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We study a model where two assets are paying dividends with rates changing from

one fixed value to another when any credit event occurs. The credit events are associated

with the first times when the asset values fall to some given constant levels. The behavior

of asset values is described by exponential diffusion processes with random drift rates

and independent driving Brownian motions. We obtain closed form expressions for the

ex-dividend prices of certain barrier-type contingent claims with structure similar to first-

and second-to-default options in credit risk theory.

1 Introduction

One of the known advantages of structural modeling is the explicit form of the credit events
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lower barriers. Initiated by Merton [10] and Black and Cox [2], the passage time approach for

credit risk theory was further developed and, as a result, a number of subsequent generalizations

was obtained (see, e.g., Bielecki and Rutkowski [1; Chapters II and III] or Schönbucher [14;

Chapter IX] for an extensive overview). In the present paper, we study a first passage time

model for two assets paying dividends, which rates are random and change in time from one

fixed value to another. The times of change of dividend rates are assumed to be the first times,

when the asset values reach some given lower constant barriers. Such a model corresponds to

the situation where the fall of one of the asset values impacts the change of dividend rates

not only of the same asset but of the other ones as well. This may happen, for example, with

one firm having several branches, where the change of the dividend rate of one of the branches

makes an influence on the dividend policy not of the same branch but of the other ones as

well. The obtained structure of dependent credit events can also be a contribution to the wide

range of first passage time models with dependent defaults (see, e.g., Zhou [17], Giesecke [5],

Overbeck and Schmidt [11], Valužis [16] and also [1; Chapter X] or [14; Chapter X] for further

references). Note that some other models with random dividends were earlier considered in the

literature (see, e.g., Geske [4]).

The purpose of the present paper is to derive the ex-dividend prices of certain barrier-type

contingent claims, which structure is similar to the so-called first- and second-to-default options,

in the models where the information is generated by both asset values and by the value of one of

the assets only. The risk-neutral dynamics of the asset values is modeled by geometric Brownian

motions with random drift rates changing their fixed values from one to another at the first

times when the value processes fall to some constant levels during the allowed infinite time

horizon. For simplicity of exposition, we restrict our consideration to a two-dimensional case

and assume that the driving Brownian motions are independent. The prices of the claims are

expressed through the transition density of the joint marginal distribution of linearly drifted

Brownian motion with its running minimum and the density of its first passage time on a

constant level. The consideration of dependent driving Brownian motions would lead to more

complicated and less explicit formulas (see, e.g., Iyengar [7], He et al. [6] or Patras [12]).

The results of the paper can be naturally extended to the case of several assets, which value

processes are driven by independent Brownian motions with random drift rates.
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The paper is organized as follows. In Section 2, we introduce the described above two-

dimensional structural model. We also recall expressions for the joint transition density of a

linearly drifted Brownian motion with its running minimum and for the density of the first

time when it hits a constant level. These explicit expressions are used for the derivation of

subsequent formulas. In Sections 3 and 4, we evaluate the ex-dividend prices of contingent

claims having the structure similar to first- and second-to-default options with respect to the

filtration generated by the both asset value processes (full information) and with respect to the

filtration generated by one of the processes only (partial information), respectively. The main

results of the paper are stated in Theorems 3.1, 3.2, 4.1 and 4.2.

2 The model

In this section we introduce a model with two asset processes paying random dividends and

solve the problem of pricing derivatives having a structure similar to first- and second-to-default

options under full and partial information.

2.1. For a precise formulation of the problem, let us consider a probability space (Ω,G, P )

with two independent standard Brownian motions W i = (W i
t )t≥0 , i = 1, 2. Suppose that there

exist two processes X i = (X i
t)t≥0 , i = 1, 2, given by:

X i
t = xi exp

((
r − σ2

i

2
− δi,0

)
t− (δi,1 − δi,0) (t− τ1)+ − (δi,2 − δi,0) (t− τ2)+ + σiW

i
t

)
(2.1)

where (t − τi)
+ = max{t − τi, 0} , r ≥ 0 and σi , δi,` , xi are some given strictly positive

constants for every i = 1, 2 and ` = 0, 1, 2. Assume that the processes X i , i = 1, 2, describe

the risk-neutral dynamics of the values of some assets paying dividends, and τi , i = 1, 2, are

random times to be specified below, at which some credit events occur resulting the changes of

dividend rates. In more details, for every i = 1, 2 fixed, the asset number i pays dividends at

the rate δi,0 until the time τ1 ∧ τ2 , at which the first credit event occurs and the dividend rate

is changed into δi,` , where ` = 1 if τ1 ∧ τ2 = τ1 and ` = 2 if τ1 ∧ τ2 = τ2 . Then, the asset i

pays dividends with the rate δi,` until the time τ1 ∨ τ2 , at which the second credit event occurs

and the dividend rate is changed into δi,3 = δi,1 + δi,2− δi,0 . After the both credit events occur,

the asset i pays dividends with the rate δi,3 . Here r is the interest rate of a riskless banking
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account and σi is the volatility coefficient.

Following the structural approach, let us define the random time τi by:

τi = inf{t ≥ 0 |X i
t ≤ bi} (2.2)

where bi > 0 is a given constant. By construction, τi is a stopping time with respect to the

natural filtration Gt = σ(X1
s , X

2
s | 0 ≤ s ≤ t) generated by X i , i = 1, 2. Then, the existence of

such a pair of processes (X1, X2) can be easily deduced from the classical diffusion model with

dividends by means of standard change-of-measure arguments.

