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Abstract

Firms often delegate important decisions to committees which are set up

speci�cally for that purpose; for example selection committees. We ana-

lyze the equilibrium behavior of a game in which committee members (the

players) interview candidates sequentially, either hiring or going on to the

next one. The players have di¤ering evalutions of candidates (e.g. one cares

about typing skills; the other about IT skills), which become their utilities

if the candidate is hired. We then consider the optimal design (rules of the

game) of such a committee, from the point of view of the �rm. That is,

which rules hire candidates which maximize the �rm�s utility.

Our committee game has a �rst round in which the members sequentially,

by order of player number, say �yea�or �nea�to the candidate. If there are

su¢ cient �yeas�then she is tentatively hired; otherwise she is rejected. In

the former case, members who said nea can veto the candidate in the second

round. Thus the candidate is either hired, rejected, or vetoed. In the last

case, the member casting a veto has one less to use on later candidates.

Keywords: committee, stochastic game, voting, veto



1 Introduction

Often a large organization (or �rm) will delegate an important decision to

a committee which is speci�cally set up for that purpose. An important

example is a selection committee designed to �ll a job vacancy with the best

candidate, from the �rm�s perspective. Committee members will have can-

didate evaluations (their utility, if that candidate is hired) which in general

di¤er both from that of other members and from the �rm�s evaluation. The

�rst type of di¤erence of opinion means that the committee process com-

prises a game; the second type leads to a design problem (rules of the game)

for the �rm. As usual in such design problems, one must �rst analyze the

equilibria in the games corresponding to various rules, and then optimize

those rules.

We assume, for simplicity, that the committee decides on the candi-

dates sequentially. Thus our model is a game theoretic extension of the well

known �secretary problem�(Ferguson (1989, 2001), Eriksson et al (2007)),

though quality rather than rank of quality is optimized. For each candidate

(each stage game), there are two rounds. In the �rst, the committee mem-

bers (players) either accept or reject the candidate, voting in a �xed order

(Player 1 �rst, etc.). If the candidate is accepted by the required number

of players, she is tentatively hired; otherwise she is rejected. In the former

case, any players who rejected her have the opportunity, in turn, to veto

her. If any player does so, then he has one less veto available for future

candidates. This process continues until a candidate is hired. Each player�s

utility for this event is simply his evaluation of the hired candidate, dis-

counted (with a given discount factor d) by the number of candidates who

have been considered (number of periods). A related problem in which two

committee members need to �ll two positions (one candidate working for

each member) has been analyzed by Baston and Garnaev (2007).

We realize that it is unusual for actual committee members to be given

a �xed number of vetoes, but this assumption should be viewed as a for-

malization of the recognized fact that pressure towards consensus prevents

members from continuing to veto successive candidates, and that this pres-
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sure increases as they veto more and more candidates. Often committees

in fact require consensus to make appointments; after an initial round in

which a single member is against the candidate, there may be a discussion

in which the others attempt to get him to change his mind - if he refuses,

this can be interpreted as a veto. In some cases, for example jury selection

(see Brams and Davis (1976, 1978) and DeGroot and Kadane (1980)), �xed

numbers of vetos are indeed speci�ed explicitly.

We analyze the case where the committee consists of two members. Thus

each candidate has an evaluation pair z = (x; y) (observable to both play-

ers) which we can normalize to the unit square. Thus x measures say the

candidates typing skill, which is what matters to Player I, while y measures

her IT skill which corresponds to Player II�s utility. We mainly assume that

the distribution of candidates is the uniform distribution �� over the square,

but we have some general results for an arbitrary or symmetric distribution

�: We denote the game where Player I starts with i vetoes and Player II

starts with j vetoes as G (i; j) : While the no-veto game G (0; 0) is reason-

ably straightforward, as soon as there are vetos available the actions of the

players are more strategic. For example a player may accept a candidate he

would prefer not to be hired if he knows the other player thinks she is very

bad and will be forced to use up a veto. The timing of moves is important

in this respect, and our equilibrium notion includes the element of subgame

perfectness.

For the uniform candidate distribution ��; it turns out (Theorem 17) that

there is a unique equilibrium. Thus for any d, the �rm can determine the

number of vetos each player should start with in order to maximizes it�s

own utility function of x and y: For example, we �nd that when the �rm is

neutral between the players�utilities, valuing candidates as x+y; the optimal

number of vetos for d = :91 is two for Player I andthree for Player II. The

di¤ering numbers of vetos re�ects the fact that the game is not symmetric

between the players (even if i = j) because Player I has the advantage of

going �rst in round 1 of each stage game.

A general �nding is that it is always better to have more vetos. For

the uniform candidate distribution, where equilibria are unique, it is always
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better for a player if the other player has fewer vetos.

2 The Game G (i; j) and its Equilibria

The game G (i; j) is easy to describe formally. The �rst move is a chance

move in which a candidate type z = (x; y) is drawn from the distribution

�; independently of previous choices. Then players I and II in turn accept

(a) or reject (r) the candidate. If both accept, the candidate is hired and

the payo¤ vector is (x; y) : If both reject, the candidate is rejected and the

game G (i; j) is repeated (with payo¤s discounted by the factor d). If the

players disagree, the player who rejected can either veto (v) (if he has one

left) and play the game again with one less veto; or not veto (n), in which

case the candidate is hired, with payo¤ vector (x; y) : This game tree is

drawn below in Figure 1. If one or more players has no vetos (i or j is 0)

then the second stage is removed and replaced by the terminal node with

payo¤ (x; y) : (Alternatively, a �virtual�veto may be allowed, resulting in a

degenerate game say G (�1; j) which has constant payo¤ 0 for Player I so it
will never be used.)

