem. For com-
pleteness we recall in the proof below its connection with the Weil topology
introduced in [We].
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De�nition ([Hal-M] Section 62 p. 257 and 273).
1. A measurable group (X;S;m) is a �-�nite measure space with X a

group and m a non-trivial measure such that both S and m is left-invariant
and the mapping x! (x; xy) is measurability preserving.
2. A measurable group X is separated if for each x 6= eX in X; there

is a measurable E � X of �nite, positive measure and " > 0 such that
�(E4xE) < ":

Steinhaus Theorem (cf. Comfort [Com] Th. 4.6 p. 1175). Let X be
a normed locally compact group which is separated under its Haar measure.
For measurable A having positive �nite Haar measure, the sets AA�1 and
A�1A have non-empty interior.

Proof. For X separated, we recall (see [Hal-M] Sect. 62 and [We]) that
the Weil topology on X; under which X is a topological group, is generated
by the neighbourhood base at eX comprising sets of the form NE;" := fx 2
X : �(E4xE) < "g; with � > 0 and E measurable and of �nite positive
measure. Recall from [Hal-M] Sect. 62 the following results: (Th. F ) a
measurable set with non-empty interior has positive measure; (Th. A) a set
of positive measure contains a set of the form GG�1; with G measurable
and of �nite, positive measure; and (Th. B) for such G; NG" � GG�1 for
all small enough " > 0: Thus a measurable set has positive measure i¤ it is
non-meagre in the Weil topology. Thus if A is measurable and has positive
measure it is non-meagre in the Weil topology. Moreover, by [Hal-M] Sect
61, Sect. 62 Ths. A and B, the metric open sets of X are generated by sets
of the form NE;" for some Borelian-(K) set E of positive, �nite mesure. By
the Piccard-Pettis Theorem (from the Category Embedding Theorem) AA�1

contains a non-empty Weil neighbourhood NE;": �

Remark. See Section 6 below (and also 7 for extensions to products AB)
for an alternative proof via the density topology drawing on Mueller�s Haar
measure density theorem [Mue] and a category-measure theorem of Martin
[Mar].

The Subgroup Dichotomy Theorem (Banach-Kuratowski Theo-
rem) ([Ban-G] Satz 1, [Kur-1] Ch. VI. 13. XII; cf. [Kel] Ch. 6 Pblm P; cf.
[BGT] Cor. 1.1.4 and also [BCS] and [Be] for the measure variant).
Let X be a normed group which is non-meagre and let A any Baire sub-

group. Then A is either meagre or clopen in X:
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Proof. Suppose that A is non-meagre. We show that e is an interior
point of A; from which it follows that A is open. Suppose otherwise. Then
there is a sequence zn ! e with zn 2 B1=n(e)nA: Now for some a 2 A and
in�nite M we have zna 2 A for all n 2 M: But A is a subgroup, hence
zn = znaa

�1 2 A for n 2M; a contradiction.
Now suppose that A is not closed. Let an be a sequence in A with limit

x: Then anx�1 ! e: Now for some a 2 A and in�niteM we have znx�1a 2 A
for all n 2M: But A is a subgroup, so z�1n and a�1 are in A and hence, for all
n 2M; we have x�1 = z�1n znx

�1aa�1 2 A: Hence x 2 A; as A is a subgroup.
�

Remark. Banach�s proof is purely topological so applies to topological
groups (though originally stated for metric groups) and relies on the mapping
x! ax being a homeomorphism, likewise Kuratowski�s proof which proceeds
via another dichotomy as detailed below.

Kuratowski Dichotomy ([Kur-B], [Kur-1], [McSh] Cor. 1). Suppose
H � Auth(X) acts transitively on X; and Z � X is Baire and has the
property that for each h 2 H

Z = h(Z) or Z \ h(Z) = ?;

i.e. under each h 2 H; either Z is invariant or Z and its image are disjoint :
Then, either H is meagre or is clopen.

The result below generalizes the category version of the Steinhaus Theo-
rem [St] of 1920, �rst stated explicitly by Piccard [Pic1] in 1939, and restated
in [Pet1] in 1950; in the current form it may be regarded as a �localized-
re�nement�of [RR-TG].

Generalized Piccard-Pettis Theorem ([Pic1], [Pic2], [Pet1], [Pet2],
[BGT] Th. 1.1.1, [BOst3], [RR-TG], cf. [Kel] Ch. 6 Prb. P). Let be X be
a homogenous space. Suppose that  u converges to the identity, as u ! u0;
and that A is Baire and non-meagre. Then, for some � > 0; we have

A \  u(A) 6= ?; for all u with d(u; u0) < �;

or, equivalently, for some � > 0

A \  �1u (A) 6= ?; for all u with d(u; u0) < �:
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Proof. We may suppose that A = V nM with M meagre and V open.
Hence, for any v 2 V nM; there is some " > 0 with

B"(v) � U:

By de�nition of convergence, there is � > 0 such that, for u with d(u; u0) < �;
we have

d�( u; id) < "=2:

Hence, for any such u and any y in B"=2(v); we have

d( u(y); y) < "=2:

From this it follows that

W :=  u(B"=2(z0)) \B"=2(z0) 6= ?;

and
W 0 :=  �1u (B"=2(z0)) \B"=2(z0) 6= ?:

For �xed u with d(u; u0) < �; the set

M 0 :=M [  u(M) [  �1u (M)

is meagre. Let w 2 WnM 0 (or w 2 W 0nM 0; as the case may be). Since
w 2 B"(z0)nM � V nM; we have

w 2 V nM � A:

Similarly, w 2  u(B"(z0))n u(M) �  u(V )n u(M): Hence

 �1u (w) 2 V nM � A:

In this case, as asserted,
A \  �1u (A) 6= ?:

In the other case (w 2 W 0nM 0), one obtains similarly

 u(w) 2 V nM � A:

Here too
A \  �1u (A) 6= ?:

31



�
Remarks.
1. In the theorem above it is possible to work with a weaker condition,

namely local convergence at z0, where one demands that for some neighbour-
hood B�(z0) and some K

d( u(z); z) � Kd(u; u0); for z 2 B�(z0):

This implies that, for any " > 0; there is � > 0 such that, for z 2 B�(z0);

d( u(z); z) < "; for z 2 B�(z0):

2. The Piccard-Pettis Theorem for topological groups (named by Kelley,
[Kel] Ch. 6 Pblm P-(b), the Banach-Kuratowski-Pettis Theorem, say BKPT
for short) asserts the category version of the Steinhaus Theorem [St] that,
for A Baire and non-meagre, the set A�1A is a neighbourhood of the identity;
our version of the Piccard theorem as stated implies this albeit only in the
context of metric groups. Let dX be a right-invariant metric on X and take
 u(x) = ux and u0 = e: Then  u converges to the identity (see [BOst13]
Section 3), and so the theorem implies that B�(e) � A�1 \A for some � > 0;
indeed a0 2 A\ u(A) for u 2 B�(e) means that a0 2 A and, for some a 2 A;
also ua = a0 so that u = a�1a0 2 A�1A: It is more correct to name the
following important and immediate corollary the BKPT, since it appears in
this formulation in [Ban-G], [Kur-1], derived by di¤erent means, and was
used by Pettis in [Pet1] to deduce his Steinhaus-type theorem.

McShane�s Interior Points Theorem ([McSh] Cor. 3). Let T : X2 !
X such that Ta(x) := T (x; a) is a self-homeomorphism for each a 2 X and
such that for each pair (x0; y0) there is a homeomorphism ' : X ! X with
y0 = '(x0) satisfying

T (x; '(x)) = T (x0; y0); for all x 2 X:

Let A and B be second category with B Baire. Then the image T (A;B) has
interior points and there are A0 � A;B0 � B; with AnA0 and BnB0 meagre
and T (A0; B0) open.
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5 The Kestelman-Borwein-Ditor Theorem: a
bitopological approach

De�nition (Genericity). Suppose � is L or Ba; the class of measurable
sets or Baire sets (i.e. sets with the Baire property). We will say that P 2 �
holds for generically all t if ft : t =2 Pg is null/meagre according as � is L or
Ba:

In this section we develop a bi-topological approach to a generalization
of the following result. An alternative approach is given in the next section.

Theorem (Kestelman-Borwein-Ditor Theorem). Let fzng ! 0 be
a null sequence of reals. If T is measurable and non-null/Baire and non-
meagre, then for generically all t 2 T there is an in�nite set Mt such that

ft+ zm : m 2Mtg � T:

A stronger form still is derived in [BOst9] (the Generic Re�ection Theo-
rem); see also [BOst3] Section 2.1 Note 3, [BOst4] Section 2.1 Note 1. For
proofs see the original papers [Kes] and [BoDi]; for a uni�ed treatment in the
real-variable case see [BOst9].

Let (X;S;m) be a probability space which is totally-�nite. Letm� denote
the outer measure

m�(E) := inffm(F ) : E � F 2 Sg:

Let the family fKn(x) : x 2 Xg � S satisfy
(i) x 2 Kn(x);
(ii) m(Kn(x))! 0:
Relative to a �xed family fKn(x) : x 2 Xg de�ne the upper and lower

(outer) density at x of any set E by

D
�
(E; x) = sup lim sup

n
m�(E \Kn(x))=m(Kn(x));

D�(E; x) = inf lim inf
n
m�(E \Kn(x))=m(Kn(x)):

By de�nition D
�
(E; x) � D�(E; x): When equality holds, one says that the

density of E exists at x; and the common value is denoted by D�(E; x): If E
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is measurable the star associated with the outer measure m� is omitted. If
the density is 1 at x; then x is a density point; if the density is 0 at x then
x is a dispersion point of E:
We say that a (weak) density theorem holds for fKn(x) : x 2 Xg if for

every set (every measurable set) A almost every point of A is an (outer)
density point of A:
Martin [Mar] shows that the family

U = fU : D�
(XnU; x) = 0; for all x 2 Ug

forms a topology, the density topology on X, with the following property.

Density Topology Theorem. If a density theorem holds for fKn(x) :
x 2 Xg and U is d-open, then every point of U is a density point of U and
so U is measurable. Furthermore, a measurable set such that each point is a
density point is d-open.

We note that the idea of a density topology was introduced slightly earlier
by Go¤man ([GoWa],[GNN]); see also Tall [T]. It can be traced to the work
of Denjoy [Den] in 1915. Recall that a function is approximately continuous
in the sense of Denjoy i¤ it is continuous under the density topology: [LMZ],
p.1.

Category-Measure Theorem ([Mar] Th. 4.11). Suppose X is a prob-
ability space and a density theorem holds for fKn(x) : x 2 Xg: A necessary
and su¢ cient condition that a set be nowhere dense in the d-topology is that
it have measure zero. Hence a necessary and su¢ cient condition that a set
be meagre is that it have measure zero. In particular the topological space
(X;U) is a Baire space.

We now see that the preceeding theorem is applicable to a Haar measure
on a locally compact group X by reference to the following result. Here
bounded means pre-compact (covered by a compact set).

Haar measure density theorem ([Mue]; cf. [Hal-M] p. 268). Let
A be a �-bounded subset and � a left-invariant Haar measure of a locally
compact group X: Then there exists a sequence Un of bounded measurable
neigbourhoods of eX such that m�(A \ Unx)=m�(Unx) ! 1 for almost all x
out of a measurable cover of A:
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We now o¤er a generalization of a result from [BOst11].

Second Proposition on weak category convergence. Let X be a
normed locally compact group with left-invariant Haar measure m. Let V
be m-measurable and non-null. For any null sequence fzng ! e and each
k 2 !;

Hk =
\
n�k

V n(V � zn) is of m-measure zero, so meagre in the d-topology.