2.2. The purpose of the present paper is to determine the rational (ex-dividend) prices

of contingent claims having the following payoff structure. In the first claim, the amount

C(X1
T , X

2
T ) is paid at the maturity T if and only if no credit event occurs before the maturity,

and the amount D1,i(τi, X
1
τi
, X2

τi
) is paid at the time τi if the time of first credit event is τi and

it occurs before the maturity, for every i = 1, 2. In the second claim, the amount Ci(X
1
T , X

2
T )

is paid at the maturity T if and only if the two credit events occur before the maturity and

the time of the second credit event is τi , and the amount D2,i(τi, X
1
τi
, X2

τi
) is paid at time τi if

the time of the second credit event is τi and it occurs before the maturity, for every i = 1, 2.

Without loss of generality, we further assume that the payoffs are already discounted by the

banking account, that is equivalent to put r equal to zero.

Note that the contingent claims described above have the structure similar to first- and

second-to-default options in the credit risk theory. The ex-dividend price processes V i
t , i = 1, 2,

of such claims are given by:

V 1
t = E

[
C(X1

T , X
2
T ) I(T < τ1 ∧ τ2) +

2∑
i=1

D1,i(τi, X
i
τi
, X3−i

τi
) I(τi ≤ T, τi < τ3−i)

∣∣∣Gt] (2.3)

and

V 2
t = E

[
2∑
i=1

(
D2,i(τi, X

i
τi
, X3−i

τi
) + Ci(X

i
T , X

3−i
T )

)
I(τ3−i < τi < T )

∣∣∣Gt] (2.4)

for any 0 ≤ t ≤ T , respectively (see, e.g., [1; Chapter X] or [14; Chapter X]). Here the

expectations are taken with respect to the martingale measure and I(·) denotes the indicator

function. We further assume that C(x1, x2), Ci(xi, x3−i) and Dk,i(t, xi, x3−i), k, i = 1, 2, are

nonnegative functions such that the integrals appearing below are well defined. For example,
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for the European basket call or put option with the strike price K > 0 we may set C(x1, x2) and

Ci(xi, x3−i) being equal to (α1x1+α2x2−K)+ or (K−α1x1−α2x2)
+ with some αi ≥ 0, i = 1, 2,

respectively. We may also assume linear recovery by setting Dk,i(t, xi, x3−i) = γ + β1x1 + β2x2

with some γ ≥ 0 and βi ≥ 0 for k, i = 1, 2.

Moreover, we shall also determine the prices of the claims under the assumption that the

information available on the market is generated by one of the assets only. In that case, the

rational prices V i,j
t , i = 1, 2, of the claims are given by:

V 1,j
t = E

[
C(X1

T , X
2
T ) I(T < τ1 ∧ τ2) +

2∑
i=1

D1,i(τi, X
i
τi
, X3−i

τi
) I(τi ≤ T, τi < τ3−i)

∣∣∣Gjt
]

(2.5)

and

V 2,j
t = E

[
2∑
i=1

(
D2,i(τi, X

i
τi
, X3−i

τi
) + Ci(X

i
T , X

3−i
T )

)
I(τ3−i < τi < T )

∣∣∣Gjt
]

(2.6)

for any 0 ≤ t ≤ T , respectively. Here Gjt = σ(Xj
s | 0 ≤ s ≤ t) is the natural filtration of the

process Xj for every j = 1, 2.

2.3. For the process X i let us introduce the corresponding running minimum process

M i = (M i
t )t≥0 given by:

M i
t = min

0≤s≤t
X i
s ∧mi (2.7)

for any xi ≥ mi > bi > 0 fixed. Then, from the structure of (2.2) it is seen that the default

time τi takes the form:

τi = inf{t ≥ 0 |M i
t ≤ bi} (2.8)

and in order to obtain the initial values of (2.3)-(2.4) and (2.5)-(2.6), we shall put xi = mi for

every i = 1, 2.

It thus follows from (2.8) that the event {τi > t} can be expressed as {M i
t > bi} for any

t ≥ 0, so that the process X i admits the representation:

dX i
t = −X i

t

(
δi,0 + (δi,1 − δi,0) I(M1

t ≤ b1) + (δi,2 − δi,0) I(M2
t ≤ b2)

)
dt+X i

t σi dW
i
t (2.9)

with X i
0 = xi . Therefore, we may conclude that (X1,M1, X2,M2) = (X1

t ,M
1
t , X

2
t ,M

2
t )t≥0 is a

(time-homogeneous) strong Markov process with respect to the filtration (Gt)t≥0 . In the sequel,

we also use the notation τi = τi(x1,m1, x2,m2) for xi ≥ mi > bi > 0 and every i = 1, 2.
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Note that, by means of standard arguments of filtering theory (see, e.g., [9; Chapter IX]),

it is shown that the process X i admits the following representation:

dX i
t = −X i

t

(
δi,0+(δi,i−δi,0) I(M i

t ≤ bi)+(δi,3−i−δi,0)P [M3−i
t ≤ b3−i | Git ]

)
dt+X i

t σi dW
i

t (2.10)

with X i
0 = xi , where the innovation process W

i
= (W

i

t)t≥0 defined by:

W
i

t = W i
t −

δi,3−i − δi,0
σi

∫ t

0

(
I(M3−i

s ≤ b3−i)− P [M3−i
s ≤ b3−i | Gis]

)
ds (2.11)

is a standard Brownian motion with respect to the filtration (Git)t≥0 according to P. Lévy’s

characterization theorem (see, e.g., [13; Chapter IV, Theorem 3.6]).

