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Abstract

Bracelet theory allows the chromatic polynomials of certain families of graphs
to be written in a standard form. This form is particularly appropriate for
studying the limit curves of the chromatic roots of these families. In this
paper these techniques are applied to the quartic Möbius ladders. A simple
explicit formula for the chromatic polynomials is obtained, and the limit
curves are determined. There is remarkable agreement with the experimental
evidence.
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Chromatic Roots of the Quartic Möbius Ladders

1. Introduction

In April 2008 Gordon Royle asked me about a family of graphs, known as
quartic Möbius ladders, that had turned up in his work with Mayhew and
Whittle on matroids [5]. These are the graphs R(2k + 1) constructed by
taking an odd cycle C2k+1 and adding diagonals joining each vertex to the
two opposite vertices. Explicitly, if the vertices are the integers mod 2k + 1,
each vertex x is joined to x ± 1 and x ± k. Royle was interested in the
Tutte polynomial of R(2k + 1), and its specialisations, the chromatic and
flow polynomials.

It occurred to me that it might be possible to represent R(2k + 1) as a
bracelet; specifically, as n copies of K3 with constant links between the copies.
Clearly this could be done only when n is an odd number 2r + 1, so that
2k + 1 = 3n = 6r + 3, and k = 3r + 1. In fact, it works when n = 5: R(15)
contains five disjoint K3’s

{0, 7, 8} {9, 1, 2} {3, 10, 11} {12, 4, 5} {6, 13, 14},

and, if we denote these K3’s by {i1, i2, i3} (i = 0, 1, 2, 3, 4), the additional
edges are i1− (i+1)2, i3− (i+1)1, i3− (i+1)2. In bracelet terms, this means
that there is a constant linking set L = {12, 31, 32}.

Theorem 1 Let B(n) be the bracelet formed by n copies of K3 with linking
set L = {12, 31, 32}. Then B(2r + 1) is isomorphic to R(6r + 3).

Proof As defined above, R(6r + 3) is the graph with vertices the integers
mod 6r + 3 (denoted by 0, 1, . . . , 6r + 2), and edges joining each vertex x to
x± 1 and x± (3r + 1). Denote the vertices of B(2r + 1) by the 2r + 1 triples
i1, i2, i3, (0 ≤ i ≤ 2r), each such triple forming a copy of K3. Then it is easy
to check that the following is a graph isomorphism.

i1 7→ 3i(r+1), i2 7→ 3(ir+i+r)+1, i3 7→ 3(ir+i+r)+2, (i = 0, 1, . . . , 2r).

ut
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2. The chromatic polynomials of the Royle family

It would be possible to study the chromatic polynomials of the quartic Möbius
ladders by elementary recursive techniques, such as those that were used
back in 1972. On the other hand, a more theoretical framework for studying
bracelets in general is now available, and it is particularly useful for explaining
the limiting behaviour of the chromatic roots. Since it turns out that the
graphs R(6r + 3) provide a very good example of this theory, that approach
will be followed in the present paper.

The theory of bracelets [3, 4] was developed in order to study the limit
curves formed by the chromatic roots of certain infinite families of graphs,
say {Gn}. There are two stages: first, a standard formula for the chromatic
polynomial of Gn is obtained, and second, the Beraha-Kahane-Weiss theorem
[1] is applied to this formula to derive algebraic equations for the limit curves.

For bracelets based on complete graphs Kb and a constant linking set L, the
standard formula can be be written in a very simple form. It is a sum of
terms, one for each partition π of a non-negative integer ` = |π| with ` ≤ b:

P (Gn; z) =
∑
π

mπ(z)tr(TL,π(z)n).

Here mπ(z) is a polynomial in z with rational coefficients (independent of
L), and TL,π(z) is a matrix whose entries are polynomials in z with integer
coefficients.

Fortunately, when b = 3 there is a simple recipe for calculating the relevant
matrices TL,π(z) for any linking set L [4, section 6]. We briefly review this
calculation for the case L = {12, 31, 32} that produces the Royle family.

The first step is to list the set M(L) of ‘matchings’ that form a subset of L:
M(L) = {∅, {12}, {31}, {32}, {12, 31}}. Each TL,π matrix can be expressed
in terms of UM matrices, where M ∈M(L),

TL,π = U∅ − (U12 + U31 + U32) + U12,31.