That is, the sequence hn(x) := xz�1n satis�es the weak category convergence
condition (wcc)

Proof. Suppose otherwise. We write V zn for V � zn; etc. Now, for some
k; m(Hk) > 0: Write H for Hk: Since H � V; we have, for n � k; that
; = H \ h�1n (V ) = H \ (V zn) and so a fortiori ; = H \ (Hzn): Let u be a
metric density point of H: Thus, for some bounded (Borel) neighbourhood
U�u we have

�[H \ U�u] >
3

4
m[U�u]:

Fix � and put
� = m[U�u]:

Let E = H \ U�u: For any zn; we have m[(Ezn) \ U�uzn] = m[E] > 3
4
�:

By Theorem A of [Hal-M] p. 266, for all large enough n; we have

m(U�u4U�uzn) < �=4:

Hence, for all n large enough we have j(Ezn)nU�uj � �=4: Put F = (Ezn) \
U�u; then m[F ] > �=2:
But � � m[E [ F ] = m[E] +m[F ]�m[E \ F ] � 3

4
� + 1

2
��m[E \ F ]: So

m[H \ (Hzn)] � m[E \ F ] � 1

4
�;

contradicting ; = H \ (Hzn): This establishes the claim. �

As a corollary of the Category Embedding Theorem the Proposition now
yields the following result.

Theorem (Generalized Kestelman-Borwein-Ditor Theorem 1).
Let X be a normed locally compact group. Let fzng ! eX be a null sequence
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in X. If T is Haar measurable and non-null, resp. Baire and non-meagre,
then for generically all t 2 T there is an in�nite set Mt such that

ftzm : m 2Mtg � T:

This theorem in turn yields an important conclusion.

Kodaira�s Theorem ([Kod] corollary to Satz 18. p. 98, cf. [Com] Th.
4.17 p. 1182). Let X be a normed locally compact group and f : X ! Y a
homorphism into a separable normed group Y . Then f is Haar-measurable
i¤ f is Baire under the density topology i¤ f is continuous under the norm
topology.

Proof. Suppose that f is measurable. Then under the d-topology f is a
Baire function. Hence by the classical Baire Continuity Theorem (see, e.g.
Section 7 below), since Y is second-countable, f is continuous on some co-
meagre set T: Now suppose that f is not continuous at eX : Hence, for some
" > 0 and some zn ! z0 = eX (in the sense of the norm on X); we have
jjf(zn)jj > "; for all n: By the Kestelman-Borwein-Ditor Theorem, there is
t 2 T and an in�nite Mt such that tzn ! t = tz0 2 T: Hence, for n in Mt,
we have

f(t)f(zn) = f(tzn)! f(tz0) = f(t);

i.e. f(zn)! eY , a contradiction. �

Remarks.
1. Comfort [Com] Th. 4.17 proves this result for both X and Y locally

compact, with the hypothesis that Y is �-compact and f measurable with
respect to two Haar measures on X and Y: That proof employs Steinhaus�
Theorem and the Weil topology. (Under the density topology, Y will not be
second-countable.) When Y is metrizable this implies that Y is separable; of
course if f is a continuous surjection, Y will be locally-compact.
2. The theorem reduces measurability to the Baire property and in so

doing resolves a long-standing issue in the foundations of regular variation;
hitherto the theory was established on two alternative foundations employing
either measurable functions, or Baire functions, for its scope, with historical
preference for measurable functions in connection with integration. We refer
to [BGT] for an exposition of the theory which characterizes regularly varying
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functions of either type by a reduction to an underlying homomorphism of the
corresponding type relying on its continuity and then represents either type
by very well behaved functions. Kodaira�s theorem shows that the broader
topological class may be given priority. See in particular [BGT] p. 5,11 and
[BOst11].
3. The Kestelman-Borwein-Ditor Theorem inspires the following de�ni-

tions which we will �nd useful in the next section

De�nitions. Call a set T subuniversal if for any null sequence zn ! eG
there is t 2 G and in�nite Mt such that

ftzm : m 2Mtg � T:

Call a set T generically subuniversal if for any null sequence zn ! eG
there is t 2 G and in�nite Mt such that

ftzm : m 2Mtg � T and t 2 T:

Thus the Kestelman-Borwein-Ditor Theorem asserts that a set T which is
Baire non-meagre, or measurable non-null is (generically) subuniversal. The
term subuniversal is coined from Kestelman�s de�nition of set being �univer-
sal for null sequences�([Kes] Th. 2) which required Mt above to be co-�nite
rather than in�nite. By the Shift-compactness Theorem, a generically sub-
universal subset of a normed group is shift-compact (Section 4).

6 The Subgroup Theorem

In this section G is a normed locally compact group with left-invariant Haar
measure. We shall be concerned with two topologies onG : the norm topology
and the density topology. Under the latter the binary group operation need
not be jointly continuous (see Heath and Poerio [HePo]); nevertheless a right-
shift x! xa; for a constant, is continuous, and so we may say that the density
topology is right-invariant. We note that if S is measurable and non-null then
S�1 is measurable and non-null under the corresponding right-invariant Haar
and hence also under the original left-invariant measure. We may thus say
that the density topology is inversion-invariant. This motivates

Theorem (Topological, or Category, Interior Point Theorem).
Let fzng ! e be a null sequence (in the norm topology). Let G be given a
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right-invariant and inversion-invariant topology � , under which it is a Baire
space and the homeomorphisms hn(x) = xzn satisfy (wcc). For S Baire and
non-meagre in � ; the di¤erence set S�1S; and likewise SS�1, is an open
neighbourhood of e.

Proof. Suppose otherwise. Then for each positive integer n we may
select

zn 2 B1/n(e)n(S�1S):
Since fzng ! e (in the norm topology), the Category Embedding Theorem
applies, and gives an s 2 S and an in�nite Ms such that

fhm(s) : m 2Msg � S:

Then for any m 2Ms,

szm 2 S , i.e. zm 2 S�1S;

a contradiction. Replacing S by S�1 we obtain the corresponding result for
SS�1: �

Corollary (Piccard Theorem, Piccard [Pic1], [Pic2]). For S Baire
and non-meagre in the norm topology; the di¤erence sets SS�1 and S�1S
have e as interior point.

First Proof. Apply the preceeding Theorem , since by the First Propo-
sition on weak category convergence (Section 4), the (wcc) condition holds.
�
Second Proof. Suppose otherwise. Then, as before, for each posi-

tive integer n we may select zn 2 B1/n(e)n(S�1S): Since zn ! e, by the
Kestelman-Borwein-Ditor Theorem, for quasi all s 2 S there is an in�nite
Ms such that fszm : m 2 Msg � S: Then for any m 2 Ms, szm 2 S , i.e.
zm 2 SS�1; a contradiction. �

Corollary (Steinhaus�Theorem, [St], [We]; cf. Comfort [Com] Th.
4.6 p. 1175, Beck et al. [BCS]). For S of positive measure; the di¤erence
sets S�1S and SS�1 have e as interior point.

Proof. Arguing as in the �rst proof above, by Second Proposition on
weak category convergence (Section 5), the wcc holds and S; in the den-
sity topology, is Baire and non-meagre (by the Category-Measure Theorem
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of Section 5). The measure-theoretic form of the second proof above also
applies. �

The following corollary to Steinhaus�Theorem (and its Baire category
version) have important consequences in the Euclidean case. We will say
that the group G is (weakly) Archimedean if for each r > 0 and each g 2 G
there is n = n(g) such that g 2 Bn where B := fx : jjxjj < rg is the r-ball.

Theorem (Category [Measure] Subgroup Theorem). For a Baire
[measurable] subgroup S of a weakly Archimedean locally compact group G;
the following are equivalent:
(i) S = G;
(ii) S is non-meagre [non-null].

Proof. By the Topological/Category Interior Point Theorem, for some
r-ball B;

B � SS�1 � S;

and hence G =
S
nB

n = S: �

We will see in the next section a generalization of the Pettis extension of
Piccard�s result asserting that, for S; T Baire non-meagre, the product ST
contains interior points. As our approach will continue to be bitopological, we
will deduce also the Steinhaus result that, for S; T non-null and measurable,
ST contains interior points.

7 The Semigroup Theorem

In this section G is a normed group which is locally compact. The aim
here is to prove a generalization to the normed group setting of the following
classical result due to Hille and Phillips [H-P] Th. 7.3.2 (cf. Beck et al. [BCS]
Th. 2, [Be]) in the measurable case, and to Bingham and Goldie [BG] in the
Baire case; see [BGT] Cor. 1.1.5.

Theorem (Category [Measure] Semigroup Theorem). For an ad-
ditive Baire [measurable] semigroup S of R; the following are equivalent:
(i) S contains an interval ;
(ii) S � (s;1); for some s;
(iii) S is non-meagre [non-null].
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We will need a strengthening of the Kestelman-Borwein-Ditor Theorem
of Section 5. First we capture a key similarity (their topological �common
basis�, adapting a term from logic) between the Baire and measure cases.
Recall ([Rog2] p. 460) the usage in logic, whereby a set B is a basis for a
class C of sets whenever any member of C contains a point in B:

Theorem (Common Basis Theorem). For V;W Baire non-meagre in
G equipped with either the norm or the density topology, there is a 2 G such
that V \(aW ) contains a non-empty open set modulo meagre sets common to
both, up to translation. In fact, in both cases, up to translation, the two sets
share a norm G� subset which is non-meagre in the norm case and non-null
in the density case.

Proof. In the norm topology case if V;W are Baire non-meagre, we may
suppose that V = InM0[N0 and W = JnM1[N1; where I; J are open sets.
Take V0 = InM0 and W0 = JnM1: If v and w are points of V0 and W0; put
a := vw�1: Thus v 2 I \ (aJ): So I \ (aJ) di¤ers from V \ (aW ) by a meagre
set. Since M0 [N0 may be expanded to a meagre F� set M; we deduce that
InM and JnM are non-meagre G�-sets.
In the density topology case, if V;W are measurable non-null let V0 and

W0 be the sets of density points of V and W: If v and w are points of V0 and
W0; put a := vw�1: Then v 2 T := V0 \ (aW0) and so T is non-null and v
is a density point of T: Hence if T0 comprises the density points of T; then
TnT0 is null, and so T0 di¤ers from V \ (aW ) by a null set. Evidently T0
contains a non-null closed, hence G�-subset (as T0 is measurable non-null, by
regularity of Lebesgue measure). �

Theorem (Conjunction Theorem). For V;W Baire non-meagre/measurable
non-null, there is a 2 G such that V \ (aW ) is Baire non-meagre/ measur-
able non-null and for any null sequence zn ! eG and quasi all (almost all)
t 2 V \ (aW ) there exists an in�nite Mt such that

ftzm : m 2Mtg � V \ (aW ):

Proof. In either case applying Theorem 9, for some a the set T :=
V \ (aW ) is Baire non-meagre/measurable non-null. We may now apply the
Kestelman-Borwein-Ditor Theorem to the set T: Thus for almost all t 2 T
there is an in�nite Mt such that

ftzm : m 2Mtg � T � V \ (aW ): �
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This result motivates a further strengthening of generic subuniversality
(compare Section 5).

De�nitions. Let S be generically subuniversal.
1. Call T similar to S if for every null sequence zn ! eG there is t 2 S\T

and Mt such that
ftzm : m 2Mtg � S \ T:

Thus S is similar to T and both are generically subuniversal.
Call T weakly similar to S if if for every null sequence zn ! 0 there is

s 2 S and Ms such that

fszm : m 2Msg � T:

Thus again T is subuniversal.
2. Call S subuniversally self-similar, or just self-similar (up to inversion-

translation), if for some a 2 G and some T � S; S is similar to aT�1:
Call S weakly self-similar (up to inversion-translation) if for some a 2 G

and some T � S; S is weakly similar to aT�1:

Theorem (Self-similarity Theorem). For S Baire non-meagre/measurable
non-null, S is self-similar.

Proof. Fix a null sequence zn ! 0: If S is Baire non-meagre/measurable
non-null then so is S�1; thus we have for some a that T := S \ (aS�1) is
likewise Baire non-meagre/measurable non-null and so for quasi all (almost
all) t 2 T there is an in�nite Mt such that

ftzm : m 2Mtg � T � S \ (aS�1);

as required. �

Theorem (Semigroup Theorem). If S; T are generically subuniversal
with T (weakly) similar to S, then ST�1 contains a ball about the identity
eG. Hence if S is generically subuniversal and (weakly) self-similar, then
SS has interior points. Hence for G = Rd, if additionally S is a semigroup,
then S contains an open sector.