2.4. Let us introduce the process X i,j = (X i,j
t )t≥0 defined by:

X i,j
t = xi exp

(
−
(
δi,j +

σ2
i

2

)
t+ σiW

i
t

)
(2.12)

and its running minimum process M i,j = (M i,j
t )t≥0 given by:

M i,j
t = min

0≤s≤t
X i,j
s ∧mi (2.13)

for any xi ≥ mi > bi > 0 and every i = 1, 2 and j = 0, 1, 2, 3. Observe that from (2.1)

and (2.12) it is seen that X i
t = X i,0

t holds for all 0 ≤ t ≤ τ1 ∧ τ2 , since we have put r = 0.

It is known (see, e.g., [13], [8] or [3]) that the transition density gi,j of the Markov process

(X i,j,M i,j) defined by:

Pxi,mi
[X i,j

t ∈ dz,M
i,j
t ∈ dy] = gi,j(xi,mi; t, z, y) dz dy (2.14)

admits the representation:

gi,j(xi,mi; t, z, y) =
2

σ3
i

√
2πt3

ln(y2/(xiz))

zy
exp

(
− ln2(y2/(xiz))

2σ2
i t

+
ρi,j
σi

ln(z/xi)−
ρ2
i,jt

2

)
(2.15)

for all t > 0 and z ≥ y with mi ≥ y > 0, and equals zero otherwise. Here Pxi,mi
denotes

probability under the assumption that (X i,j,M i,j) starts at (xi,mi), and we set ρi,j = −δi,j/σi−

σi/2.

Let us also define the corresponding hitting time τi,j having the form:

τi,j = inf{t ≥ 0 |X i,j
t ≤ bi} (2.16)
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for every i = 1, 2 and j = 0, 1, 2. It is known that the density hi,j of τi,j defined by:

Pxi,mi
[τi,j ∈ dt] = hi,j(xi; t) dt (2.17)

admits the representation:

hi,j(xi; t) =
ln(xi/bi)

σi
√

2πt3
exp

(
−(ln(xi/bi) + ρi,jσit)

2

2σ2
i t

)
(2.18)

for all t > 0 and xi ≥ mi > bi > 0.

3 Case of full information

In this section we compute conditional expectations (2.3) and (2.4).

3.1. Let us begin by computing the terms for the first-to-default (2.3). For this, applying

the Markov property of the process (X1,M1, X2,M2), we get:

Ex1,m1,x2,m2 [C(X1
T , X

2
T ) I(T < τ1 ∧ τ2) | Gt] (3.1)

= I(t < τ1 ∧ τ2)Ex1,m1,x2,m2 [C(X1
T , X

2
T ) I(T < τ1 ∧ τ2) | Gt]

= I(t < τ1 ∧ τ2)EX1
t ,M

1
t ,X

2
t ,M

2
t
[C(X1

T ′ , X
2
T ′) I(T ′ < τ ′1 ∧ τ ′2)]

where we set T ′ = T − t for each 0 ≤ t ≤ T . Here Ex1,m1,x2,m2 denotes expectation under the

assumption that the process (X1,M1, X2,M2) starts at (x1,m1, x2,m2) with some xi ≥ mi >

bi > 0, i = 1, 2. In case τi > t , we put τ ′i = τi(X
1
t ,M

1
t , X

2
t ,M

2
t ). Then, using the fact that the

event {τi > t} can be represented in the form {M i
t > bi} for any t ≥ 0, we have:

Ex1,m1,x2,m2 [C(X1
T ′ , X

2
T ′) I(T ′ < τ ′1 ∧ τ ′2)] (3.2)

= Ex1,m1,x2,m2 [C(X1
T ′ , X

2
T ′) I(M1

T ′ > b1,M
2
T ′ > b2)]

= Ex1,m1,x2,m2 [C(X1,0
T ′ , X

2,0
T ′ ) I(M1,0

T ′ > b1,M
2,0
T ′ > b2)]

where τ ′i = τi(x1,m1, x2,m2) and the processes (X i,0,M i,0), i = 1, 2, are defined in (2.12)-

(2.13) above. Hence, from (3.1) and (3.2) we obtain:

Ex1,m1,x2,m2 [C(X1
T , X

2
T ) I(T < τ1 ∧ τ2) | Gt] (3.3)

= I(t < τ1 ∧ τ2)
∫ ∞
b1

∫ ∞
b1

∫ ∞
b2

∫ ∞
b2

C(x′1, x
′
2)

2∏
`=1

g`,0(X
`
t ,M

`
t ;T − t, x′`,m′`) dx′` dm′`
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where the functions gi,0 , i = 1, 2, are given in (2.15) above.