0
(x,y)

I

a

r

aII

II

r

a

r

n

vII

I n

v

(x,y)       Hired

(x,y)       Hired

G(i, j1)   Vetoed

(x,y)        Hired

G(i1 , j)  Vetoed

G(i,j)        Rejected

Figure 1: The game tree for G (i; j) :
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2.1 Strategies and equilibria

A strategy for a player is simply a rule as to when to accept or reject a

candidate in the �rst round; and if rejecting, whether to veto in the second

round. The rule depends on the candidate values (x; y) and on all the moves

in the stage game, but not on moves of the players in earlier stages, if any.

In the event that both players reject a candidate, the same stage game

G (i; j) will be repeated and in this case we assume the players use the same

strategies - a stationarity assumption. Given this stationarity condition, our

equilibrium concept is subgame perfect Nash. We make this explicit in the

following.

De�nition 1 (equilibrium for G (i; j)) Suppose we �x equilibria in the
subgames G (i� 1; j) and G (i; j � 1) with respective values (expected pay-
o¤s) (U�; V+) in G (i� 1; j) and (U+; V�) in G (i; j � 1). A strategy for the
stage game G (i; j) is an equilibrium supported by these if it has respec-

tive values (expected payo¤s) of (U; V ) and for every candidate (x; y) it is a

subgame perfect solution to the extensive form game drawn below in Figure

2.

0
(x,y)

I

a

r

aII

II

r

a

r

n

vII
I n

v

(x,y)

(x,y)

d (U+,V)

(x,y)

d (U,V+)

d (U,V)

Figure 2: Tree for G (i; j) with payo¤s.

Note that for this recursive de�nition we have U� = 0 if i = 0 and V� = 0

if j = 0; which is equivalent to removing the veto option in these cases. An
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easy observation is that in the undiscounted game it can never hurt a player

to have an extra veto, as stated more precisely in the following result which

justi�es the notation U� as something less than U:

Lemma 2 Let (U; V ) be the value of an equilibrium strategy in the undis-

counted game G (i; j) which is supported by equilibria in the subgames G (i� 1; j)
and G (i; j � 1) with respective values (U�; V+) and (U+; V�). Then

U � U� and V � V�:

Proof. Consider the game tree of Figure 2 for the case where x < U�: If
Player I chooses r as his �rst move then the candidate (x; y) will not be

hired, as he will veto if necessary in the second round. So r for I leads to

a payo¤ for I of either U or U�: In the case x � U� , r also cannot lead to
a terminal value for I of less than min (U;U�) : Consequently the expected

value for I of U must satisfy U � min (U;U�) : But this expected value is

by de�nition U; so U � min (U;U�) � U�: The argument for the other

inequality is similar (but not symmetric, as the game is not symmetric):

Suppose y < V�: Then if I accepts, II will reject and veto, getting V�: If I

rejects, then II will not get less than V� (obtainable by also rejecting). Hence

II gets at least min (V; V�) : The same is true more easily if y � V� and so
the for any equilibrium the expected value V for II is at least min (V; V�) ;

so V � V�:

2.2 Equilibria in G (i; j) with vetos

We now describe the nature of equilibria in G (i; j) for general d < 1 and

arbitrary i and j. For the uniform candidate distribution �� it will turn

out that equilibria are unique and it is always better for a player to have

more vetoes and for his opponent (other player) to have fewer vetoes. In

the notation of Lemma 2, we say that an equilibrium is progressive if its

values (U; V ) ; compared with (U�; V+) and (U+; V�) of its two supporting

equilibria, satisfy

U� < U < U+ and V� < V < V+: (1)
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To simplify our notation, we denote the discounted versions of these

values by lower case letters, as

u� = dU�; u = dU; u+ = dU+; v� = dV�; v+ = dV+: (2)

u; v represent threshold values, but at equilibrium, u = dU; v = dV

In the �nal round, Player I would veto any candidate with x < u� = dU�.

Similarly, he would prefer to hire any candidate with x � u = dU; since the
latter is what he would get if the game were repeated. According to our

progressive assumption (1), each player would prefer the other to lose a veto

rather than repeat the current game. So for example in solving the game tree

of Figure 2, Player I would accept any candidate (x; y) with y < v� = dV�
(the rectangle A in Figure 3), even one with x = 0! Progressive equilibria

must have the form depicted in Figure 3 (with a for accept, r for reject but

not veto, v for reject and veto if necessary).