Proof. For S; T (weakly) similar, we claim that ST�1 contains B�(e) for
some � > 0: Suppose not: then for each positive n there is zn with

zn 2 B1/n(e)n(ST�1):
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Now z�1n is null so there is s in S and in�nite Ms such that

fz�1m s : m 2Mtg � T:

For any m in Mt pick tm 2 T so that z�1m s = tm; then we have

z�1m = tms
�1 so zm = st�1m ;

a contradiction. Thus for some � > 0 we have B�(e) � ST�1:
For S self-similar, say S is similar to T := aS�1; for some a; thenB�(e)a �

ST�1a = S(aS�1)�1a = SSa�1a; i.e. SS has non-empty interior. �

For applications see [BOst-RVWL]. By the Common Basis Theorem,
replacing T by T�1; we obtain as an immediate corollary of Theorem 12
a new proof of two classical results, extending the Steinhaus and Piccard
Theorem and Kominek�s Vector Sum Theorem.

Theorem (Product Set Theorem, Steinhaus [St] measure case, Pettis
[Pet2] Baire case, cf. [Kom1] in the setting of topological vector spaces and
[Be] and [BCS] in the group setting).
If S; T are Baire non-meagre/measurable non-null, then ST contains in-

terior points.

8 Convexity

This section begins by developing natural conditions under which the Port-
manteau theorem of convex functions (cf. [BOst6]) remains true when re-
formulated for a normed group setting, and then deduces generalizations of
classical automatic continuity theorems for convex functions on a group.

De�nitions.
1. A group G will be called 2-divisible (or quadratically closed) if the

equation x2 = g for g 2 G always has a unique solution in the group to be
denoted g1=2. See [Lev] for a proof that any group may be embedded as a
subgroup in an overgroup where the equations over G are soluble (compare
also [Lyn1]).
2. In an arbitrary group, say that a subset C is 1

2
-convex if, for all x; y

x; y 2 C =) p
xy 2 C;
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where
p
xy signi�es some element z with z2 = xy: We recall the following

results.

Theorem (Eberlein-McShane Theorem, [Eb], [McSh]). Let X be a
2-divisible topological group of second category. Then any 1

2
-convex Baire

set has a non-empty interior. If X is abelian and each sequence de�ned by
x2n+1 = xn converges to eX then the interior of a 1

2
-convex set C is dense in

C:

Theorem (Convex Minorant Theorem, [McSh]). Let X be 2-divisible
abelian topological group. Let f and g be real-valued functions de�ned on a
non-meagre subset C with f convex and g Baire such that

f(x) � g(x); for x 2 C:

Then f is continuous on the interior of C:

De�nition. We say that the function h : G ! R is 1
2
-convex on the

1
2
�convex set C if, for x; y 2 C;

h(
p
xy) � 1

2
(h(x) + h(y)) ;

with
p
xy as above.

Example. For G = R�+ the function h(x) = x is convex on G; since

2xy � x2 + y2:

Averaging Lemma. A non-meagre set T is �averaging�, that is, for any
given point u 2 T and for any sequence fung ! u; there are v 2 G (a right-
averaging translator) and fvng � T such that, for in�nitely many n 2 !; we
have

u2n = vnv:

There is likewise a left-averaging translator such that for some fwng � T
such that, for in�nitely many n 2 !; we have

u2n = wwn:

Proof. De�ne null sequences by

zn = unu
�1; and ~zn = u�1un:
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We are to solve

u2nv
�1 = vn 2 T;

u~znznuv
�1 = vn 2 T;

~znznuv
�1 = u�1vn 2 T 0 = u�1T:

Now put  n(x) := ~znznx; then

d(x; ~znznx) = d(e; ~znzn) = jj~znznjj � jj~znjj+ jjznjj ! 0:

By the Category Embedding Theorem, for some � 2 T 0 = u�1T; we have
with � = u�1t and for in�nitely many n

u�1vn : = ~znzn� 2 T 0 = u�1T;

u~znzn� = vn 2 T;
u~znznuu

�1� = vn 2 T;
u2nu

�1� = vn 2 T;
u2n = vn�

�1u = vnv

(with v = ��1u = t�1u2 2 T�1u2):
As for the remaining assertion, note that u�1n ! u�1; v�1n 2 T�1 and

u�2n = v�1v�1n :

Thus noting that T�1 is non-meagre (since inversion is a homeomorphism)
and replacing T�1 by T we obtain the required assertion by a right-averaging
translator. �

Note the connection between the norms of the null sequences is only by
way of the conjugate metrics:

jjznjj = d(e; unu
�1) = d(u; un); and jj~znjj = d(e; u�1un) = d(u�1n ; u�1) = ~d(un; u):

Whilst we may make no comparisons between them, both norms nevertheless
converge to zero.

De�nition. We say that f : G! H is locally Lipschitz at g if, for some
neighbourhood Ng of g and for some constants Kg and all x; y in Ng;����f(x)f(y)�1����

H
� Kgjjxy�1jjG:
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We say that f : G! H is locally bi-Lipschitz at g if, for some neighbourhood
Ng of g and for some positive constants Kg; �g; and all x; y in Ng;

�gjjxy�1jjG �
����f(x)f(y)�1����

H
� Kgjjxy�1jjG:

If f : G ! H is invertible, this asserts that both f and its inverse f�1 are
locally Lipschitz at g and f(g) respectively.
We say that the norm on G is n-Lipschitz if the function fn(x) := xn from

G to G is locally Lipschitz at all g 6= e; i.e. for each there is a neighbourhood
Ng of g and positive constants �g; Kg so that

�gjjxy�1jjG �
����xny�n����

G
� Kgjjxy�1jjG:

In an abelian context the power function is a homomorphism; we note that
[HJ] p. 381 refers to a semigroup being modular when each fn (de�ned as
above) is an injective homomorphism. The condition on the right withK = n
is automatic, and so one need require only that for some positive constant �

�jjgjj � jjgnjj:

Note that if xn = yn then (xy�1)n = e and so jjxy�1jj = 0; i.e. the power
function is injective. If the group is divisible then clearly the power function
is an isomorphism.
We note that in the additive group of reals x2 fails to be locally bi-

Lipschitz at the origin (since its derivative there is zero): see [Bart]. However,
the following are bi-Lipschitz.
Examples.
1. In Rd with additive notation, we have jjx2jj := jj2xjj = 2jjxjj; so the

norm is 2-Lipschitz.
2. In R�+ we have jjx2jj := j log x2j = 2j log xj = 2jjxjj and again the norm

is 2-Lipschitz.
3. In a Klee group the mapping f(x) := xn is uniformly (locally) Lip-

schitz, since ����xny�n����
G
� njjxy�1jjG:

Re�ecting Lemma. Suppose the norm is everywhere locally 2-Lipschitz.
Then, for T non-meagre, T is re�ecting i.e. there are w 2 G (a right-
re�ecting translator) and fvng � T such that, for in�nitely many n 2 !; we
have

v2n = unw:
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There is likewise a left-re�ecting translator.

Proof. Let T 2 := fg : g = t2 for some t 2 Tg: By assumption, T 2
is non-meagre. With un = uzn; put S = T 2 and notice that unw 2 S i¤
uznw 2 S i¤ znw 2 u�1S: Now u�1S is non-meagre and  n(x) := znx as
usual converges to the identity, so the existence of w 2 u�1S is assured such
that znw = u�1v2n. �

Remarks. 1. Note that the assertion here is

u�1n vn = wv�1n ;

so that
d(vn; w) = d(v�1n ; u�1n ) =

~d(vn; un) � ~d(vn; u);

or
d(vn; w) � ~d(vn; u);

suggesting the terminology of re�ection.
2. Boundedness theorems for re�ecting and averaging sets follow as in

[BOst6] since the following are true in any group, as we see below.

Theorem. For f a 1
2
-convex function, if f is locally bounded above at

x0 then it is locally bounded below at x0 (and hence locally bounded at x0):

Proof. Say f is bounded above in B := B�(x0) by M: Consider u 2
~B�(x0): Thus ~d(x0; u) = jju�1x0jj < �: Put t = u�1x20; then tx

�1
0 = u�1x0;

and so
d(t; x0) = jjtx�10 jj = jju�1x0jj = ~d(u; x0) < �:

Then t 2 B; and since x20 = ut we have

2f(x0) � f(u) + f(t) � f(u) +M;

or
f(u) � 2f(x0)�M:

Thus 2f(x0)�M is a lower bound for f on the open set ~B�(x0): �

As a corollary a suitably rephrased Bernstein-Doetsch Theorem ([Kucz],
[BOst6]) is thus true.
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Bernstein-Doetsch Theorem. For f a 1
2
-convex function, if f is

locally bounded above at x0; then f is continuous at at x0:

Proof. We repeat the �Second proof�of [Kucz] p. 145. Choose yn ! x0
with f(yn) ! mf (x0) and zn ! x0 with f(zn) ! Mf (x0): Let un := y2nx

�1
n :

Thus y2n = unxn and so

2f(yn) � f(un) + f(zn);

i.e. f(un) � 2f(yn)� f(zn): Hence in the limit we obtain

Mf (x0) � lim inf f(un) � 2Mf (x0)�mf (x0):

One thus has that Mf (x0) � mf (x0): But mf (x0) � f(x0) � Mf (x0); and
both hull values are �nite (by the preceeding theorem). Thus mf (x0) =
f(x0) =Mf (x0); from which continuity follows. �

We now consider the transferability of upper and lower local boundedness.
Our proofs work directly with de�nitions (so are not modelled after those in
Kuczma [Kucz]). We do not however consider domains other than the whole
metric group. For clarity of proof structure we give separate proofs for the
two cases, �rst when G is abelian and later for general G.

Theorem (Local upper boundedness). For f a 1
2
-convex function

de�ned on an abelian group G, if f is locally bounded above at some point
x0; then f is locally bounded above at all points.

Proof. Case (i) The Abelian case. Say f is bounded above in B :=
B�(x0) by M: Given a �xed point t; put z = zt := x�10 t2; so that t2 = x0z:
Consider any u 2 B�=2(t): Write u = st with jjsjj < �=2: Now put y = s2;
then jjyjj = jjs2jj � 2jjsjj < �: Hence yx0 2 B�(x0): Now

u2 = (st)2 = s2t2 = yx0z;

as the group is abelian. So

f(u) � 1

2
f(yx0) +

1

2
f(z) � 1

2
M +

1

2
f(zt):

That is, 1
2
(M + f(zt)) is an upper bound for f in B�=2(x0):
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Case (ii) The general case. Now we consider the general case. As before,
suppose f is bounded above in B := B�(x0) by M; and let t be a given a
�xed point; put z = zt := x�10 t2 so that t2 = x0z:
For this �xed t the mapping y ! �(y) := ytyt�1y�2 is continuous with

�(e) = e; so �(y) is o(y) as jjyjj ! 0: Now

sts = [stst�1s�2]s2t = �(s)s2t;

and we may suppose that, for some � < �=2; we have jj�(s)jj < �=2; for
jjsjj < �: Note that

stst = �(s)s2t2:

Consider any u 2 Br(t) with r = minf�; �=2g: Write u = st with jjsjj < r �
�=2: Now put y = s2: Then jjyjj = jjs2jj � 2jjsjj < � and jjo(s)yjj � �+�=2 <
�: Hence o(s)yx0 2 B�(x0). Now

u2 = stst = �(s)s2t2 = �(s)yx0z:

Hence, by convexity,

f(u) � 1

2
f(o(s)yx0) +

1

2
f(z) � 1

2
M +

1

2
f(zt): �

As an immediate corollary of the last theorem and the Bernstein-Doetsch
Theorem we have the following result.

Dichotomy Theorem for convex functions ([Kucz] p. 147). For 1
2
-

convex f (so in particular for additive f) either f is continuous everywhere,
or it is discontinuous everywhere.