In a similar way, using the Markov property of the process (X1,M1, X2,M2), we get:

Ex1,m1,x2,m2 [D1,i(τi, X
i
τi
, X3−i

τi
) I(τi ≤ T, τi < τ3−i) | Gt] (3.4)

= D1,i(τi, bi, X
3−i
τi

) I(τi ≤ t, τi < τ3−i)

+ Ex1,m1,x2,m2 [D1,i(τi, bi, X
3−i
τi

) I(t < τi ≤ T, τi < τ3−i) | Gt]

= D1,i(τi, bi, X
3−i
τi

) I(τi ≤ t, τi < τ3−i)

+ I(t < τ1 ∧ τ2)EX1
t ,M

1
t ,X

2
t ,M

2
t
[D1,i(t+ τ ′i , bi, X

3−i
τ ′i

) I(τ ′i ≤ T, τ ′i < τ ′3−i)]

for 0 ≤ t ≤ T and

Ex1,m1,x2,m2 [D1,i(t+ τ ′i , bi, X
3−i
τ ′i

) I(τ ′i ≤ T ′, τ ′i < τ ′3−i)] (3.5)

= Ex1,m1,x2,m2 [D1,i(t+ τ ′i , bi, X
3−i
τ ′i

) I(M3−i
τ ′i

> b3−i) I(τ ′i ≤ T ′)]

= Ex1,m1,x2,m2 [D1,i(t+ τi,0, bi, X
3−i,0
τi,0

) I(M3−i,0
τi,0

> b3−i) I(τi,0 ≤ T ′)]

for xi ≥ mi > bi > 0, where τ ′i = τi(x1,m1, x2,m2) and the processes (X3−i,0,M3−i,0) as well as

the hitting times τi,0 , i = 1, 2, are defined in (2.12)-(2.13) and (2.16) above. Therefore, taking

into account the independence of τi,0 and (X3−i,0,M3−i,0), from (3.4) and (3.5) we conclude

that:

Ex1,m1,x2,m2 [D1,i(τi, X
i
τi
, X3−i

τi
) I(t < τi ≤ T, τi < τ3−i) | Gt] (3.6)

= I(t < τ1 ∧ τ2)
∫ T ′

0

∫ ∞
b3−i

∫ ∞
b3−i

D1,i(t+ u, bi, x
′
3−i)hi,0(X

i
t ;u)

× g3−i,0(X
3−i
t ,M3−i

t ;u, x′3−i,m
′
3−i) du dx

′
3−i dm

′
3−i

where the functions gi,0 and hi,0 , i = 1, 2, are given in (2.15) and (2.18) above.

Summarizing the facts proved above let us now formulate the following assertion.

Theorem 3.1. The ex-dividend price of the first-to-default option (2.3) in the model with

full information is given by the sum of the terms (3.3) and (3.6).

3.2. Let us continue by computing the terms for the second-to-default (2.4). For this,

8



applying the Markov property of the process (X1,M1, X2,M2), we get:

Ex1,m1,x2,m2 [(D2,i(τi, X
i
τi
, X3−i

τi
) + Ci(X

i
T , X

3−i
T )) I(τ3−i < τi ≤ T ) | Gt] (3.7)

= Ex1,m1,x2,m2 [(D2,i(τi, bi, X
3−i
τi

) + Ci(X
i
T , X

3−i
T )) I(τ3−i < τi ≤ t) | Gt]

+ Ex1,m1,x2,m2 [(D2,i(τi, bi, X
3−i
τi

) + Ci(X
i
T , X

3−i
T )) I(τ3−i ≤ t < τi ≤ T ) | Gt]

+ Ex1,m1,x2,m2 [(D2,i(τi, bi, X
3−i
τi

) + Ci(X
i
T , X

3−i
T )) I(t < τ3−i < τi ≤ T ) | Gt]

= I(τ3−i < τi ≤ t) (D2,i(τi, bi, X
3−i
τi

) + EX1
t ,M

1
t ,X

2
t ,M

2
t
[Ci(X

i
T ′ , X

3−i
T ′ )])

+ I(τ3−i ≤ t < τi)EX1
t ,M

1
t ,X

2
t ,M

2
t
[(D2,i(t+ τ ′i , bi, X

3−i
τ ′i

) + Ci(X
i
T ′ , X

3−i
T ′ )) I(τ ′i ≤ T ′)]

+ I(t < τ1 ∧ τ2)EX1
t ,M

1
t ,X

2
t ,M

2
t
[(D2,i(t+ τ ′i , bi, X

3−i
τi

) + Ci(X
i
T ′ , X

3−i
T ′ )) I(τ ′3−i < τ ′i ≤ T ′)]

for all 0 ≤ t ≤ T , and continue by computing each of the terms separately.

Firstly, we see that:

Ex1,m1,x2,m2 [Ci(X
i
T ′ , X

3−i
T ′ )] = Ex1,m1,x2,m2 [Ci(X

i,3
T ′ , X

3−i,3
T ′ )] (3.8)

for xi ≥ mi with bi ≥ mi > 0, where the processes (X i,3,M i,3), i = 1, 2, are defined in

(2.12)-(2.13) above. Then, using the independence of (X i,3,M i,3) and (X3−i,3,M3−i,3), we

have:

Ex1,m1,x2,m2 [Ci(X
i
T , X

3−i
T )I(τ3−i < τi ≤ t) | Gt] (3.9)

= I(τ3−i < τi ≤ t)

∫ ∞
0

∫ bi

0

∫ ∞
0

∫ b3−i

0

Ci(x
′
i, x
′
3−i)

3−i∏
`=i

g`,3(X
`
t ,M

`
t ;T − t, x′`,m′`) dx′` dm′`

where the functions gi,3 , i = 1, 2, are defined in (2.15) above.