0             u u                        1
0

v

v

1

A:  G(i,j1)

B:  G(i1,j)

C: G(i,j)

D: hired

D: hired
E: hired

[v,a]

[a,v]

[a,a]
[r,a]

[r,r]

[a,r]

V+

U+

Figure 3. The strategy [u; v]prog :

The expected payo¤ vector corresponding to the strategy [u; v]prog , denoted
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by T (u; v) ; is given by

T (u; v) = � (A) � (u+; v�) + � (B) � (u�; v+) + � (C) � (u; v) (3)

+

Z
D[E

(X (z) ; Y (z)) d� (z) ;

where X and Y are the projections X (z) = x and Y (z) = y if z = (x; y) :

We view the arguments of T as threshold acceptance levels, rather than

values. If the measure � has full support (and d = 1), then the equilibrium

condition is simply T (u; v) = (U; V ) = (u; v). If � does not necessarily have

full support and � ([u0; u)� [v0; v)) = 0; then the strategies [u0; v0]prog and

[u; v]prog are equivalent in the sense that they have the same e¤ect on all

candidates, and we write [u0; v0]prog � [u; v]prog : Summarizing this analysis,
we can represent progressive equilibria as the set of solutions to a �xed point

problem.

Theorem 3 Let (U+; V�) and (U�; V+) be equilibrium values of G (i; j � 1)
and G (i� 1; j) : Then a strategy pro�le [u; v]prog (as described in Figure 3)
with (u; v) 2 [u�; u+]� [v�; v+] is a progressive equilibrium for G (i; j) with

candidate distribution � if and only if it satis�es the �xed point equation

(u; v) � d � T (u; v) ; (4)

where T is given in terms of (u+; v�) ; (u�; v+) ; and � in (3). In this case

the equilibrium payo¤s are U = u=d and V = v=d:

Example 4 (Uniform Distribution) If � is simply area (Lebesgue mea-
sure) on the square, the expected value mapping T can be easily calculated as

the sum of the area of each rectangle multiplied by its expected payo¤ vector

(center of gravity).

rectangle A B C D

probability v� u� (1� v�) (v � v�) (u� u�) (u� u�) (1� v)
utility to I u+ u� u (u+ u�) =2

utility to II v� v+ v (1 + v) =2

E

(1� u) (1� v�)
(1 + u) =2

(1 + v�) =2
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Consequently T = (U = T1; V = T2) is given by

U = u=d = v�u+ + u� (1� v�)u� + (v � v�) (u� u�)u (5)

+(u� u�) (1� v) (u+ u�) =2 + (1� u) (1� v�)
1 + u

2
V = v=d = v�v� + u� (1� v�) v+ + (v � v�) (u� u�) v

+(u� u�) (1� v) (1 + v) =2 + (1� u) (1� v�)
1 + v�
2

Example 5 ( x+ y = 1 (jury selection)) Assume that all candidates lie
on the line x+y = 1; so that the evaluations of the two Players are opposite.

One interpretation is that the candidate is to decide on an issue where the

Players take opposite sides, and x is the probability he will vote for Player

I�s favoured option. This is essentially a problem of selecting a jury of

size 1: If d = 1 (no discounting) then this is a constant sum game, so

that there exist unique equilibrium values Ui;j and Vi;j : In fact this remains

true for any discount factor d, because the double rejection possibility never

occurs, and the equilibrium equations can be solved for Ui;j and Vi;j by simple

backwards induction. To see this, �rst observe that (for any d; i; j) we have

Ui;j + Vi;j � 1; since for any candidate selected in period n we have total

payo¤

dn (x+ y) � x+ y = 1:

Consequently ui;j+vi;j = d (Ui;j + Vi;j) � 1: So any candidate (x; y) satis�es
either x � ui;j or y � vi;j and will be accepted (only) by the corresponding
player. Thus the cases (rectangles) C and E will be omitted from the expected

value formula (3). In particular, any candidate not vetoed by one of the

players (i.e. with x � ui�1;j or x � 1 � vi;j�1 with y � vi;j�1) will be

accepted by one of the players. For the uniform distribution on the line

x + y = 1; the equilibrium equations for u = ui;j and v = vi;j are obtained

as,

(u; v) =d = u� (u�; v+)+(1� v� � u�)
�
1 + u� � v�

2
;
1� u� + v�

2

�
+(v�) (u+; v�) :

The important thing to note is that, unlike our general equilibrium equations,
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the unknowns u and v do not appear on the right hand side. For the case

i = j = 0 we may also use this equation with u� = v� = 0 (if a player uses

a veto he does not have, he gets 0) giving

U = V =
1

2
; and u = v =

d

2
:

Thus every candidate with x � d=2 is accepted by I and every candidate with
x � 1�d=2 is accepted by II, and the game ends in the initial period. The full
jury selection game, that of selecting a many-person jury to optimize utilities

of the Prosecution or the Defence (e.g. the probability of a successful verdict)

has been analyzed in the classic papers of Brams and Davis (1976,1978),

Roth, Kadane and DeGroot (1977) and DeGroot and Kadane (1980), among

others.