The de�nition below requires continuity of �square-rooting��taken in the
form of an algebraic closure property of degree 2 in a group G; expressed as
the solvability of certain �quadratic equations�over the group. Its status is
clari�ed later by reference to Bartle�s Inverse Function Theorem. We recall
that a group is n-divisible if xng = e is soluble for each g 2 G: (In the absence
of algebraic closure of any degree an extension of G may be constructed in
which these equations are solvable �see for instance Levin [Lev].)
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De�nition. We say that the normed group G is locally convex at � = t2

if, for any " > 0; there is � > 0 such that for all g with jjgjj < "; the equation

xtxt = gt2;

equivalently xtxt�1 = g; has its solutions satisfying jjxjj < �:
Thus G is locally convex at e if, for any " > 0; there is � > 0 such that

for all g with jjgjj < "; the equation

x2 = g

has its solutions with jjxjj < �:

Remark. Putting u = xt the local convexity equation reduces to u2 =
gt2; asserting the local existence of square roots (local 2-divisibility). If G is
abelian the condition at t reduces to the condition at e:

Theorem (Local lower boundedness: abelian case). Let G be a
locally convex abelian group with a 2-Lipschitz norm, i.e. g ! g2 is a bi-
Lipschitz isomorphism such that, for some � > 0;

�jjgjj � jjg2jj � 2jjgjj:

For f a 1
2
-convex function, if f is locally bounded below at some point, then

f is locally bounded below at all points.

Proof. Case (i) The Abelian case. We change the roles of t and x0 in the
preceeding abelian theorem, treating t as a reference point, albeit now for
lower boundedness, and x0 as some arbitrary other �xed point. Suppose that
f is bounded below by L on B�(t): Let yx0 2 B��(x0); so that 0 < jjyjj < ��:
Choose s such that s2 = y: Then,

�jjsjj � jjyjj < ��;

so jjsjj < �: Thus u = st 2 B�(t): Now the identity u2 = s2t2 = yx0z implies
that

L � f(u) � 1

2
f(yx0) +

1

2
f(zt);

2L� f(zt) � f(yx0);
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i.e. that 2L� f(zt) is a lower bound for f on B��(x0):
Case (ii) The general case. Now we consider the general case. Suppose

as before that f is bounded below by L on B�(t): Since the map �(�) :=
�t�t�1��2 is continuous and �(e) = e; we may choose � such that jj�(�)jj <
��=2; for jj�jj < �: Now choose " > 0 such that, for each y with jjyjj < "; the
solution u = �t to

u2 = yt2

has jj�jj < �: Let r = minf��=2; "g:
Let yx0 2 Br(x0); then 0 < jjyjj < ��=2 and jjyjj < ": As before put

z = zt := x�10 t2 so that t2 = x0z: Consider u = �t such that u2 = yx0z; thus
we have

u2 = �t�t = yx0z = yx0x
�1
0 t2 = yt2:

Hence jj�jj < � (as jjyjj < "): Now we write

u2 = �t�t = [�t�t�1��2]�2t2 = �(�)�2t2 = yt2:

We compute that
y = �(�)�2

and

��=2 � jjyjj = jj�(�)�2jj � jj�2jj � jj�(�)jj � �jj�jj � jj�(�)jj;

so
jj�jj � �=2 + jj�(�)jj=� < �=2 + �=2 < �:

Thus u 2 B�(t): Now the identity u2 = yx0z together with convexity implies
as usual that

L � f(u) � 1

2
f(yx0) +

1

2
f(zt);

2L� f(zt) � f(yx0);

i.e. 2L� f(zt) is a lower bound for f on B��(x0): �

The local 2-divisibility assumption at t2 asserts that ft(�) := �t�t�1 is
invertible locally at e. Bartle�s theorem below guarantees that ft has uniform
local inverse under a smoothness assumption, i.e. that for jj�jj = jjf�1t (y)jj <
�, for all small enough y; say for jjyjj < ��: To state the theorem we need
some de�nitions.
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De�nitions.
1. f is said to have a derivative at x0 if there is a continuous homomor-

phism f 0(x0) such that

lim
jjujj!0+

1

jjujj jjf(ux0)f(x0)
�1[f 0(x0)(u)]

�1jj = 0:

2. f is of class C 0 on the open set U if it has a derivative at each point u
in U and, for each x0 and each " > 0; there is � > 0 such that, for all x1; x2
in B�(x0) both

jjf 0(x1)(u)[f 0(x2)(u)]�1jj < "jjujj
and

jjf(x1)f(x2)�1f 0(x0)(x1x�12 )�1jj < "jjx1x�12 jj:
The two conditions may be rephrased relative to the right-invariant metric d
on the group as

d(f 0(x1)(u); f
0(x2)(u)) < "jjujj;

and
d(f(x1)f(x2)

�1; f 0(x0)(x1x
�1
2 ) < "d(x1; x2):

3. Suppose that y0 = f(x0): Then f is smooth at x0 if there are positive
numbers �; � such that if 0 < d(y; y0) < � then there is x such that y = f(x)
and d(x; x0) � � � d(y; y0): If f is invertible, then this asserts that

d(f�1(y); f�1(y0)) � � � d(y; y0):

Example. Let f(x) = tx with t �xed. Here f is smooth at x0 if there
are positive numbers �; � such that

jjxx�10 jj � �jjtx(tx0)�1jj = �jjtxx�10 t�1jj:

Note that in a Klee group jjtxx�10 t�1jj = jjt�1txx�10 jj = jjxx�10 jj:

Theorem (Bartle�s Inverse Function Theorem, [Bart] Th. 2.4).
Suppose that
(i) f is of class C 0 in the ball Br(x0) = fx 2 G : jjxx�10 jj < rg, for some

r > 0; and
(ii) f 0(x0) is smooth (at e and so anywhere).
Then f is smooth at x0 and hence open.
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If also the derivative f 0(x0) is an isomorphism, then f has a uniformly
continuous local inverse at x0:

Corollary. If ft(�) := �t�t�1 is of class C 0 on Br(e) and f 0t(e) is
smooth, then G is locally convex at t:

Proof. Immediate since ft(e) = e: �

We are now in a position to state generalizations of two results derived
in the real line case in [BOst6].

Proposition. Let G be any locally convex group with a 2-Lipschitz norm.
If f is 1

2
-convex and bounded below on a re�ecting subset S of G, then f is

locally bounded below on G.

Proof. Suppose not. Let T be a re�ecting subset of S: Let K be a lower
bound on T: If f is not locally bounded from below, then at any point u in
�T there is a sequence fung ! u with ff(un)g ! �1: For some w 2 G; we
have v2n = wun 2 T; for in�nitely many n: Then

K � f(vn) �
1

2
f(w) +

1

2
f(un); or 2K � f(w) � f(un);

i.e. f(un) is bounded from below, a contradiction. �

Theorem (Generalized Mehdi Theorem cf. [Meh] Th. 3). A 1
2
-

convex function f : G ! R on a normed group, bounded above on an aver-
aging subset S, is continuous on G.

Proof. Let T be an averaging core of S: Suppose that f is not continuous,
but is bounded above on T by K. Then f is not locally bounded above at
some point of u 2 �T : Then there is a null sequence zn ! e with f(un)!1;
where un = uzn: Select fvng and w in G so that, for in�nitely many n; we
have

u2n = wvn:

But for such n;we have

f(un) �
1

2
f(w) +

1

2
f(vn) �

1

2
f(w) +

1

2
K;

contradicting the unboundedness of f(un): �
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The Generalized Mehdi Theorem, together with the Averaging Lemma,
implies the classical result below and its generalizations.

Theorem (Császár-Ostrowski Theorem [Csa], [Kucz] p. 210). A
convex function f : R!R bounded above on a set of positive measure/non-
meagre set is continuous.

Topological Császár-Ostrowski Theorem. A 1
2
-convex function f :

G ! R on a normed group, bounded above on a non-meagre subset, is con-
tinuous.

Reference to the Generalized Borwein-Ditor Theorem yields the following.

Haar-measure Császár-Ostrowski Theorem. A 1
2
-convex function

f : G! R on a normed group carrying a Radon measure, bounded above on
a set of positive measure, is continuous.

9 Automatic continuity: the Jones-Kominek
Theorem

This section is dedicated to generalizations to normed groups and to a more
general class of topological groups of the following result for the real line.

Theorems of Jones and Kominek. Let f be additive on R and either
have a continuous restriction, or a bounded restriction, f jT , where T is some
analytic set spanning R. Then f is continuous.

The result follows from the Expansion Lemma and Darboux�s Theorem
(see below) that an additive function bounded on an interval is continuous. In
fact the bounded case above (Kominek�s Theorem, [Kom2]) implies the con-
tinuous case (Jones�s Theorem, [Jones1], [Jones2]), as was shown in [BOst7].
[OC] develops limit theorems for sequences of functionals whose properties
are given on various kinds of spanning sets including spanning in the sense
of linear rational combinations.
Before stating the current generalizations we begin with some preliminar-

ies on analytic subsets of a topological group.
We recall ([Jay-Rog], p. 11, or [Kech] Ch. III for the Polish space setting)

that in a Hausdor¤spaceX aK-analytic set is a setA that is the image under
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a compact-valued, upper semi-continuous map from NN; if this mapping takes
values that are singletons or empty, the set A is said to be analytic. In either
case A is Lindelöf. (The topological notion of K-analyticity was introduced
by Choquet, Frolik, Sion and Rogers under variant de�nitions, eventually
found to be equivalent, as a consequence of a theorem of Jayne, see [Jay-Rog]
Sect. 2.8 p. 37 for a discussion.) If the space X is a topological group, then
the subgroup hAi spanned (generated) by an analytic subset A is also analytic
and so Lindelöf (for which, see below); note the result due to Loy [Loy] and
Christensen [Ch] that an analytic Baire group is Polish (cf. [HJ] Th. 2.3.6
p. 355). Note that a Lindelöf group need not be metric; see for example
the construction due to Oleg Pavlov [Pav]. If additionally the group X is
metric, then hAi is separable, and so in fact this K-analytic set is analytic
(a continuous image of NN �see [Jay-Rog] Th. 5.5.1 (b), p. 110).

De�nition. We say that a set S is Souslin-H if it is of the form

S =
[
�2!!

\1n=1H(�jn);

with each H(�jn) 2 H. We will often take H to be F(X); the family of
closed subsets of the space X:

We recall that a set is meagre if it is a countable union of nowhere dense
sets, a set is Baire if it is open modulo a meagre set, or equivalently if it is
closed modulo a meagre set (cf. Engelking [Eng] especially p.198 Section 3.9
and Exercises 3.9.J, although we prefer �meagre�to �of �rst category�).

De�nition. Let G be any group. For any positive integer n and for any
subset S let S(n) denote the set of S-words of length n: Say that a subset H
of G spans G ( in the sense of group theory), or �nitely generates the goup
G, if for any g 2 G; there are h1; :::; hn in H such that

g = h"11 � ::: � h"nn ; with "i = �1:

(If H is symmetric, so that h�1 2 H i¤ h 2 H; there is no need for inverses.)
We begin with results concerning K-analytic groups.

Proposition. The span of a K-analytic set is K-analytic; likewise for
analytic sets.
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Proof. Since f(v; w) = vw is continuous, S(2) = f(S � S) is K-analytic
by [Jay-Rog] Th 2.5.1 p. 23. Similarly all the sets S(n) areK-analytic. Hence
the span, namely

S
n2N S

(n) is such ([Jay-Rog], Th. 2.5.4 p. 23). �

Intersection Theorem ([Jay-Rog] Th 2.5.3, p. 23). The intersection of
a K-analytic set with a Souslin-F(X) in a Hausdor¤ space X is K-analytic.

Projection Theorem ([RW] and [Jay-Rog] Th 2.6.6, p. 30). Let X and
Y be topological spaces with Y a K-analytic set. Then the projection on X
of a Souslin-F(X � Y ) is Souslin-F(X).