Matchings with |M | ≤ |π| make zero contribution and, since M(L) contains
no matchings of size three, we need only consider the partitions π of 0, 1, and
2. According to the general theory we have m[0](z) = 1, and

m[1](z) = z − 1, m[20](z) =
1

2
z(z − 3), m[11](z) =

1

2
(z − 1)(z − 2),

and it remains only to use the recipe given in [4] to calculate the correspond-
ing matrices TL,[0], TL,[1], TL,[20], TL,[11].
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For π = [0] the UM matrices are 1× 1 matrices:

U∅ = [z(z−1)(z−2)], U12 = U31 = U32 = [(z−1)(z−2)], U12,31 = [z−2].

Hence TL,[0] = [z3 − 6z2 + 12z − 8] = [(z − 2)3].

For π = [1] the UM matrices are 3× 3 matrices: U∅ is the zero matrix and

U12 =

 0 (z − 1)(z − 2) 0
0 −(z − 2) 0
0 −(z − 2) 0

 , U31 =

 −(z − 2) 0 0
−(z − 2) 0 0

(z − 1)(z − 2) 0 0

 ,

U32 =

 0 −(z − 2) 0
0 −(z − 2) 0
0 (z − 1)(z − 2) 0

 , U12,31 =

 0 z − 2 0
−1 −1 0

z − 2 0 0

 .

Hence

TL,[1] = −(U12 + U31 + U32) + U12,31 =

 z − 2 −(z − 1)(z − 2) 0
z − 3 2z − 5 0

−(z − 2)2 z(z − 2) 0

 .

Note that the trace of T n
L,[1] is the same as the trace of the nth power of the

2× 2 submatrix formed by the first two rows and columns.

Finally, for π = [20] and π = [11] there is only one non-zero matrix, U12,31.
In both cases it takes the form

U12,31 =

 α 0 0
β 0 0
γ 0 0

 ,

where α = −1 when π = [20] and α = 1 when π = [11]. It follows that the
trace of T n

L,[20] is (−1)n and the trace of T n
L,[11] is 1n, so the corresponding

terms in the standard formula are

1

2
z(z − 3)(−1)n +

1

2
(z − 1)(z − 2)1n =

{
z2 − 3z + 1 if n is even;
1 if n is odd.

In the light of the isomorphism given in Theorem 1, we have the following
result.

Theorem 2 Let A(z) be the matrix(
z − 2 −(z − 2)(z − 3)
z − 3 2z − 5

)
.

The chromatic polynomial of the quartic mobius ladder R(6r + 3) is
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P (R(6r + 3); z) = (z − 2)6r+3 + (z − 1)tr(A(z)2r+1) + 1.

ut

3. Equimodular curves and limit curves

For convenience, let w = z− 2. Then the chromatic polynomial of R(6r + 3)
can be written as

(w3)2r+1 + (w + 1)(λ1(w)2r+1 + λ2(w)2r+1) + 1,

where λ1(w) and λ2(w) are the eigenvalues of(
w −w(w − 1)

w − 1 2w − 1

)
.

The theorem of Beraha, Kahane and Weiss [1] tells us that as r → ∞ the
roots of the chromatic polynomial cluster around parts of the equimodular
curves, comprising the points w such that any two of the values w3, λ1(w),
λ2(w), 1 are equal in modulus.

The three values w3, λ1(w), λ2(w) are the eigenvalues of the 3× 3 matrix

C =

 w3 0 0
0 w −w(w − 1)
0 w − 1 2w − 1

 .

The theory developed in [2] provides implicit equations for the equimodular
curves associated with C.

Theorem 3 Two of the values w3, λ1(w), λ2(w) are equal in modulus if
and only if there is a real number t ∈ [0, 4] such that

tw3−9w2+6w−1 = 0 or w6−(3t−6)w4+(t2−3t)w3+9w2−3tw+t = 0.

Proof The characteristic equation of C is

λ3 − (w3 + 3w − 1)λ2 + 3w4λ− w6.

According to [2], substituting the coefficients

a1(w) = −(w3 + 3w − 1), a2(w) = 3w4, a3(w) = −w6

in the ‘generic’ expression

r3(t, a1, a2, a3) = (t− 1)a2
3 − (t− 1)(t + 2)a1a2a3 + ta2

2 + ta3
1a3 − a2

1a
2
2,
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produces an expression

v(t, w) = w6(tw3−9w2+6w−1)(w6−(3t−6)w4+(t2−3t)w3+9w2−3tw+t)

which has the required property. ut
The expression v(t, w) factorises because C is reducible [2, section 6]. The
factor

f(t, w) = w6 − (3t− 6)w4 + (t2 − 3t)w3 + 9w2 − 3tw + t

defines the curve Cf where |w3| is equal to one of |λ1(w)|, |λ2(w)|. The factor

g(t, w) = tw3 − 9w2 + 6w − 1

defines the curve Cg where |λ1(w)| = |λ2(w)|.
The curves can be plotted directly from the information given above, but it
is instructive to pursue the theoretical analysis a bit further. Since f is a
polynomial of degree 6 in w, the curve Cf can be thought of as six images of
the interval [0, 4]. These arcs will be smooth unless the Jacobian Jf of the
transformation w 7→ f(t, w) vanishes. In fact, Jf is also the discriminant of
f as a polynomial in w, which turns out to be

Jf = 729t3(t− 4)7(t2 + t + 7)2.