3 Equilibria in G (0; 0)

What do equilibrium strategy pairs look like in G (0; 0)? First consider

d = 1: Suppose there is an equilibrium with values (U; V ) : Clearly Player I

should accept any candidate (x; y) with x > dU and reject any with x < dU:

Either is possible for x = dU; but for simplicity we will assume such a

candidate is accepted. Similarly Player II accepts i¤ y � dV: Let (u; v)

denote the strategy pair where I accepts x � u and II accepts y � v; which
will be an equilibrium if u = dU and v = dV: The strategy (u; v) will hire

candidates in the set

H = H (u; v) = f(x; y) : x � u or y � vg :
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u

v

H

0 1
0

1

Figure 4. H (u; v) :

The calculation of the expected payo¤ pair T (u; v) corresponding to hu; vi
is a straightforward simpli�cation of (3). If the candidate is hired in period

k = 0; 1; : : : ; the Player I will get a mean payo¤ of E1 (H) � dk; where

Ei (S) is the mean value of the i�th coordinate on S: (6)

Let p = � (H). Then the probability that the candidate is hired in period k

is (1� p)k p; so

Ti (u; v) = �1k=0 (1� p)
k p � Ei (H) dk

= p � Ei (H) �1k=0 ((1� p) d)
k (7)

=
p � Ei (H)
1� (1� p) d

The strategy pair (u; v) is an equilibrium if it satis�es the �xed point (equi-

librium) equation (U; V ) = T (u; v) ; or

(u; v) = d T (u; v) ; (8)

and the equilibrium values will be U = u=d and V = v=d:

An alternative derivation of this equation is to evaluate the expected

value function T as follows. If (x; y) =2 H; then Player I gets the value

u = dU next period, so he gets d (u=d) = u: If (x; y) 2 H; then he gets
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E1 (H) : Thus we have at equilibrium

T (u; v) = (1� p) (u; v) + p (E1 (H) ; E2 (H)) ; and (9)

dT (u; v) = (u; v) or

(u; v) = d ((1� p) (u; v) + p (E1 (H) ; E2 (H))) ; (10)

which is the same as (7)

We illustrate the equilibrium concept in G (0; 0) for three special distri-

butions, the uniform distribution over the square, an i.i.d. distribution with

two atoms, and a family of i.i.d. distributions with three atoms.

Example 6 ( G (0; 0) with the uniform distribution) For the uniform
distribution, � (H) = p = 1 � uv; E1 (H) = 1�u2v

2(1�uv) ; and E2 (H) =
1�v2u
2(1�uv) ;

so

T (u; v) =
1� uv
1� uvd

�
1� u2v
2 (1� uv) ;

1� v2u
2 (1� uv)

�
: (11)

For d = 1 the solution to the undiscounted equilibrium equation (u; v) =

T (u; v) is

u = v =

p
5� 1
2

� 0:618 03; the �golden mean�. (12)

The two equilibrium equations of (11) are pictured below in Figure 5. The

intersection at u = v = 1 does not represent an equilibrium because for the

strategy u = v = 1 no candidates will be hired - the formula for T is only

valid for u and v less than 1 in the undiscounted case. (With discounting

T (1; 1) = 0:)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

u

v

Figure 5. Equilibrium equations for u (thick red) and v (thin green).

The phantom equilibrium disappears when discounting is introduced, as il-

11



lustrated below for d = :8 in Figure 6, where we plot the two coordinates of

the general equilibrium equation (u; v) = d T (u; v). The reader should also

note for future reference that the equilibrium is the symmetric point

(0:432 32; 0:432 32) : (13)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

u

v

Figure 6. Equilbrium with discount factor d = :8.

Example 7 (i.i.d. distribution with two atoms, undiscounted) Suppose
x and y have the distribution F; which has atoms at a < b; probability p at

a: Let B = (b; b) and A = (a; a) be the choosy and easy strategy pro�les.

If either player (or both) adopts cuto¤ value a; the game ends in the �rst

period and both player�payo¤ is the mean m of F;

m = pa+ (1� p) b:

If both adopt b, they both get

T1 (b; b) = T2 (b; b) =
p(1� p) + a (1� p) b

1� p2 = m+; a < m < m+ < b;

a weighted average of a and b more heavily weighted to b: Hence the payo¤

matrix is
a b

a (m;m) (m;m)

b (m;m) (m+;m+)

Hence there are two Nash. equilibria, A = (a; a) and B = (b; b) : The (�at)

easy equilibrium A does not satisfy our equilibrium notion (De�nition 1)

because it is not subgame perfect, as u = a < m: To be speci�c, suppose the

candidate is (a; a) and I rejects. Then II should reject because getting m on
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average next period is better than getting a < m now. Given this behavior of

II, I should reject candidate (a; a) ; knowing that II will also reject and both

will get m next period. Thus the equilibrium condition for say Player I is

that

u � T1 (u; v) = T1 (u; u) (for symmetric equilibrium), where

w � z () Pr[x � w] = Pr[x � z]:

Thus at the Nash equilibrium A = (a; a) ; we have

u = a � T1 (a; a) = m; as

Pr[x � a] = 1 > Pr[x > m] = Pr[x = b] = 1� p:

So this is not a subgame perfect equilibrium. However at (b; b) = B; we have

u = b � T1 (b; b) = m+; because

Pr[x � b] = Pr[x = b] = Pr[x > m+]:

So in the sense of De�nition 1, there is a unique equilibrium.

4 Symmetry of Equilibria G(0; 0)

Recall from Example 6 that for the uniform distribution, the only equilib-

rium that we found was symmetric; both players used the same threshold

acceptance level. Similarly, for the two atom i.i.d. distribution of Example

7, the only equilibrium was symmetric. In this section we will show that

this is true for G (0; 0) whenever the distribution � is symmetric, e.g. with

x and y i.i.d. Note that the no-veto game G (0; 0) is the only one which

is symmetric with respect to the players, as the order of play is irrelevant.