Secondly, we observe that:

Ex1,m1,x2,m2 [D2,i(t+ τ ′i , bi, X
3−i
τ ′i

) I(τ ′i ≤ T ′)] (3.10)

= Ex1,m1,x2,m2 [D2,i(t+ τi,3−i, bi, X
3−i,3−i
τi,3−i

) I(τi,3−i ≤ T ′)]

for xi ≥ mi > bi > 0 and x3−i ≥ m3−i with b3−i ≥ m3−i > 0, where the processes

(X3−i,3−i,M3−i,3−i) as well as the hitting times τi,3−i , i = 1, 2, are defined in (2.12)-(2.13) and

(2.16) above. Then, taking into account the independence of τi,3−i and (X3−i,3−i,M3−i,3−i),
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we get:

Ex1,m1,x2,m2 [D2,i(t+ τi, bi, X
3−i
τi

) I(τ3−i ≤ t < τi ≤ T ) | Gt] (3.11)

= I(τ3−i ≤ t < τi)

∫ T−t

0

∫ ∞
0

∫ b3−i

0

D2,i(t+ u, bi, x
′
3−i)hi,3−i(X

i
t ;u)

× g3−i,3−i(X
3−i
t ,M3−i

t ;u, x′3−i,m
′
3−i) du dx

′
3−i dm

′
3−i

where the functions g3−i,3−i and hi,3−i , i = 1, 2, are defined in (2.15) and (2.18) above.

Thirdly, applying the strong Markov property of (X1,M1, X2,M2), we get:

Ex1,m1,x2,m2 [Ci(X
i
T ′ , X

3−i
T ′ ) I(τ ′i ≤ T ′)] (3.12)

= Ex1,m1,x2,m2 [Ĉi(X
i
τ ′i
,M i

τ ′i
, X3−i

τ ′i
,M3−i

τ ′i
;T ′ − τ ′i) I(τ ′i ≤ T ′)]

= Ex1,m1,x2,m2 [Ĉi(bi, bi, X
3−i,3−i
τi,3−i

,M3−i,3−i
τi,3−i

;T ′ − τi,3−i) I(τi,3−i ≤ T ′)]

for xi ≥ mi > bi > 0 and x3−i ≥ m3−i with b3−i ≥ m3−i > 0, where the functions Ĉi , i = 1, 2,

are defined by:

Ĉi(xi,mi, x3−i,m3−i;T
′ − u) = Ex1,m1,x2,m2 [Ci(X

i
T ′−u, X

3−i
T ′−u)] (3.13)

= Ex1,m1,x2,m2 [Ci(X
i,3
T ′−u, X

3−i,3
T ′−u )]

for x` ≥ m` with b` ≥ m` > 0, ` = 1, 2, and any 0 ≤ u ≤ T ′ fixed. Thus, using the

independence of τi,3−i and (X3−i,3−i,M3−i,3−i), from (3.12) we obtain:

Ex1,m1,x2,m2 [Ci(X
i
T , X

3−i
T ) I(τ3−i ≤ t < τi ≤ T )] (3.14)

= I(τ3−i ≤ t < τi)

∫ T−t

0

∫ ∞
0

∫ b3−i

0

Ĉi(bi, bi, x
′
3−i,m

′
3−i;T − t− u)hi,3−i(X

i
t ;u)

× g3−i,3−i(X
3−i
t ,M3−i

t ;u, x′3−i,m
′
3−i) du dx

′
3−i dm

′
3−i

where, by virtue of independence of (X i,3,M i,3) and (X3−i,3,M3−i,3), from (3.13) it follows

that:

Ĉi(x
′
i,m

′
i, x
′
3−i,m

′
3−i;T − t− u) (3.15)

=

∫ ∞
0

∫ bi

0

∫ ∞
0

∫ b3−i

0

Ci(x
′′
i , x

′′
3−i)

3−i∏
`=i

g`,3(x
′
`,m

′
`;T − t− u, x′′` ,m′′` ) dx′′` dm′′`
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and the functions gi,` and hi,` , i = 1, 2, ` = 1, 2, 3, are defined in (2.15) and (2.18) above.

Now, applying the strong Markov property of (X1,M1, X2,M2), we get:

Ex1,m1,x2,m2 [D2,i(t+ τ ′i , bi, X
3−i
τ ′i

) I(τ ′3−i < τ ′i ≤ T ′)] (3.16)

= Ex1,m1,x2,m2 [D2,i(t+ τ ′i , bi, X
3−i
τ ′i

) I(M i
τ ′3−i

> bi) I(τ ′i ≤ T ′)]

= Ex1,m1,x2,m2 [D̂2,i(t+ τ ′3−i, X
i
τ ′3−i

,M i
τ ′3−i

, X3−i
τ ′3−i

,M3−i
τ ′3−i

;T ′ − τ ′3−i) I(M i
τ ′3−i

> bi) I(τ ′3−i ≤ T ′)]

= Ex1,m1,x2,m2 [D̂2,i(t+ τ3−i,0, X
i,0
τ3−i,0

,M i,0
τ3−i,0

, b3−i, b3−i;T
′ − τ3−i,0) I(M i,0

τ3−i,0
> bi) I(τ3−i,0 ≤ T ′)]

for xi ≥ mi > bi > 0, where the functions D̂2,i , i = 1, 2, are defined by:

D̂2,i(t+ v, xi,mi, x3−i,m3−i;T
′ − v) (3.17)

= Ex1,m1,x2,m2 [D2,i(t+ v + τ ′i , bi, X
3−i
τ ′i

)I(τ ′i ≤ T ′ − v)]

= Ex1,m1,x2,m2 [D2,i(t+ v + τi,3−i, bi, X
3−i,3−i
τi,3−i

)I(τi,3−i ≤ T ′ − v)]

for xi ≥ mi > bi > 0 and x3−i ≥ m3−i with b3−i ≥ m3−i > 0, and any 0 ≤ v ≤ T ′ fixed.