Nikodym�s Theorem ([Nik]; [Jay-Rog] p. 42) The Baire sets of a space
X are closed under the Souslin operation. Hence Souslin-F(X) sets are
Baire.

De�nitions.
1. Say that a function f : X ! Y between two topological spaces is

H-Baire, for H a class of sets in Y; if f�1(H) has the Baire property for each
set H in H. Thus f is F(Y )-Baire if f�1(F ) is Baire for all closed F in Y:
Since

f�1(Y nH) = Xnf�1(H);
f is F(Y )-Baire i¤ it is G(Y )-Baire, when we will simply say that f is Baire
(�f has the Baire property�is the alternative usage).
2. One must distinguish between functions that are F(Y )-Baire and those

that lie in the smallest family of functions closed under pointwise limits of se-
quences and containing the continuous functions (for a modern treatment see
[Jay-Rog] Sect. 6). We follow tradition in calling these last Baire-measurable.
3. We will say that a function is Baire-continuous if it is continuous when

restricted to some co-meagre set. In the real line case and with the density
topology, this is Denjoy�s approximate continuity ([LMZ], p.1); recall ([Kech],
17.47) that a set is (Lebesgue) measurable i¤ it has the Baire property under
the density topology.

The connections between these concepts are given in the theorems below.
See the cited papers for proofs.

Banach-Neeb Theorem ([Ban-T] Th. 4 pg. 35, and Vol I p. 206; [Ne]).
(i) A Baire-measurable f : X ! Y with X a Baire space and Y metric

is Baire-continuous; and

55



(ii) a Borel-measurable f : X ! Y with X; Y metric and Y separable is
Baire-measurable.

Remarks. In fact Banach shows that a Baire-measurable function is
Baire-continuous on each perfect set ([Ban-T] Vol. II p. 206). Neeb assumes
in addition that Y is arcwise connected, but as Pestov [Pes] remarks the
arcwise connectedness may be dropped by referring to a result of Hartman
and Mycielski [HM] that a separable metrizable group embeds as a subgroup
of an arcwise connected separable metrizable group.

Baire Continuity Theorem. A Baire function f : X ! Y is Baire
continuous in the following cases:
(i) Baire condition (see e.g. [HJ] Th. 2.2.10 p. 346): Y is a second-

countable space
(ii) Emeryk-Frankiewicz-Kulpa ([EFK]): X is µCech-complete and Y has

a base of cardinality not exceeding the continuum;
(iii) Pol condition ([Pol]): f is Borel, X is Borelian-K and Y is metriz-

able and of nonmeasurable cardinality;
(iv) Hansell condition ([Han]): f is �-discrete and Y is metric.

We will say that the pair (X; Y ) enables Baire continuity if the spaces
X; Y satisfy either of the two conditions (i) or (ii). In the applications below
Y is usually the additive group of reals R, so satis�es (i). Building on [EFK],
Fremlin ([Frem] Section 9), characterizes a space X such that every Baire
function f : X ! Y is Baire-continuous for all metric Y in the language
of �measurable spaces with negligibles�; reference there is made to disjoint
families of negligible sets all of whose subfamilies have a measurable union.
For a discussion of discontinuous homomorphisms, especially counterexam-
ples on C(X) withX compact (e.g. employing Stone-µCech compacti�cations,
X = �NnN ), see [Dal] Section 9.

Remarks. Hansell�s condition, requiring the function f to be �-discrete,
is implied by f being analytic when X is absolutely analytic (i.e. Souslin-
F(X) in any complete metric space X into which it embeds). Frankiewicz
[Fr] considers implications of the Axiom of Constructibility.

The following result provides a criterion for verifying that f is Baire.
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Theorem (Souslin criterion). Let X and Y be Hausdor¤ topological
groups with Y a K-analytic set. If f : X ! Y has Souslin-F(X�Y ) graph,
then f is Baire.

Proof. Let G � X � Y be the graph of f which is Souslin-F(X � Y ):
For F closed in Y; we have

f�1(F ) = prX [G \ (X � F )];

which, by the Intersection Theorem, is the projection of a Souslin-F(X�Y )
set. By the Projection Theorem, f�1(F ) is Souslin-F(X): Closed sets have
the Baire property by de�nition, so by Nikodym�s Theorem f�1(F ) has the
Baire property. �

Before stating our next theorem we recall a classical result in the sharper
form resulting from the enabling condition (ii) above.

Banach-Mehdi Theorem ([Ban-T] 1.3.4, p. 40, [Meh], [HJ] Th. 2.2.12
p. 348, or [BOst14]). An additive Baire continuous function f : X ! Y
between complete metric groups is continuous, when Y is separable, or has
base of cardinality less than the continuum.

The Souslin criterion and the next theorem together have as immediate
corollary the classical Souslin-graph Theorem; in this connection recall (see
the corollary of [HJ] Th. 2.3.6 p. 355) that a normed group which is Baire
and analytic is Polish.

Theorem (Baire Homomorphism Theorem). Let X and Y be topo-
logical groups with Y a K-analytic group and X non-meagre. If f : X ! Y
is a Baire homomorphism, then f is continuous.

Corollary 1 (Souslin-graph Theorem, Schwartz [Schw], cf. [Jay-Rog]
p.50). Let X and Y be topological groups with Y a K-analytic group and
X non-meagre. If f : X ! Y is a homomorphism with Souslin-F(X � Y )
graph, then f is continuous.

Proofs. Here we refer to the proof in [Jay-Rog] of the Souslin-graph
theorem; that proof may be construed as having two steps: one establishing
the Souslin criterion, the other the Baire homomorphism theorem. �
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Corollary 2 (Generalized Jones Theorem: Thinned Souslin-graph
Theorem). Let X and Y be topological groups with X non-meagre and Y
a K-analytic set. Let S be an K-analytic set spanning X and f : X ! Y a
homomorphism with restriction to S continous on S: Then f is continuous.

Proof. Since f is continuous on S; the graph f(x; y) 2 S�Y : y = f(x)g
is closed in S�Y and so is K-analytic by [Jay-Rog] Th. 2.5.3. Now y = f(x)
i¤, for some n 2 N; there is (y1; :::; yn) 2 Y n and (s1; :::; sn) 2 Sn such that
x = s1 � ::: � sn; y = y1 � ::: � yn; and, for i = 1; ::; n; yi = f(si): Thus
G := f(x; y) : y = f(x)g is K-analytic. Formally,

G = prX�Y

"[
n2N

"
Mn \ (X � Y � Sn � Y n) \

\
i�n

Gi;n

##
;

where

Mn := f(x; y; s1; ::::; sn; y1; :::; yn) : y = y1 � ::: � yn and x = s1 � ::: � sng;

and

Gi;n := f(x; y; s1; ::::; sn; y1; :::; yn) 2 X�Y�Xn�Y n : yi = f(si)g; for i = 1; :::; n:

Here each set Mn is closed and each Gi;n is K-analytic. Hence, by the In-
tersection and Projection Theorems, the graph G is K-analytic. By the
Souslin-graph theorem f is thus continuous. �

This is a new proof of the Jones Theorem. We now consider results for
the more special normed group context. Here again one should note the
corollary of [HJ] Th. 2.3.6 p. 355 that a normed group which is Baire and
analytic is Polish.
Our �rst result has a proof which is a minor adaptation of the proof in

[BoDi]. We recall that a Hausdor¤ topological space is paracompact ([Eng]
Ch. 5, or [Kel] Ch. 6, especially Problem Y) if every open cover has a locally
�nite open re�nement and that (i) Lindelöf spaces and (ii) metrizable spaces
are paracompact. Paracompact spaces are normal, hence topological groups
need not be paracompact, as exempli�ed again by the example due to Oleg
Pavlov [Pav] quoted earlier or by the example of van Douwen [vD] (see also
[Com] Section 8.4 p. 1222); however, L. G. Brown [Br-2] shows that a locally
complete group is paracompact (and this includes the locally compact case,
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cf. [Com] Th. 2.9 p. 1161). The assumption of paracompactness is thus
natural.

Theorem (Generalized Borwein-Ditor Theorem 2). Let G be
a paracompact topological group equipped with a locally-�nite, inner regu-
lar Borel measure m (Radon measure) which is left-invariant, resp. right-
invariant, (for example, G locally compact, equipped with a Haar measure).
If A is a (Borel) measurable set with 0 < m(A) <1 and zn ! e; then,

for m-almost a 2 A; there is an in�nite set Ma such that the corresponding
right-translates, resp. left-translates, of zn are in A; i.e., in the �rst case

fzna : n 2Mag � A:

Proof. Without loss of generality we consider right-translation of the
sequence fzng. Since G is paracompact, it su¢ ces to prove the result for
A open and of �nite measure. By inner-regularity A may be replaced by a
�-compact subset of equal measure. It thus su¢ ces to prove the theorem for
K compact with m(K) > 0 and K � A: De�ne a decreasing sequence of
compact sets Tk :=

S
n�k z

�1
n K; and let T =

T
k Tk: Thus x 2 T i¤, for some

in�nite Mx;
znx 2 K for m 2Mx;

so that T is the set of �translators�x for the sequence fzng: Since K is closed,
for x 2 T; we have x = limn2Mx znx 2 K; thus T � K: Hence, for each k;

m(Tk) � m(z�1k K) = m(K);

by left-invariance of the measure. But, for some n; Tn � A: (If z�1n kn =2 A
on an in�nite set M of n; then since kn ! k 2 K we have z�1n kn ! k 2 A;
but k = lim z�1n kn =2 A; a contradiction since A is open.) So, for some n;
m(Tn) < 1; and thus m(Tk) ! m(T ): Hence m(K) � m(T ) � m(K): So
m(K) = m(T ) and thus almost all points of K are translators. �

Remark. It is quite consistent to have the measure left-invariant and
the metric right-invariant.

Analytic Dichotomy Lemma (Spanning). Let G be a connected,
normed group. Suppose that an analytic set T � G spans a set of positive
measure or a non-meagre set. Then T spans G.
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Proof. In the category case, the result follows from the Banach-Kuratowski
Dichotomy Theorem of Section 4 ([Ban-G, Satz 1], [Kur-1, Ch. VI. 13. XII],
[Kel, Ch. 6 Prob. P p. 211]) by considering S; the subgroup generated by
T ; since T is analytic, S is analytic and hence Baire, and, being non-meagre,
is clopen and hence all of G, as the latter is a connected group.
In the measure case, by the Steinhaus Theorem of Section 4 ([St], [BGT,

Th. 1.1.1], [BOst3]), T 2 has non-empty interior, hence is non-meagre. The
result now follows from the category case. �

Our next lemma follows directly from Choquet�s Capacitability Theorem
[Choq] (see especially [Del2, p. 186], and [Kech, Ch. III 30.C]). For complete-
ness, we include the brief proof. Incidentally, the argument we employ goes
back to Choquet�s theorem, and indeed further, to [ROD] (see e.g. [Del1, p.
43]).

Compact Contraction Lemma. In a normed group carrying a Radon
measure, for T analytic, if T � T has positive Radon measure, then for some
compact subset S of T , S � S has positive measure.

Proof. We present a direct proof (see below for our original inspiration
in Choquet�s Theorem). As T 2 is analytic, we may write ([Jay-Rog]) T 2 =
h(H); for some continuous h and some K�� subset of the reals, e.g. the set H
of the irrationals, so that H =

T
i

S
j d(i; j); where d(i; j) are compact and,

without loss of generality, the unions are each increasing: d(i; j) � d(i; j+1).
The map g(x; y) := xy is continuous and hence so is the composition f =
g � h: Thus T � T = f(H) is analytic. Suppose that T � T is of positive
measure. Hence, by the capacitability argument for analytic sets ([Choq],
or [Si, Th.4.2 p. 774], or [Rog1, p. 90], there referred to as an �Increasing
sets lemma�), for some compact set A; the set f(A) has positive measure.
Indeed if jf(H)j > � > 0; then the set A may be taken in the form

T
i d(i; ji);

where the indices ji are chosen inductively, by reference to the increasing
union, so that jf [H \

T
i<k d(i; ji)]j > �; for each k: (Thus A � H and

f(A) =
T
i f [H \

T
i<k d(i; ji)] has positive measure, cf. [EKR].)