It is equivalent to the game where the players move (accept or reject the

candidate) simultaneously. Such games typically have symmetric equilibria,

but often have asymmetric equilibria as well. We show that this is not the

case for G (0; 0) :
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We �rst show that the choosy player (the one with a higher acceptance

threshold) always does worse than the other player. We phrase this for I

being more choosy.

Lemma 8 If v < u and F (v) < F (u); then T2 (u; v) > T1 (u; v) :

Proof. If strategies u and v are played, candidates will be accepted if they
are in H = H (u; v) = W [ S (in Figure 7). Candidates in S have the

same expected values for x and y; since S is symmetric. That is, E1 (S) =

E2 (S) : However on W; x < y; so E1 (W ) < E2 (W ) : So assuming that

the probability of the set W is positive (that is, F (v) < F (u)) we have

T2 (u; v) = E2 (H) > E1 (H) = T1 (u; v) ; as claimed.

S
W

u

u

v

Figure 7. Choosy

player does worse.

Theorem 9 If the candidate distribution is symmetric (in particular, if x
and y are i.i.d.), then G (0; 0) has no asymmetric equilibria.

Proof. Suppose [u; v] is a equilibrium for G (0; 0) with v < u: If it is an

equilibrium, then

T1 (u; v) = u; and

T2 (u; v) = v:
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By the lemma, we have T2 (u; v) > T1 (u; v) : Hence

u = T1 (u; v) < T2 (u; v) = v; or

u < v; contrary to assumption.

As an application of this result, we may simplify the analysis given in

Example 6, determining the equilibrium for the uniform distribution by con-

sidering only symmetric equilibria, that is, solutions to the single equation

u = d T1 (u; u) : Using (11), we write

u = d T (u; u) = d
1� u2
1� du2

1� u3
2 (1� u2) ; with solution (14)

d =
2u

u3 + 1
; whose inverse we write as u = g (d) : (15)

Example 10 (i.i.d. distribution with three atoms, undiscounted) Theorem
9 considerably simpli�es the equilibrium analysis of i.i.d. distributions, by

restricting the search to symmetric strategies. Assume that F has atoms

at 0; 1=2; 1; with probabilities r; p; q: The only symmetric strategies, up to

equivalence, have u = v 2 f0; 1=2; 1g : Clearly u = v = 0 is not an equilib-
rium strategy because the corresponding payo¤ (mean of F ) is positive, so

say Player I should reject x = 0; contrary to what the strategy speci�es. For

strategy u = v = 1=2 all candidates but x = y = 0 will be accepted, so the

mean of say x for hired candidates will be

(p=2) + q

1� (1� p� q)2
:

For strategy u = v = 1 the payo¤ is
(pq) =2 + q

2q � q2 : So the equilibrium condi-

tions corresponding to the two strategies are that

(p=2) + q

1� (1� p� q)2
<

1

2
; for strategy u = v = 1=2

(pq) =2 + q

2q � q2 >
1

2
; for strategy u = v = 1:
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The second condition is always satis�ed (so u = v = 1 is always an equilib-

rium), and the �rst is satis�ed (so u = v = 1=2 is an equilibrium) for

q <
p
p� p;

the region below the curve in Figure 8. This example illustrates the possibility

of multiple equilibria, although we shall rule this out in Theorem 17 for the

uniform distribution.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

p

q

Figure 8. Two equilibria for, q <
p
p� p; otherwise just u = v = 1:

5 Existence of equilibria in G (0; 0) for i.i.d. distri-

butions

The reader will have noticed that for the i.i.d. distributions in our Examples

7, 10 and 6, where F consists of two or three atoms, or is uniform, we always

found at least one equilibrium. We now show that an equilibrium exists for

any such distribution F: By Theorem 9, we need consider only symmetric

equilibria u = v; where I accepts (x; y) if x � u and II accepts (x; y) if y � u:
In this section let

� (u) = d T (u; u) (16)

denote d times the expected payo¤ to either player when the symmetric

strategy (u; u) is adopted. Recall that any �xed point u of � (solution of

u = �(u) = d T (u; u)) is an equilibrium. Note that � : [0; 1] ! [0; 1] is

continuous except possibly at atoms of F; and at such atoms it is continuous

from the left. If F has no atoms, there is clearly a �xed point (Intermediate

Value Theorem or Brouwer�s Theorem in one dimension) as seen in Figure

9. We will show that a �xed point exists even when � has discontinuities.
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What we have to exclude is the situation drawn in Figure 9, where � (u) has

a discontinuity at a where � (a) > a; and � (a+) = limp&0� (a+ p) < a:

That is, � jumps from a point above the diagonal down to a level below the

diagonal.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

u

Figure 9. No �xed point due to discontinuities

So what property does the curve � (u) possess, for any distribution F; that

avoids the behavior of the curve of Figure 12?. The answer is simple: jumps

that occur starting above the diagonal (from (a;� (a)) with � (a) > a) are

always �up�(� (a+) > � (a)). We call this property correctly jumping, and

base our proof on it.