Hence, using the independence of τ3−i,0 and (X i,0,M i,0), from (3.16) we obtain:

Ex1,m1,x2,m2 [D2,i(τi, bi, X
3−i
τi

)I(t < τ3−i < τi ≤ T ) | Gt] (3.18)

= I(t < τ1 ∧ τ2)
∫ T−t

0

∫ ∞
0

∫ ∞
bi

D̂2,i(t+ v, x′i,m
′
i, b3−i, b3−i;T − t− v)h3−i,0(X

3−i
t ; v)

× gi,0(X i
t ,M

i
t ; v, x

′
i,m

′
i) dv dx

′
i dm

′
i

where, by virtue of the independence of τi,3−i and (X3−i,3−i,M3−i,3−i), from (3.17) it follows

that:

D̂2,i(t+ v, x′i,m
′
i, x
′
3−i,m

′
3−i;T − t− v) (3.19)

=

∫ T−t−v

0

∫ ∞
0

∫ b3−i

0

D2,i(t+ v + u, bi, x
′′
3−i)hi,3−i(x

′
i;u)

× g3−i,3−i(x
′
3−i,m

′
3−i;u, x

′′
3−i,m

′′
3−i) du dx

′′
3−i dm

′′
3−i

and the functions gi,` and hi,` , i = 1, 2, ` = 0, 1, 2, are defined in (2.15) and (2.18) above.
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Finally, we see that:

Ex1,m1,x2,m2 [Ci(X
i
T ′ , X

3−i
T ′ ) I(τ ′3−i < τ ′i ≤ T ′)] (3.20)

= Ex1,m1,x2,m2 [Ci(X
i
T ′ , X

3−i
T ′ ) I(M i

τ ′3−i
> bi) I(τ ′i ≤ T ′)]

= Ex1,m1,x2,m2 [C̃i(X
i
τ ′3−i

,M i
τ ′3−i

, X3−i
τ ′3−i

,M3−i
τ ′3−i

;T ′ − τ ′3−i) I(M i
τ ′3−i

> bi) I(τ ′3−i ≤ T ′)]

= Ex1,m1,x2,m2 [C̃i(X
i
τ3−i,0

,M i
τ3−i,0

, b3−i, b3−i;T
′ − τ3−i,0) I(M i

τ3−i,0
> bi) I(τ3−i,0 ≤ T ′)]

for xi ≥ mi > bi > 0, where the functions C̃i , i = 1, 2, are defined by:

C̃i(xi,mi, x3−i,m3−i;T
′ − v) (3.21)

= Ex1,m1,x2,m2 [Ĉi(X
i
τ ′i
,M i

τ ′i
, X3−i

τ ′i
,M3−i

τ ′i
;T ′ − v − τ ′i) I(τ ′i ≤ T ′ − v)]

= Ex1,m1,x2,m2 [Ĉi(bi, bi, X
3−i,3−i
τi,3−i

,M3−i,3−i
τi,3−i

;T ′ − v − τi,3−i) I(τi,3−i ≤ T ′ − v)]

for xi ≥ mi > bi > 0 and x3−i ≥ m3−i with b3−i ≥ m3−i > 0, and any 0 ≤ v ≤ T ′ fixed, where

the functions Ĉi , i = 1, 2, are defined in (3.13) above. Hence, using the independence of τ3−i,0

and (X i,0,M i,0), from (3.20) we obtain:

Ex1,m1,x2,m2 [Ci(X
i
T , X

3−i
T ) I(t < τ3−i < τi ≤ T ) | Gt] (3.22)

= I(t < τ1 ∧ τ2)
∫ T−t

0

∫ ∞
bi

∫ ∞
bi

C̃i(x
′
i,m

′
i, b3−i, b3−i;T − t− v)h3−i,0(X

3−i
t ; v)

× gi,0(X i
t ,M

i
t ; v, x

′
i,m

′
i) dv dx

′
i dm

′
i

where, by virtue of the independence of τi,3−i and (X3−i,3−i,M3−i,3−i), from (3.21) it follows

that:

C̃i(x
′
i,m

′
i, x
′
3−i,m

′
3−i;T − t− v) (3.23)

=

∫ T−t−v

0

∫ ∞
0

∫ b3−i

0

Ĉi(bi, bi, x
′′
3−i,m

′′
3−i;T − t− v − u)hi,3−i(x

′
i;u)

× g3−i,3−i(x
′
3−i,m

′
3−i;u, x

′′
3−i,m

′′
3−i) du dx

′′
3−i dm

′′
3−i

the functions Ĉi admit the representation (3.15) and the functions gi,` and hi,` , i = 1, 2,

` = 0, 1, 2, are defined in (2.15) and (2.18) above.

Therefore, summarizing the facts proved above we are now ready to formulate the following

assertion.
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Theorem 3.2. The ex-dividend price of the second-to-default option (2.4) in the model

with full information is given by the sum of (3.9), (3.11), (3.14), (3.18) and (3.22).