This shows that there are no non-smooth points corresponding to values of
t strictly between 0 and 4. It also tells us that there will be coincidences of
the arcs at the points corresponding to t = 0 and t = 4. In fact,

f(0, w) = w2(w2 + 3)2, f(4, w) = (w − 1)4(w + 2)2.

The first formula shows that two arcs join up at each of the t = 0 points
0, i
√

3,−i
√

3. The second formula shows that four arcs join up at 1, and two
arcs at −2. These facts are evident from a plot of the curve (Figure 1). If
we choose the notation for the ‘quadratic’ roots so that, at each point w,
|λ1(w)| ≥ |λ2(w)|, then the outer loop of the curve corresponds to |w3| =
|λ1(w)|, and the inner loop corresponds to |w3| = |λ2(w)|.
The Cartesian equation of Cf can be obtained by substituting w = x + iy
in f(t, w), equating the real and imaginary parts to zero (remembering that
t must be real), and eliminating t from these two equations. The eliminant
has three factors, the one which defines Cf being

x4 − 3x2 + 2x + 2x2y2 − 3y2 + y4 = 0.

A curve of this type is known as a limaçon.
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Fig.1: the curve Cf , showing the six arcs

A similar analysis can be applied to Cg. Here there are three arcs and

Jg = −27t(t− 4), g(0, w) = −(3w− 1)2, g(4, w) = (4w− 1)(w− 1)2.

The t = 0 points are w = 1/3 (twice) and ∞, since the coefficient of w3 in
g(t, w) is t. The t = 4 points are w = 1/4 and w = 1 (twice). The three
arcs combine to form the interval [1/4,∞) on the real axis, as indicated in
Figure 2. This corresponds to the fact that the eigenvalues λ1(w), λ2(w) are
complex conjugates when w belongs to this interval.

Fig.2: the curve Cg, showing the three arcs
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Thus far we have determined the equimodular curves given by equality be-
tween the moduli of two of the first three of the values w3, λ1(w), λ2(w), 1.
The curves involving the value 1 are easily dealt with. The curve |w3| = 1
is just the circle |w| = 1, and the curves |λ1(w)| = 1 and |λ2(w)| = 1 can
be identified as the result of a happy accident. Since λ1(w)λ2(w) = w3, it
follows that |λ1(w)| = 1 if and only if |λ2(w)| = |w3|, and |λ2(w)| = 1 if and
only if |λ1(w)| = |w3|. Hence these curves are, respectively, the inner and
outer loops of the curve Cf that we have already determined. The totality of
the equimodular curves is thus as illustrated in Figure 3.

Fig.3: the equimodular curves

According to the Beraha-Kahane-Weiss theorem, the limit curves comprise
only those parts of the equimodular curves that are dominant: that is, where
the two values defining the curve are larger in modulus than the others.
Define four regions A, B, C,D of the complex plane as in Figure 3.

A: outside the outer loop of Cf ;
B: between the outer loop of Cf and the circle |w| = 1;
C: between the circle |w| = 1 and the inner loop of Cf ;
D: inside the inner loop of Cf .

Then it follows from the analysis given above that the ranking of the moduli
in these regions is:

A : |w3| > |λ1(w)| > |λ2(w)| > 1.
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B : |λ1(w)| > |w3| ≥ 1 > |λ2(w)|.
C : |λ1(w)| > 1 ≥ |w3| > |λ2(w)|.
D : 1 > |λ1(w)| ≥ |λ2(w)| > |w3|.

Thus |w3| dominates in A, |λ1(w)| dominates in B ∪ C, and 1 dominates in
D. The equimodular curves |λ1(w)| = |λ2(w)| (that is, Cg = [1/4,∞)) and
|w3| = 1 are not dominant, because they lie in regions where another value
dominates. The final conclusion is that the limit curve is precisely Cf .

This conclusion is confirmed by a plot of the roots of the chromatic poly-
nomials of all quartic Möbius ladders with up to 59 vertices, including the
graphs R(6r + 3) for 1 ≤ r ≤ 9 (Figure 4).

Fig.4: Royle’s plot of the roots of quartic Möbius ladders (z = w + 2)
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