Recall the de�nition of the hired set H;

H = H (u; v) = f(x; y) : x � u or y � vg ;

and modify it for the symmetric case as

H = H (u) = H (u; u) = f(x; y) : x � u or y � ug : (17)

We shall sometimes use the notation

H
�
u+
�
= f(x; y) : x > u or y > ug (18)

to denote the hired candidates in the case that the players accept candidates

only if they are strictly above their threshold level.

De�nition 11 A real function � which is left continuous and satis�es � (a) >
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a =) � (a+) � limp&0� (a+ p) > � (a) at its discontinuities is called cor-
rectly jumping.

Lemma 12 The function � (u) = d T1 (u; u) for G (0; 0) with an i.i.d. dis-
tribution F is correctly jumping.

Proof. Suppose that � (a) > a for some atom a of F: Partition the hired

set H = H (a) into H+ � H (a+) and the di¤erence set D � H (a)�H (a+)
(see (17,18)). The latter set D is the union of the two line segments from

(a; a) to (a; 0) and to (0; a) : Since x � a on D; we have E1 (D) � a: By (7),
we have

� (a) = d T1 (a; a) = k E1 (H) ;

where k = d
� (H)

1� (1� � (H)) d =
� (H)

� (H) + (1=d � 1) � 1:

Since

a < � (a) = k E1 (H (a)) =
� (H+)

� (H)
kE1

�
H+
�
+
� (D)

� (H)
kE1 (D)

and E1 (D) � a < � (a) ; we must have k E1 (H+) > a: But � (a+) =

k E1 (H
+) > a:

The alert reader will note that the idea in the proof establishes the

stronger result that if u < � (u) then � is increasing on the interval [u;� (u)]

so that in particular any jumps on this interval must be upwards. But we will

not need that result. We can now modify the usual proof of the Intermediate

Value Theorem to establish the following elementary �xed point result.

Theorem 13 Let � : [0; 1] ! [0; 1] be correctly jumping: Then for some

u 2 [0; 1] ; we have � (u) = u:

Proof. We may assume that � (0) > 0 and de�ne a = sup fx : � (x) > xg :
Since � is continuous from the left, we have � (a) � a: If � (a) = a we are
done, so assume � (a) > a: Since � is correctly jumping, we have � (a+) >

� (a) : Consequently � (a+) > � (a) > a: This implies that some x > a
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satis�es � (x) > x:This contradicts the de�nition of a; so our assumption

that � (a) > a was false, and � (a) = a:

Corollary 14 The game G (0; 0) has at least one equilibrium, for any sym-
metric candidate distribution and any discount factor d < 1.

Proof. The expected payo¤ function � (u) for G (0; 0) is correctly jumping,
by Lemma 9. Hence by Theorem 10 there is a solution u = d � (u) for any

discount factor d: The pair (u; u) is therefore an equilibrium of G (0; 0) :

6 Behavioral Strategy Equilibria in G (0; 0)

In this section we show that the restriction to i.i.d. candidate distributions

in Corollary 14 can be relaxed if we are willing to consider randomized

strategies. Suppose we are looking for an equilibrium strategy pair with

payo¤s (U; V ) : Consider Player I�s strategy. At equilibrium, he must accept

any candidate with x > u = dU and he must reject any candidate with

x < dU: He can accept a candidate with x = u with any probability p:

Denote such a behavioral strategy for I by [u; p] : Note that if the probability

of a candidate with x = u is zero, the strategies [u; p] give the same payo¤

as the pure strategy u (denoting accept i¤ x � u). Extend the de�nition of
T such that T ([u; p] ; [v; q]) is the payo¤ pair corresponding to these mixed

strategies. Then let

T � (u; v) = [p;qT ([u; p] ; [v; q])

be the set of all payo¤ pairs corresponding to mixed strategies based on u

and v: Note that for any pair (u; v) ; T � (u; v) is a closed convex subset of

[0; 1]2 ; and that T � has a closed graph. So it follows from Kakutani�s �xed

point theorem that there exists a (�xed point) pair (u; v) 2 [0; 1]2 such that

(u; v) 2 T � (u; v) :
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This means that for some probabilities p and q; we have

T ([u; p] ; [v; q]) = (u; v) ;

which implies that the mixed strategy pair ([u; p] ; [v; q]) is an equilibrium.

Since we have made no assumption about the candidate distribution (which

is implicit in the de�nition of T ) we have established the following.

Theorem 15 For any candidate distribution, and any discount factor d <
1; there exists an equilibrium for G (0; 0) in behavioral strategies.

A similar argument involving randomizing at atoms of a population, in

the context of two�sided matching, is given in Alpern and Reyniers (2005).

If d = 1 the graph of T might not be a closed set. To see this, con-

sider the uniform candidate distribution and take our usual assumption that

T (1; 1) = (0; 0) : (We could be more formal and write T ([1; 0] ; [1; 0]) = (0; 0)

to indicate that a candidate with type x = 1 (y = 1) will not be accepted by

Player I (II) ). Then (1� 1=n; 1� 1=n)! (1; 1) but T � (1� 1=n; 1� 1=n) =
T (1� 1=n; 1� 1=n) (equating a point with a singleton set) converges to
(3=4; 3=4) ; and (3=4; 3=4) =2 T � (1; 1) = f(0; 0)g : Thus in this case T does
not have a closed graph. If there were a positive probability of x = 1 or

y = 1 then this would not be a problem.