4 Case of partial information

In this section we compute the conditional expectations (2.5) and (2.6).

4.1. Let us proceed by computing the terms for the first-to-default (2.5). For this, let

H(xj,mj, x3−j,m3−j) be a nonnegative continuous function for any j = 1, 2 fixed. By virtue

of independence of the processes (Xj,0,M j,0) and (X3−j,0,M3−j,0) defined in (2.12)-(2.13), we

get:

Ex1,m1,x2,m2 [H(Xj
t ,M

j
t , X

3−j
t ,M3−j

t ) I(t < τj ∧ τ3−j) | Gjt ] (4.1)

= I(t < τj)Ex1,m1,x2,m2 [H(Xj,0
t ,M j,0

t , X3−j,0
t ,M3−j,0

t ) I(M3−j,0
t > b3−j) | Gjt ]

= I(t < τj)

∫ ∞
b3−j

∫ ∞
b3−j

H(Xj,0
t ,M j,0

t , x′3−j,m
′
3−j) g3−j,0(x3−j,m3−j; t, x

′
3−j,m

′
3−j) dx

′
3−j dm

′
3−j

for all 0 ≤ t ≤ T , where the functions g3−j,0 , j = 1, 2, are defined in (2.15) above.

Now, we see that:

Ex1,m1,x2,m2 [D1,j(τj, X
j
τj
, X3−j

τj
) I(τj ≤ t, τj < τ3−j) | Gjt ] (4.2)

= I(τj ≤ t)Ex1,m1,x2,m2 [D1,j(τj, bj, X
3−j
τj

) I(M3−j
τj

> b3−j) | Gjt ]

= I(τj ≤ t)Ex1,m1,x2,m2 [D1,j(τj,0, bj, X
3−j,0
τj,0

) I(M3−j,0
τj,0

> b3−j) | Gjt ]

for 0 ≤ t ≤ T , where the hitting times τj,0 , j = 1, 2, are defined in (2.16). Thus, using the

independence of τj,0 and (X3−j,0,M3−j,0), we have:

Ex1,m1,x2,m2 [D1,j(τj, X
j
τj
, X3−j

τj
) I(τj ≤ t, τj < τ3−j) | Gjt ] (4.3)

= I(τj ≤ t)

∫ ∞
b3−j

∫ ∞
b3−j

D1,j(τj, bj, x
′
3−j) g3−j,0(x3−j,m3−j; τj, x

′
3−j,m

′
3−j) dx

′
3−j dm

′
3−j

where the functions g3−j,0 , j = 1, 2, are defined in (2.15) above.

Then, we observe that:

Ex1,m1,x2,m2 [D1,j(τj, X
j
τj
, X3−j

τj
) I(τj ≤ t, τj < τ3−j) | G3−j

t ] (4.4)

= Ex1,m1,x2,m2 [D1,j(τj, bj, X
3−j
τj

) I(τj < τ3−j ≤ t) | G3−j
t ]

+ Ex1,m1,x2,m2 [D1,j(τj, bj, X
3−j
τj

) I(τj ≤ t < τ3−j) | G3−j
t ]
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for 0 ≤ t ≤ T and j = 1, 2. Hence, by virtue of the independence of τj,0 and (X3−j,0,M3−j,0)

we obtain:

Ex1,m1,x2,m2 [D1,j(τj, bj, X
3−j
τj

) I(τj < τ3−j ≤ t) | G3−j
t ] (4.5)

= I(τ3−j ≤ t)Ex1,m1,x2,m2 [D1,j(τj, bj, X
3−j
τj

) I(M3−j
τj

> b3−j) I(τj < τ3−j) | G3−j
t ]

= I(τ3−j ≤ t)Ex1,m1,x2,m2 [D1,j(τj,0, bj, X
3−j,0
τj,0

) I(M3−j,0
τj,0

> b3−j) I(τj,0 < τ3−j) | G3−j
t ]

and

Ex1,m1,x2,m2 [D1,j(τj, bj, X
3−j
τj

) I(τj ≤ t < τ3−j) | G3−j
t ] (4.6)

= I(t < τ3−j)Ex1,m1,x2,m2 [D1,j(τj, bj, X
3−j
τj

) I(M3−j
τj

> b3−j) I(τj ≤ t) | G3−j
t ]

= I(t < τ3−j)Ex1,m1,x2,m2 [Dj,1(τj,0, bj, X
3−j,0
τj,0

) I(M3−j,0
τj,0

> b3−j) I(τj,0 ≤ t) | G3−j
t ]

and thus, from (4.4) we conclude that:

Ex1,m1,x2,m2 [D1,j(τj, bj, X
3−j
τj

) I(τj ≤ t, τj < τ3−j) | G3−j
t ] (4.7)

=

∫ τ3−j∧t

0

D1,j(u, bj, X
3−j
u ) I(M3−j

u > b3−j)hj,0(xj;u) du

where the functions hj,0 , j = 1, 2, are defined in (2.18) above.

Summarizing the facts proved above let us formulate the following assertion.

Theorem 4.1. The ex-dividend price of first-to-default option (2.5) in the model with

partial information is given by the sum of (4.1) and (4.3) or (4.7), where the function H is

given appropriately by the corresponding value in (3.3) or (3.6), respectively.