The conclusion follows as S = h(A) is compact and S �S = g(S) = f(A):
�

Note. The result may be deduced indirectly from the Choquet Capac-
itability Theorem by considering the capacity I : G2 ! R; de�ned by
I(X) = m(g(X)); where, as before, g(x; y) := xy is continuous and m
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denotes a Radon measure on G (on this point see [Del2, Section 1.1.1, p.
186]). Indeed, the set T 2 is analytic ([Rog2, Section 2.8, p. 37-41]), so
I(T 2) = sup I(K2); where the supremum ranges over compact subsets K of
T: Actually, the Capacitability Theorem says only that I(T 2) = sup I(K2);
where the supremum ranges over compact subsets K2 of T 2; but such a set
may be embedded in K2 where K = �1(K)[ �2(K); with �i the projections
onto the axes of the product space.

Corollary. For T analytic and "i 2 f�1g, if T "1 � ::: � T "d has positive
measure (measure greater than �) or is non-meagre, then for some compact
subset S of T , the compact set K = S"1 �:::�S"d has K �K of positive measure
(measure greater than �).

Proof. In the measure case the same approach may be used based now
on the continuous function g(x1; :::; xd) := x"11 � ::: � x

"d
d ensuring that K

is of positive measure (measure greater than �): In the category case, if
T 0 = T "1 � ::: � T "d is non-meagre then, by the Steinhaus Theorem ([St], or
[BGT, Cor. 1.1.3]), T 0�T 0 has non-empty interior. The measure case may now
be applied to T 0 in lieu of T: (Alternatively one may apply the Pettis-Piccard
Theorem, as in the Analytic Dichotomy Lemma.) �

Theorem (Compact Spanning Approximation). For T analytic in
X, if the span of T is non-null or is non-meagre, then there exists a compact
subset of T which spans X:

Proof. If T is non-null or non-meagre, then T spans all the reals (by
the Analytic Dichotomy Lemma); then for some "i 2 f�1g, T "1 � ::: � T "d has
positive measure/ is non-meagre. Hence for some K compact K"1 � ::: �K"d

has positive measure/ is non-meagre. Hence K spans some and hence all
reals. �

Analytic Covering Lemma ([Kucz, p. 227], cf. [Jones2, Th. 11]).
Given normed groups G and H; and T analytic in G; let f : G ! H
have continuous restriction f jT: Then T is covered by a countable family of
bounded analytic sets on each of which f is bounded.

Proof. For k 2 ! de�ne Tk := fx 2 T : jjf(x)jj < kg \ Bk(eG): Now
fx 2 T : jjf(x)jj < kg is relatively open and so takes the form T \Uk for some
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open subset Uk of G. The Intersection Theorem shows this to be analytic
since Uk is an F� set and hence Souslin-F . �

Expansion Lemma ([Jones2, Th. 4], [Kom2, Th. 2], and [Kucz, p.
215]). Suppose that S is Souslin-H, i.e. of the form

S =
[
�2!!

\1n=1H(�jn);

with each H(�jn) 2 H, for some family of analytic sets H on which f is
bounded. If S spans the normed group G, then, for each n; there are sets
H1; :::; Hk each of the form H(�jn); such that for some integers r1; :::; rk

T = H1 � ::: �Hk

has positive measure/ is non-meagre, and so T � T has non-empty interior.

Proof. For any n 2 ! we have

S �
[
�2!!

H(�jn):

Enumerate the countable family fH(�jn) : � 2 !ng as fTh : h 2 !g: Since S
spans G, we have

G =
[
h2!

[
k2Nh

(Tk1 � ::: � Tkh) :

As each Tk is analytic, so too is the continuous image

Tk1 � ::: � Tkh ;

which is thus measurable. Hence, for some h 2 N and k 2 Nh the set

Tk1 � ::: � Tkh

has positive measure/ is non-meagre. �

De�nition. We say that S is a pre-compact set if its closure is compact.
We will say that f is a pre-compact function if f(S) is pre-compact for each
pre-compact set S:

62



Analytic Automaticity Theorem forMetric Groups (Jones-Kominek
Theorem). Let be G be either a non-meagre normed group, or a group sup-
porting a Radon measure, and let H be K-analytic (hence Lindelöf, and so
second countable in our metric setting). Let h : G ! H be a homomor-
phism between metric groups and let T be an analytic set in G which �nitely
generates G:
(i) (Jones condition) If h is continuous on T; then h is continuous.
(ii) (Kominek condition) If h is pre-compact on T; then h is precompact.

Proof. As in the Analytic Covering Lemma, write

T =
[
k2N

Tk:

(i) If h is not continuous, suppose that h(xn) does not converge to h(x0):
Since

G =
[
m2N

[
k2N

T
(m)
k ;

G is a union of analytic sets and hence analytic ([Jay-Rog] Th. 2.5.4 p. 23).
Now, for some m; k the span T (m)k is non-meagre, as is the span of a compact
subset S(m)k for some Sk � Tk: So for some shifted subsequence txn ! tx0;

where t and x0 lies in S
(m)
k : Thus there is an in�nite set M such that, for

n 2M,
txn = t1n:::t

m
n with t

i
n 2 Sk:

W.l.o.g., as Sk is compact,

t(i)n ! t
(i)
0 2 Sk � T;

and so
txn = t1n:::t

m
n ! t10:::t

m
0 = tx0 with ti0 2 Sk � T:

Hence, as tin ! ti0 � T; we have, for n 2M,

h(t)h(xn) = h(txn) = h(t1n:::t
m
n ) = h(t1n):::h(t

m
n )

! h(t10):::h(t
m
0 ) = h(t10:::t

m
0 )

= h(tx0) = h(t)h(x0):

Thus
h(xn)! h(x0);
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a contradiction.
(ii) If fh(xn)g is not precompact with fxng precompact, by the same

argument, for some S(n)k and some in�nite set M, we have txn = t1n:::t
m
n and

tin ! ti0 � T , for n 2 M. Hence h(txn) = h(t)h(xn) is precompact and so
h(xn) is precompact, a contradiction. �

The following result connects the preceeding theorem to Darboux�s The-
orem.

De�nition. Say that a homomorphism between normed groups is N-
homogeneous if jjf(xn)jj = njjf(x)jj; for any x and n 2 N. Thus any ho-
momorphism into the additive reals is N-homogeneous. More generally, say
that the norm is N-subhomogeneous if there are constants �n with �n ! 1
such that for all elements z of the group

�njjzjj � jjznjj;

or equivalently

jjz1=njj � 1

�n
jjzjj:

Thus z1=n ! e; a related condition was considered by McShane in [McSh] (cf.
the Eberlein-McShane Theorem of the preceeding Section). In keeping with
the convention of functional analysis (appropriately to our usage of norm)
the next result refers to a locally bounded homomorphism as bounded.

Generalized Darboux Theorem ([Dar]) A bounded homomorphism
from a normed group to an N-subhomogeneous normed group is continuous;
in particular, a bounded, additive function is continuous.

Proof. Suppose that f : G ! H is a homomorphism to a normed N-
subhomogeneous group H; thus jjf(xn)jj � �njjf(x)jj; for any x 2 G and
n 2 N. Suppose that f is bounded by M and, for jjxjj < �; we have

jjf(x)jj < M:

Let " > 0 be given. Choose N such that �N > M="; i.e. M=�N < ": Now
x! xN is continuous, hence there is � = �N(�) > 0 such that, for jjxjj < �;

jjxN jj < �:
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Consider x with jjxjj < �N(�): Then �N jjf(x)jj � jjf(x)N jj = jjf(xN)jj < M:
So for x with jjxjj < �N(�) we have

jjf(x)jj < M=�N < ";

proving continuity at e: �

Compare [HJ] Th 2.4.9 p. 382.
The Main Theorem of [BOst7] may be given a combinatorial restatement

in the group setting. We need some further de�nitions.

De�nition. For G a metric group, let C(G) = C(N; G) := fx 2 GN : x is
convergent}. For x 2 C(G) we write

L(x) = lim
n
xn:

We make C(G) into a group by setting

x � y : = hxnyn : n 2 Ni:

Thus e = heGi and x�1 = hx�1n i:We identify G with the subgroup of constant
sequences, that is

T = fhg : n 2 Ni : g 2 Gg:
The natural action of G or T on C(G) is then tx := htxn : n 2 Ni: Thus
hgi = ge; and then tx = te � x:

De�nition. For G a group, a set G of convergent sequences u = hun :
n 2 Ni in c(G) is a G-ideal in the sequence space C(G) if it is a subgroup
closed under the mutiplicative action of G; and will be termed complete if it
is closed under subsequence formation. That is, a complete G-ideal in C(G)
satis�es
(i) u 2 G implies tu = htuni 2 G, for each t in G;
(ii) u;v 2 G implies that uv�1 2 G,
(iii) u 2 G implies that uM = fum : m 2Mg 2 G for every in�nite M.

If G isatis�es (i) and u;v 2 G implies only that uv 2 G, we say that G is
a G-subideal in C(G):
Remarks.
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0. If G is merely an ideal then G� = fuM : for u 2 t and M � Ng
is a complete G-ideal; indeed tuM = (tu)M and uMv�1M = (uv�1)M and
uMM0 = uM0 for M0�M.
1. We speak of Euclidean sequential structures when G is the vector space

Rd regarded as an additive group.
2. The conditions (i) and (ii) assert that G is similar in structure to a

left-ideal, being closed under multiplication by G and a subgroup of C(G):
3. We refer only to the combinatorial properties of C(G); but one may

give C(G) a pseudo-norm by setting

jjxjjc := dG(Lx; e) = jjLxjj:

The corresponding pseudo-metric is

d(x; y) := lim dG(xn; yn) = dG(Lx;Ly):

We may take equivalence of sequences with identical limit; then C(G)� be-
comes a normed group. However, in our theorem below we do not wish to
refer to such an equivalence.

De�nitions. For a family F of functions from G to H, we denote by
F(T ) the family ff jT : f 2 Fg of functions in F restricted to T � G. Let
us denote a convergent sequence with limit x0; by fxng ! x0: We say the
property Q of functions (property being regarded set-theoretically, i.e. as a
family of functions from G to H) is sequential on T if

f 2 Q i¤ (8fxn : n > 0g � T )[(fxng ! x0) =) f jfxn : n > 0g 2 Q(fxn : n > 0g)]:

If we further require the limit point to be enumerated in the sequence, we
call Q completely sequential on T if

f 2 Q i¤ (8fxng � T )[(fxng ! x0) =) f jfxng 2 Q(fxng)]:

Our interest rests on properties that are completely sequential; our theo-
rem below contains a condition referring to completely sequential properties,
that is, the condition is required to hold on convergent sequences with limit
included (so on a compact set), rather than on arbitrary sequences.
Note that if Q is (completely) sequential then f jfxng 2 Q(fxng) i¤

f jfxn : n 2Mg 2 Q(fxn : n 2Mg); for every in�nite M.
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De�nition. Let h : G ! H; with G;H metric groups. Say that a
sequence u = fung is Q-good for h if

hjfung 2 Qjfung;

and put
GhQ = fu : hjfung 2 Qjfungg:

If Q is completely sequential, then u is Q-good for h i¤ every subsequence of
u is Q-good for h, so that GhQ is a G-ideal i¤ it is a complete G-ideal. One
then has:

Lemma. If Q is completely sequential and F preserves Q under shift
and multiplication and division on compacts, then GhQ for h 2 F is a G-
ideal.

Theorem (Analytic Automaticity Theorem - combinatorial form).
Suppose that functions of F having Q on G have P on G; where Q is a prop-
erty of functions from G to H that is completely sequential on G.
Suppose that, for all h 2 F , GhQ, the family of Q-good sequences is a

G-ideal. Then, for any analytic set T spanning G, functions of F having Q
on T have P on G:

This theorem is applied withG = Rd andH = R in [BOst6] to subadditive
functions, convex functions, and to regularly varying functions, de�ned on
Rd to derive automatic properties such as automatic continuity, automatic
local boundedness and automatic uniform boundedness.