7 Analysis of G (i; j) ; Uniform Distribution

In Example 6, we obtained the unique equilibrium for the no-veto game

G (0; 0) when the distribution was uniform. We now extend that analysis to

the case where the players have vetoes. We show how a unique progressive

equilibrium of G (i; j) can be obtained, given equilibria of its two immediate

subgames, by iterating the expected value function T:

We seek an progressive equilibrium pair (u; v) as described in Figure 3 for

G (i; j) which is supported by an equilibrium with payo¤s (a; e) � (u�; v+) in
G (i� 1; j) and one with payo¤s (b; c) = (u+; v�) in G (i; j � 1) : According
to (5) any (u; v) in the rectangle R1 = [a; b]� [c; e] satisfying the �xed point
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equation

(u; v) = d T (u; v) ; with

T1 =
1

2

�
a2v � cu2 + u2v + 2acu� 2auv +

�
1� 2a2c� c+ 2ce+ a2

��
T2 =

1

2

�
c2u� av2 + uv2 + 2acv � 2cuv +

�
1� a+ 2ae+ c2 � 2ace

��
;

is a progressive equilibrium. It is easy to see that T maps the larger rectangle

R2 = [a; 1]� [c; 1] into itself, as all outcomes of G (i; j) (hired candidates or
values of subgames) when the strategy (u; v) is adopted have payo¤s in this

rectangle, and hence so do averages of these, since R2 is convex.

Lemma 16 For any constants 1=2 � a � b � 1, 1=2 � c � e � 1; the map
T : R2 ! R2 is a contraction map.

Proof. The Jacobian of T (u; v) is given by

J =
1

2

 
2 (u� a) (v � c) (u� a)2

(v � c)2 2 (u� a) (v � c)

!
:

To compute jjJ jj, we note that eigenvalues are equal to 1
2 (v � c) (u� a) and

3
2 (v � c) (u� a) : Thus the value of the larger eigenvalue gives

jjJ jj = 3

2
(v � c) (u� a) � 3

2
(1� c) (1� a) � 3

4
< 1; for (u; v) 2 R2:

Theorem 17 (Uniqueness) Any pair of equilibria for the subgames G (i� 1; j)
and G (i; j � 1) with respective values (a; e) ; (b; c) ; 1=2 � a � b � 1;

1=2 � c � e � 1; supports at most one progressive equilibrium [u; v]prog
for the game G (i; j) : Furthermore, any such equilibrium can be obtained as

the limit of Tn; starting at any point in R2: The same result holds with any

discount factor d:

Proof. Since T is a contraction on the rectangle R2; the Contraction Map-
ping Theorem implies that it has exactly one �xed point in R2 and hence at
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most one �xed point in the subrectangle R1 (which would be a progressive

equilibrium). Furthermore we know that the �xed point is attracting from

any point in R2: If there is a discount factor d < 1 the same proof holds for

the mapping d T; with Jacobian norm 3d
2 (v � c) (u� a) :

The restriction to supporting equilibria with values at least 1=2 is not a

problem, as all progressive equilibria clearly have values greater than 1=2:

We can now use Theorem 17 to obtain equilibria by iterating T for �xed

d in successive games Gd (i; j) ; as long as we do so in a manner that deals

with G (i� 1; j) and G (i; j � 1) before G (i; j) : If the iteration converges
to a point in R1 (as it always has done in our computations), we know

that this equilibrium is the unique one. Equilibria obtained recursively in

this fashion will of course be strongly progressive, since all the supporting

equilibria will be progressive. Note that our analysis does not rule out the

possibility that the iterative process converges to a point of R2�R1; a �xed
point which would not correspond to a progressive equilibrium. We give

below the results of our Mathematica calculations for the unique equilibria

(u; v) for the undiscounted games G (i; j) ; i; j = 0; : : : ; 4; for the uniform

distribution. Note the already calculated values u = v = :618034 (golden

mean) for G(0; 0); the symmetry between G (i; 0) and G (0; i) ; and the lack

of symmetry otherwise between G (i; j) and G (j; i) : 
:618034

:618034

!  
:585743

:692612

!  
:567087

:740506

!  
:554912

:774495

!  
:546350

:800100

!
 
:692612

:585743

!  
:684185

:647407

!  
:676209

:693046

!  
:669610

:727958

!  
:664263

:755512

!
 
:740506

:567087

!  
:773790

:620548

!  
:734385

:662512

!  
:731007

:696152

!  
:727908

:723655

!
 
:774495

:554912

!  
:773790

:620548

!  
:734385

:662512

!  
:731007

:696152

!  
:727908

:723655

!
Table 1. Equilibrium values for G (i; j) ; d = 1:

Note that the �rst coordinate u increases as we go down (the number i of

�rst player vetoes increases), and similarly v increases as we move to the
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right. That is, u > u� and v > v�: Also, the equilibria are progressive in

that u < u+ (the �rst coordinate decreases as we move to the right) and

similarly v < v+: That is, giving an extra veto to the other player hurts

you. However when the future is discounted (d < 1) things can be more

complicated.