4.2. Let us conclude by computing the terms for the second-to-default (2.6). Firstly, taking

into account the Markovian structure of the process (X1,M1, X2,M2), we get:

Ex1,m1,x2,m2 [H(Xj
t ,M

j
t , X

3−j
t ,M3−j

t ) I(τ3−j ≤ t < τj) | Gjt ] (4.8)

= I(t < τj)

∫ t

0

∫ ∞
0

∫ b3−j

0

H(Xj
t ,M

j
t , x

′
3−j,m

′
3−j)h3−j,0(x3−j;u)

× g3−j,3−j(b3−j, b3−j; t− u, x′3−j,m′3−j) du dx′3−j dm′3−j

and

Ex1,m1,x2,m2 [H(Xj
t ,M

j
t , X

3−j
t ,M3−j

t ) I(τ3−j ≤ t < τj) | G3−j
t ] (4.9)

= I(τ3−j ≤ t)

∫ ∞
bj

∫ ∞
bj

Ĥ(x′j,m
′
j, X

3−j
t ,M3−j

t ; t− τ3−j) gj,0(xj,mj; τ3−j, x
′
j,m

′
j) dx

′
j dm

′
j
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where the function Ĥ is defined by:

Ĥ(x′j,m
′
j, x
′
3−j,m

′
3−j; t− v) (4.10)

=

∫ ∞
bj

∫ ∞
bj

H(x′′j ,m
′′
j , x

′
3−j,m

′
3−j) gj,3−j(x

′
j,m

′
j; t− v, x′′j ,m′′j ) dx′′j dm′′j

for 0 ≤ t ≤ T and the functions gj,` , j = 1, 2, ` = 0, 1, 2, are defined in (2.15) above.

Now, by virtue of Markovian structure of the process (X1,M1, X2,M2), we see that:

Ex1,m1,x2,m2 [D2,j(τj, bj, X
3−j
τj

) I(τ3−j < τj ≤ t) | Gjt ] (4.11)

= I(τj ≤ t)

∫ τj

0

∫ ∞
0

∫ b3−j

0

D2,j(τj, bj, x
′
3−j)h3−j,0(x3−j;u)

× g3−j,3−j(b3−j, b3−j; τj − u, x′3−j,m′3−j) du dx′3−j dm′3−j

and

Ex1,m1,x2,m2 [D2,j(τj, bj, X
3−j
τj

) I(τ3−j < τj ≤ t) | G3−j
t ] (4.12)

= I(τ3−j ≤ t)

∫ t

τ3−j

∫ ∞
bj

∫ ∞
bj

D2,j(u, bj, X
3−j
u )hj,3−j(x

′
j;u− τ3−j)

× gj,0(xj,mj; τ3−j, x
′
j,m

′
j) du dx

′
j dm

′
j

for 0 ≤ t ≤ T , where the functions gj,` and hj,` , j = 1, 2, ` = 0, 1, 2, are defined in (2.15) and

(2.18) above.

Finally, using again the Markovian structure of the process (X1,M1, X2,M2), we obtain:

Ex1,m1,x2,m2 [H(Xj
t ,M

j
t , X

3−j
t ,M3−j

t ) I(τ3−j < τj ≤ t) | Gjt ] (4.13)

= I(τj ≤ t)

∫ τj

0

∫ ∞
0

∫ b3−j

0

H̃(Xj
t ,M

j
t , x

′
3−j,m

′
3−j; t− τj)h3−j,0(x3−j; v)

× g3−j,3−j(b3−j, b3−j; τj − v, x′3−j,m′3−j) dv dx′3−j dm′3−j

where the function H̃ is defined by:

H̃(x′j,m
′
j, x
′
3−j,m

′
3−j; t− v) (4.14)

=

∫ ∞
0

∫ b3−j

0

H(x′j,m
′
j, x
′′
3−j,m

′′
3−j) g3−j,3(x

′
j,m

′
j; t− v, x′′3−j,m′′3−j) dx′′3−j dm′′3−j
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and

Ex1,m1,x2,m2 [H(Xj
t ,M

j
t , X

3−j
t ,M3−j

t ) I(τ3−j < τj ≤ t) | G3−j
t ] (4.15)

= I(τ3−j ≤ t)

∫ t

τ3−j

∫ ∞
bj

∫ ∞
bj

H(bj, bj, X
3−j
t ,M3−j

t ; t− u)hj,3−j(x
′
j;u− τ3−j)

× gj,0(xj,mj; τ3−j, x
′
j,m

′
j) du dx

′
j dm

′
j

where the function H is defined by:

H(x′j,m
′
j, x
′
3−j,m

′
3−j; t− u) (4.16)

=

∫ ∞
0

∫ bj

0

H(x′′j ,m
′′
j , x

′
3−j,m

′
3−j) gj,3(x

′
j,m

′
j; t− u, x′′j ,m′′j ) dx′′j dm′′j

for 0 ≤ t ≤ T and the functions gj,` and hj,` , j = 1, 2, ` = 0, 1, 2, 3, are defined in (2.15) and

(2.18) above.

Therefore, summarizing the facts proved above we are now ready to formulate the following

assertion.

Theorem 4.2. The ex-dividend price of first-to-default option (2.6) in the model with

partial information is given by the sum of (4.1), (4.8), (4.9), (4.11), (4.12), (4.13) and (4.15),

where the function H is given appropriately by the corresponding value in (3.9), (3.14) or

(3.22), respectively.
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