10 Duality in normed groups

In this section we use the generic notation of S for a group with metric dS;
recall from Section 2 that Auth(S) denotes the autohomeomorphisms of S;
H(S) denotes the bounded elements of Auth(S): We write A � H(S) for a
subgroup of automorphisms of S; thus A is a topological group metrized by
the supremum metric

dT (t1; t2) = sup
s2S

dX(t1(s); t2(s)):

Note that eA = idS: The purpose of this notation is to embrace the two cases:
(i) S = X and A = H(X); and
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(ii) S = H(X) and A = H(H(X)):
In what follows, we regard the group H(X) as the topological dual of

X and verify that (X; dX) is embedded in the second dual H(H(X)). As
an application one may use this duality to clarify, in the context of a non-
autonomous di¤erential equation with initial conditions, the link between its
solutions trajectories and �ows of its varying �coe¢ cient matrix�. See [Se1]
and [Se2], which derive the close relationship for a general non-autonomous
di¤erential equation u0 = f(u; t) with u(0) = x 2 X; between its trajectories
in X and local �ows in the function space � of translates ft of f (where
ft(x; s) = f(x; t+ s):
One may alternatively capture the topological duality as algebraic com-

plementarity �see [Ost-knit] for details. A summary will su¢ ce here. One
�rst considers the commutative diagram below where initially the maps
are only homeomorphisms (herein T � H(X) and �T (t; x) = (t; tx) and
�X(x; t) = (t; xt) are embeddings). Then one extends the diagram to a di-
agram of isomorphisms, a change facilitated by forming the direct product
group G := T�X: Thus G = TGXG where TG and XG are normal subgroups,
commuting elementwise, and isomorphic respectively to T and X; moreover,
the subgroup TG; acting multiplicatively on XG; represents the T -�ow on X
and simultaneously the multiplicative action of XG on G represents the X-
�ow on TX = ftx : t 2 T; x 2 Xg; the group of right-translates of T , where
tx(u) = �x(t)(u) = t(ux): If G has an invariant metric dG; and TG and XG are
now regarded as groups of translations on G; then they may be metrized by
the supremum metric d�G; whereupon each is isometric to itself as subgroup
of G: Our approach here su¤ers a loss of elegance, by dispensing with G; but
gains analytically by working directly with dX and d�X :

(t; x) �
�T - (t; tx)

(x; t)
?

6

� �X - (t; xt)
?

6

Here the two vertical maps may, and will, be used as identi�cations, since
(t; tx)� (t; x)� (t; xt) are bijections (more in fact is true, see [Ost-knit]).

De�nitions. Let X be a topological group with right-invariant metric
dX .
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1. The left-translation group TrL(X) comprises the maps �x : X ! X;
de�ned by �x(z) = xz with composition as multiplication. The map �x is
continuous with continuous inverse ��1x (y) = �x�1(y) = x�1y: The identity
is idX = � e; where e = eX : Thus TrL(X) � Auth(X): We have, as dX is
right-invariant, that

jj�xjjT := dT (�x; � e) := sup
z2X

dX(xz; z) = dX(x; eX) = jjxjjX :

The appearance of a supremum norm derived from a supremum metric on
T = TrL(X) here is natural, in that for any metric dX (now not necessarily
right-invariant), the metric

�d(x; y) = sup
z2X

dX(xz; yz)

is right-invariant on the subgroup H = fx 2 X : �d(x; e) < 1g (by the
Proposition and Corollary on group-norm properties of the previous section).
Returning to our theme, we have TrL(X) � H(X); TrL(X) is a subgroup
and � : X ! TrL(X) is an isomorphism, because

�x � � y(z) = �x(� y(z)) = x(� y(z) = xyz = �xy(z):

Moreover, � is an isometry, as dX is right-invariant; indeed, we have

dT (�x; � y) = sup
z
dX(xz; yz) = dX(x; y):

2. We now lift the isomorphism � to H(X): That is, for x 2 X; and
s 2 H(X) we de�ne the translation map xs; more properly written �x(s);
where �x(s)(z) = s(��1x (z)) = s(x�1z): If T � H(X) is � -invariant, we may
of course regard � as operating on T: For example, if T = TrL(X); we have
�x(� y)(z) = � y�

�1
x (z), so �x(� y) = � yx�1 :

Denote the set of translation maps by � = f�x : x 2 Xg � Auth(X):
Now � is a group (under composition) with identity e� = �e; where e = eX .
Note that

�x(eS)(eX) = x�1;

so the mapping x! �x from X to � is bijective. Also

(�x � �y(s))(z) = �x(�y(s))(z) = (�y(s))(x
�1z)

= s(y�1x�1z) = s((xy)�1z) = �xy(s)(z);
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so � is an isomorphism from X to � and so ��1x = �x�1 :
A comparison with the normed vector space context and the metrization

of the translations x! t(z + x) for a linear map t suggests that in order to
metrize � by reference to �x(t) we need to take account of jjtjj: A natural
metric here for any " � 0 is thus the magni�cation metric

d"T (�x; �y) := sup
jjtjj�"

dT (�x(t); �y(t)): (3)

By Proposition 5 this is a metric; indeed with t = eH(X) = idX we have
jjtjj = 0 and, since dX is assumed right-invariant, for x 6= y; we have with
zxy = e that dX(x�1z; y�1z) = dX(x

�1; y�1) > 0: The presence of the case
" = 0 is not fortuitous; see [Ost-knit] for an explanation via an isomorphism
theorem. We trace the dependence on jjtjj in the following Proposition. We
refer to Gromov�s notion [Gr1], [Gr2] of quasi-isometry under �; in which �
is a mapping between spaces. In a �rst application we take � to be a self-
homeomorphism, in particular a left-translation; in the second �(x) = �x(t)
with t �xed is an evaluation map appropriate to a dual embedding. We begin
with a theorem promised in Section 2.

Uniformity Theorem for Conjugation. Let � : G2 ! G be the
conjugation �(g; x) := g�1xg:
Under a bi-invariant Klee metric, for all a; b; g; h ;

dG(a; b)� 2dG(g; h) � dG(gag
�1; hbh�1) � 2dG(g; h) + dG(a; b);

and hence conjugation is uniformly continuous.

Proof. Referring to the Klee property, via the cyclic property we have

dG(gag
�1; hbh�1) = jjgag�1hb�1h�1jj = jjh�1gag�1h�1b�1jj

� jjh�1gjj+ jjag�1h�1b�1jj
� jjh�1gjj+ jjab�1jj+ jjh�1gjj:

Then substitute g�1ag for a etc., g�1 for g etc., to obtain

dG(a; b) � 2d�G(g�1; h�1) + dG(gag
�1; hbh�1):

But dG is bi-invariant, so

dG(g
�1; h�1) = ~dG(g; h) = dG(g; h): �
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Proposition (Permutation metric). For � 2 H(X); let d�(x; y) :=
dX(�(x); �(y)): Then d� is a metric, and

dX(x; y)� 2jj�jj � d�(x; y) � dX(x; y) + 2jj�jj:

In particular, if dX is right-invariant and �(x) is the left-translation � z(x) =
zx; then

dX(x; y)� 2jjzjj � dz(x; y) = dX(zx; zy) � dX(x; y) + 2jjzjj:

Proof. By the triangle inequality,

dX(�(x); �(y)) � dX(�(x); x) + dX(x; y) + dX(y; �(y)) � 2jj�jj+ dX(x; y):

Likewise,

dX(x; y) � dX(x; �(x)) + dX(�(x); �(y)) + dX(�(y); y)

� 2jj�jj+ dX(�(x); �(y)):

If �(x) := zx; then jj�jj = sup d(zx; x) = jjzjj and the result follows. �

Recall from Proposition 2 that for d a metric on a group X; we write
~d(x; y) = d(x�1; y�1) for the conjugate metric. The conjugate metric ~d is
left-invariant i¤ the metric d is right-invariant. Under such circumstances
both metrics induce the same norm (since d(e; x) = d(x�1; e); as we have
seen above). In what follows note that ��1x = �x�1 :

Theorem 3 (Quasi-isometric duality). If the metric dX on X is right-
invariant and t 2 H(X); then

~dX(x; y)� 2jjtjjH(X) � dT (�x(t); �y(t)) � ~dX(x; y) + 2jjtjjH(X);

and hence, for each " � 0, the magni�cation metric (3) satis�es

~dX(x; y)� 2" � d"T (�x; �y) � ~dX(x; y) + 2":

Equivalently, in terms of conjugate metrics,

dX(x; y)� 2" � ~d"T (�x; �y) � dX(x; y) + 2":

Hence,
jjxjj � 2" � jj�xjj" � jjxjj+ 2";
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and so jjxnjj ! 1 i¤ dT (�x(n)(t); �e(t))!1:

Proof. We follow a similar argument to that for the permutation metric.
By right-invariance,

dX(t(x
�1z); t(y�1z)) � dX(t(x

�1z); x�1z) + dX(x
�1z; y�1z) + dX(y

�1z; t(y�1z))

� 2jjtjj+ dX(x
�1; y�1);

so
dT (�x(t); �y(t)) = sup

z
dX(t(x

�1z); t(y�1z)) � 2jjtjj+ dX(x; eX):

Now, again by right-invariance,

dX(x
�1; y�1) � d(x�1; t(x�1)) + d(t(x�1); t(y�1)) + d(t(y�1); y�1):

But
d(t(x�1); t(y�1)) � sup

z
dX(t(x

�1z); t(y�1z));

so

dX(x
�1; y�1) � 2jjtjj+ sup

z
dX(t(x

�1z); t(y�1z)) = 2jjtjj+ dT (�x(t); �y(t));

as required. �

We thus obtain the following result.

Topological Duality Theorem.
For X a normed group, the second dual � is a normed group isometric

to X which, for any " � 0; is "-quasi-isometric in relation to ~d"T (�x; �y) and
the jj � jj" norm.

Proof. We metrize � by setting d�(�x; �y) = dX(x; y): This makes � an
isometric copy of X and "-quasi-isometric copy in relation to the conjugate
metric ~d"T (�x; �y) given for any " � 0 by

~d"T (�x; �y) := sup
jjtjj�"

dT (�
�1
x (t); �

�1
y (t)):

In particular for " = 0 we have

dT (�
�1
x (e); �

�1
y (e)) = sup

z
dX(xz; yz) = d(x; y):
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Assuming dX is right-invariant, d� is right-invariant; since

d�(�x�z; �y�z) = d�(�xz; �yz) = dX(xz; yz) = dX(x; y): �

Remark. For S = TrL(X); in view of �x(� y)(z) = � y�
�1
x (z)) = � yx�1(z);

we observe that, for dX right-invariant,

sup
w
dH(�x(�w); �y(�w)) = sup

w
sup
z
dX(�x(�w)(z); �y(�w)(z))

= sup
w
sup
z
dX(wx

�1z; wy�1z) = sup
w
dX(vxx

�1; vxy�1)

= sup
v
dX(vy; vx);

possibly with in�nite value. (Here we have written w = vx:) Now �dX(y; x) =
supv dX(vy; vx) is also a metric, which is left-invariant on the bounded el-
ements under the related norm (cf. Proposition 4 of the previous section).
Of course, if dX were bi-invariant (both right- and left-invariant), we would
have supw dH(�x(�w); �y(�w)) = dX(x; y):

11 Divergence in the bounded subgroup

For S a space and A a subgroup of Auth(S); let ' : A � S ! S be a
continuous �ow. We will write �(s) := '�(s) = '(�; s): This is consistent
with A being a subgroup of Auth(S): As explained at the outset of Section
2, we have in mind two pairs (A; S); as follows.

Example 1 Take S = X to be a topological group and A = T � H(X)
to be a subgroup of automorphisms of X. Then T is a topological group with
supremum metric

dT (t1; t2) = sup
x
dX(t1(x); t2(x)):

Note that here eT = idX :
Example 2. (A; S) = (�; T ) = (X;T ): Here X is identi�ed with its

second dual � (of the preceding section).