(0:5541; 0:5541) (0:4920; 0:6125) (0:4607; 0:6381)

(0:6125; 0:4920) (0:5630; 0:5444) (0:5344; 0:5706)

(0:6381; 0:4607) (0:5901; 0:5113) (0:5624; 0:5376)

Table 2. Equilibrium values for d = :86

For example, when d = :86; both players do better (on average) when both

have a single veto than when both have two vetoes. Note that a �rm which

values x and y equally does best when neither player has a veto. This last

consideration will be studied in the next section.

8 Optimal Design of Committees

In this section we view the problem of committee design from the point of

view of the �rm. We assume the �rm has some utility function U (x; y) for

hiring a candidate (x; y) : It is reasonable to assume that U is increasing

in x and y, for otherwise why would it put players I and II (who value x

and y positively) on the hiring committee in the �rst place. For simplicity,

we will take the �rm�s utility function as x + y; though the analysis we do

here can obviously be done for any function U: First consider the case of no

discounting, d = 1: If we add the coordinates in Table 1, we see that the

�rm�s utility is increasing in both i and j; and it should give as many vetoes
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to the committee as possible.

1:23607 1:27835 1:30759 1:32941 1:34645

1:27835 1:33159 1:36925 1:32941 1:34645

1:30759 1:33159 1:39690 1:42716 1:41977

1:32941 1:37597 1:41301 1:44313 1:46807

1:34645 1:38906 1:42399 1:45311 1:47776

Table 3. Sum of values in Table 1, d=1

However the �rm has an interest in hiring candidates quickly, which we

assume involves the same discount factor as the player (though this is not

required for our analysis). The more the future is discounted, the fewer

vetoes it should give the committee members (players I and II). If d is less

than .86, the incentive to hire quickly results in giving no vetoes to either

committee member. If d = :87; it is best to give the players one veto

each.As the future is discounted less, more vetoes can be given, allowing

better candidates to be hired.

1:1195 1:1206 1:1174 1:1134 1:1393 1:1485 1:1499 1:1483 1:1460

1:1206 1:1286 1:1287 1:1263 1:1485 1:1649 1:1702 1:1708 1:1696

1:1174 1:1244 1:1255 1:1244 1:1499 1:1647 1:1707 1:1724 1:1722

1:1134 1:1197 1:1213 1:1209 1:1483 1:1616 1:1677 1:1699 1:1704

Table 5.Optimal numbers of vetos, d = :88 (left) and d = :91 (right).

It appears from our numerical results that it is optimal to give the players

roughly equal numbers of vetoes, with the weaker Player II (who moves last)

at least as many as the stronger Player I.

9 Conclusions

This paper models the process of sequentially selecting a candidate for a

position as an alternating�move perfect�information game. Strong negative

evaluations of a candidate by a committee member are re�ected by allowing
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the member to veto such a candidate, but at the cost of fewer remaining

vetos. We analyze this game, in particular showing that if candidates are

uniformly distributed in their valuations to committee members, then there

is a unique equilibrium corresponding to each discount factor. The equi-

librium depends crucially on the number of vetos initially assigned to each

committee member. Knowing the e¤ect of this veto distribution, the �rm

can optimize it to obtain the best candidates, from it�s point of view.

The game G (i; j) that we de�ne in this paper has many aspects still

to be understood for other or arbitrary distributions: existence questions

for equilibria, the �donation paradox�(wanting to give a veto to the other

member), simultaneous moves (closed ballots). A second more technical

paper is planned to deal with these aspects of the game. In particular, we

believe more general existence results may be obtained by using the theory

of abstract stopping games, as in Shmaya and Solan, S. (2004). It should be

noted that if players know only their own valuations of candidates then the

analysis of the resulting game is much simpler, as strategies are functions of

a single variable; the complexities of our game result from the knowledge of

others�valuations.

10 Bibliography

S. Alpern and D. Reyniers (2005). Strategic mating with common prefer-

ences. Journal of Theoretical Biology 237, no. 4, 337-354.

V. Baston and A. Garnaev (2007). Competition for sta¤ between two

departments. Game Theory and Applications 10, in press.

S. J. Brams and M. D. Davis (1976). A game-theory approach to jury

selection. Trial 12, 47-49.

S. J. Brams and M. D. Davis (1978). Optimal jury selection: A Game

theoretic model for the exercise of peremptory challenges. Operations Re-

search 26, 966-991.

25



M. H. DeGroot and J. B. Kadane (1980). Optimal challenges for selec-

tion. Operations Research 28, no. 4, 952-968

Eriksson, K., Sjöstrand, J. and Strimling, P. (2007). Optimal expected

rank in a two-sided secretary problem, Operations Research, in press.

Ferguson, T. (1989). Who solved the secretary problem? Statist. Sci.

4, 282-296.

Ferguson, T. (2005). Selection by Committee. Annals International

Society of Dynamic Games 7, 203-210.

Roth, A., and J. B. Kadane and M. H. DeGroot (1977). Optimal peremp-

tory challenges in trials by juries: A bilateral sequential process. Operations

Research 25, 901-919.

Shmaya, E. and Solan, S. (2004). Two-player non zero�sum stopping

games in discrete time. Annals of Probability 32, 2733-2764.

26