Given a �ow '(t; x) on T �X; with T closed under translation, the action
de�ned by

'(�x; t) := �x�1(t)
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is continuous, hence a �ow on � � T; which is identi�ed with X � T . Note
that �x�1(t)(eX) = t(x); i.e. projection onto the eX coordinate retrieves the
T -�ow ': Here, for � = �x�1 ; writing x(t) for the translate of t, we have

�(t) := '�(t) = '(�; t) = x(t);

so that ' may be regarded as a X-�ow on T:

We now formalize the notion of a sequence converging to the identity and
divergent sequence. These are critical to the de�nition of regular variation
[BOst13].

De�nition. Let  n : X ! X be auto-homeomorphisms.
We say that a sequence  n in H(X) converges to the identity if

jj njj = d�( n; id) := sup
t2X

d( n(t); t)! 0:

Thus, for all t; we have zn(t) := d( n(t); t) � jj njj and zn(t)! 0: Thus the
sequence jj njj is bounded.

Illustrative examples. In R we may consider  n(t) = t + zn with
zn ! 0: In a more general context, we note that a natural example of a
convergent sequence of homeomorphisms is provided by a �ow parametrized
by discrete time (thus also termed a �chain�) towards a sink. If  : N�X ! X
is a �ow and  n(x) =  (n; x), then, for each t; the orbit f n(t) : n = 1; 2; :::g
is the image of the real null sequence fzn(t) : n = 1; 2; :::g:

Proposition. (i) For a sequence  n in H(X),  n converges to the iden-
tity i¤  �1n converges to the identity.
(ii) Suppose X has abelian norm. For h 2 H(X); if  n converges to the

identity then so does h�1 nh:

Proof. Only (ii) requires proof, and that follows from jjh�1 nhjj =
jjhh�1 njj = jj njj ; by the cyclic property, as in Proposition 7(c) of the
previous section. �

De�nitions.
1. Again let 'n : X ! X be auto-homeomorphisms. We say that the

sequence 'n in G diverges uniformly if for for any M > 0 we have, for
ultimately all n; that

d('n(t); t) �M; for all t:
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Equivalently, putting

d�(h; h
0) = inf

x2X
d(h(x); h0(x));

d�('n; id)!1:

2. More generally, let A � H(S) with A a metrizable topological group.
We say that �n is a pointwise divergent sequence in A if, for each s 2 S;

dS(�n(s); s)!1;

equivalently, �n(s) does not contain a bounded subsequence.
3. We say that �n is a uniformly divergent sequence in A if

jj�njjA := dA(eA; �n)!1;

equivalently, �n does not contain a bounded subsequence.
Examples. In R we may consider 'n(t) = t + xn where xn ! 1: In a

more general context, a natural example of a uniformly divergent sequence of
homeomorphisms is again provided by a �ow parametrized by discrete time
from a source to in�nity. If ' : N �X ! X is a �ow and 'n(x) = '(n; x),
then, for each x; the orbit f'n(x) : n = 1; 2; :::g is the image of the divergent
real sequence fyn(x) : n = 1; 2; :::g; where yn(x) := d('n(x); x) � d�('n; id):
Remark. Our aim is to o¤er analogues of the topological vector space

characterization of boundedness: for a bounded sequence of vectors fxng
and scalars �n ! 0 ([Ru-FA2] cf. Th. 1.30) �nxn ! 0: But here �nxn is
interpreted in the spirit of duality as �n(xn) with the homeomorphisms �n
converging to the identity.

Theoretical examples motivated by duality
1. Evidently, if S = X; the pointwise de�nition reduces to functional

divergence in H(X) de�ned pointwise:

dX(�n(x); x)!1:

The uniform version corresponds to divergence in the supremum metric
in H(X):
2. If S = T and A = X = �; we have, by the Quasi-isometric Duality

Theorem, that
dT (�x(n)(t); �e(t))!1
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i¤
dX(xn; eX)!1;

and the assertion is ordinary divergence in X: Since

d�(�x(n); �e) = dX(xn; eX);

the uniform version also asserts that

dX(xn; eX)!1:

Recall that �x(s)(z) = s(��1x (z)) = s(x�1z); so the interpretation of � as
having the action of X on T was determined by

'(�x; t) = �x�1(t)(e) = t(x):

One may write
�x(n)(t) = t(xn):

When interpreting �x(n) as xn in X acting on t; note that

dX(xn; eX) � dX(xn; t(xn)) + dX(t(xn); eX) � jjtjj+ dX(t(xn); eX);

so, as expected, the divergence of xn implies the divergence of t(xn):

We return to a study of H(X): We let Hu(X) denote the subgroup of
uniformly continuous homeomorphisms, that is homeomorphisms � satisfying
the condition that, for each " > 0; there is � > 0 such that

d(�(x); �(x0)) < "; for d(x; x0) < �: (4)

Lemma 1 (Compare [dGMc] Cor. 2.13).
(i) For �xed � 2 H(X), the mapping � ! �� is continuous.
(ii) For �xed � 2 Hu(X), the mapping � ! �� is uniformly continuous.
(iii) The mapping (�; �)! �� is continuous on Hu(X)�Hu(X).

Proof. (i) We have

d�(��; ��) = sup d(�(�(t)); �(�(t))) = sup d(�(s); �(s)) = d�(� ; �):
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(ii) For � 2 Hu(X) and given " > 0; choose � > 0; so that (4) holds. Then,
for �; 
 with d�(�; 
) < �; we have d(�(t); 
(t)) < � for each t; and hence

d�(��; �
) = sup d(�(�(t)); �(
(t))) � ":

(iii) Again, for � 2 Hu(X) and given " > 0; choose � > 0; so that (4) holds.
Thus, for �; � with d�(�; �) < �; we have d(�(t); �(t)) < � for each t: Hence
for � with d�(�; �) < " we obtain

d(�(�(t)); �(�(t))) � d(�(�(t)); �(�(t))) + d(�(�(t)); �(�(t)))

� "+ d�(�; �) � "+ ":

Consequently, we have

d�(��; ��) = sup d(�(�(t)); �(�(t))) � 2":

�
Comment. See also [AdC] for a discussion of the connection between

choice of metric and uniform continuity. The following result is of interest
and extends to a countable family of autohomeomorphisms.

Proposition (deGroot-McDowell Lemma, [dGMc], Lemma 2.2). Given
an autohomeomorphism � of X; the metric on X may be replaced by a topo-
logically equivalent one such that � is uniformly continuous.

The next de�nition extends our earlier one from sequential to continuous
limits.

De�nition. Let f u : u 2 Ig for I an open interval be a family of
homeomorphisms (cf. [Mon2]). Let u0 2 I: Say that  u converges to the
identity as u! u0 if

lim
u!u0

jj ujj = 0:

This property is preserved under topological conjugacy; more precisely
we have the following result, whose proof is routine and hence omitted.

Lemma 2. Let � be a homeomorphism which is uniformly continuous,
and write u0 = �z0:
If f z : z 2 B"(z0)g converges to the identity as z ! z0; then as u! u0

so does the conjugate f u = � z�
�1 : u 2 B"(u0); u = �zg:
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Lemma 3 Suppose that the homeomorphisms f'ng are uniformly di-
vergent, f ng are convergent and � is bounded, i.e. is in H(X). Then
f'n�g is uniformly divergent and likewise f�'ng: In particular f'n ng is
uniformly divergent, and likewise f'n� ng; for any bounded homeomorphism
� 2 H(X):

Proof. Consider s := jj�jj = sup d(�(x); x) > 0: For any M; from some
n onwards we have

d�('n; id) = inf
x2X

d('n(x); x) > M;

i.e.
d('n(x); x) > M;

for all x: For such n; we have d�('n�; id) > M � s; i.e. for all t we have

d('n(�(t)); t)) > M � s:

Indeed, otherwise at some t this last inequality is reversed, and then

d('n(�(t)); �(t)) � d('n(�(t)); t) + d(�(t); t)

� M � s+ s =M:

But this contradicts our assumption on n with x = �(t): Hence d�('n�; id) >
M � s for all large enough n:
The other cases follow by the same argument, with the interpretation that

now s > 0 is arbitrary; then we have for all large enough n that d( n(x); x) <
s; for all x: �

Remark. Lemma 3 says that the �lter of sets (countably) generated
from the sets

f'j' : X ! X is a homeomorphism and jj'jj � ng

is closed under composition with elements of H(X):

We now return to the notion of divergence.

De�nition. We say that pointwise (resp. uniform) divergence is uncon-
ditional in A if, for any (pointwise/uniform) divergent sequence �n,
(i) for any bounded �; the sequence ��n is (pointwise/uniform) divergent;
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and,
(ii) for any  n convergent to the identity,  n�n is (pointwise/uniform) diver-
gent.

Remarks. In clause (ii) each of the functions  n has a bound depending
on n: The two clauses could be combined into one by requiring that if the
bounded functions  n converge to  0 in the supremum norm, then  n�n is
(pointwise/uniform) divergent.
By Lemma 3 uniform divergence in H(X) is unconditional. We move to

other forms of this result.

Proposition. If the metric on A is left- or right-invariant, then uniform
divergence is unconditional in A.

Proof. If the metric d = dA is left-invariant, then observe that if �n is a
bounded sequence, then so is ��n; since

d(e; ��n) = d(��1; �n) � d(��1; e) + d(e; �n):

Since jj��1n jj = jj�njj; the same is true for right-invariance. Further, if  n is
convergent to the identity, then also  n�n is a bounded sequence, since

d(e;  n�n) = d( �1n ; �n) � d( �1n ; e) + d(e; �n):

Here we note that, if  n is convergent to the identity, then, so is  
�1
n by

continuity of inversion (or by metric invariance). The same is again true for
right-invariance. �

The case where the subgroup A of autohomeomorphisms is the transla-
tions �; though immediate, is worth noting.

Theorem 1 (The case A = �): If the metric on the group X is left- or
right-invariant, then uniform divergence is unconditional in A = �.
Proof. We have already noted that � is isometrically isomorphic to X:

�

Remarks.
1. If the metric is bounded, there may not be any divergent sequences.
2. We already know from Lemma 3 that uniform divergence inA = H(X)

is unconditional.
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3. The unconditionality condition (i) corresponds directly to the technical
condition placed in [BajKar] on their �lter F : In our metric setting, we thus
employ a stronger notion of limit to in�nity than they do. The �lter implied
by the pointwise setting is generated by sets of the form\

i2I
f� : dX(�n(xi); xi) > M ultimatelyg with I �nite.

However, whilst this is not a countably generated �lter, its projection on the
x-coordinate:

f� : dX(�n(x); x) > M ultimatelyg;
is.
4. When the group is locally compact, �bounded�may be de�ned as

�pre-compact�, and so �divergent�becomes �unbounded�. Here divergence is
unconditional (because continuity preserves compactness).
The supremum metric need not be left-invariant; nevertheless we still do

have unconditional divergence.

Theorem 2. For A � H(S); pointwise divergence in A is unconditional.
Proof. For �xed s 2 S; � 2 H(S) and dX(�n(s); s)) unbounded, suppose

that dX(��n(s); s)) is bounded by K: Then

dS(�n(s); s)) � dS(�n(s); �(�n(s))) + dS(�(�n(s)); s)

� jj�jjH(S) +K;

contradicting that dS(�n(s); s)) is unbounded. Similarly, for  n converging
to the identity, if dS( n(�n(x)); x) is bounded by L; then

dS(�n(s); s)) � dS(�n(s);  n(�n(s))) + dS( n(�n(s)); s)

� jj njjH(S) + L;

contradicting that dS(�n(s); s)) is unbounded. �

Corollary 1. Pointwise divergence in A � H(X) is unconditional.

Corollary 2. Pointwise divergence in A = � is unconditional.

Proof. In Theorem 2, take �n = �x(n): Then unboundedness of dT (�x(n)(t); t)
implies unboundedness of dT (��x(n)(t); t) and of dT ( n�x(n)(t)); t): �
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