NONCOHERENCE OF A CAUSAL WIENER ALGEBRA
USED IN CONTROL THEORY
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ABSTRACT. Let Cy :={s € C|Re(s) > 0} and let A denote the ring

fa S LI(O,OO), (fk)kz() S 617
D=t <ti1 <ta <...

A= {8(6 C1) = fals) + kaefst’“
k=0

equipped with pointwise operations. (Here ™~ denotes the Laplace trans-
form.) It is shown that the ring A is not coherent, answering a question
of Alban Quadrat [6, p. 30]. In fact, we present two principal ideals in
the domain A whose intersection is not finitely generated.
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1. INTRODUCTION

The aim of this paper is to show that the ring A (defined below) is not
coherent.
We first recall the notion of a coherent ring.

Definition 1.1. Let R be a commutative ring with identity element 1, and
let R* = R X -+ x R (n times). Let f = (f1,...,fn) € R™. An element
(g1,---,9n) € R"™ is called a relation on f if gifi + -+ + gnfn = 0. The
set of all relations on f € R™, denoted by f*, is a R-submodule of the
R-module R". The ring R is called coherent if for each f € R", f* is
finitely generated, that is, there exists a d € N and there exist g; € ft,
j € {1,...,d}, such that for all g € f*, there exist 7; € R, j € {1,...,d}
such that g =r191 + - + r494-

An integral domain is coherent if and only if the intersection of any two
finitely generated ideals of in the ring is again finitely generated; see [3,
Theorem 2.3.2, p. 45].

The coherence of some rings of analytic functions has been investigated
in earlier works. For example, W.S. McVoy and L.A. Rubel [4] showed that
the Hardy algebra H°°(D) is coherent, while the disc algebra A(DD) is not.
Raymond Mortini and Michael von Renteln proved that the Wiener algebra
W (of all absolutely convergent Taylor series in the open unit disc) is not
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coherent [5]. In this article, we will show that the ring A (defined below,
and which is useful in control theory) is coherent.
Throughout the article, we will use the following notation:

Ct :={s € C|Re(s) > 0}.
Definition 1.2. Let A denote the Banach algebra
£(s) = fa(s) + Z fre 5% (s € Cy),

k=0
fa € Ll(o’ OO), (fk)kZO € fl,o =t <t <ta <...

equipped with pointwise operations and the norm:

11l == llfall o + 1 (Fr)rzoll -

Here fa denotes the Laplace transform of f,.

A=¢f:CL -C

The above algebra arises as a natural class of transfer functions of stable
distributed parameter systems in control theory; see [2], [9]. The relevance
of the coherence property in control theory can be found in [7], [6].

Our main result is the following:

Theorem 1.3. The ring A is not coherent.

The proof of the main result is inspired by the proof of the noncoherence
of W given by Mortini and von Renteln in [5].

In Section 3, we will give the proof of Theorem 1.3. But before doing
that, in Section 2, we first prove a few technical results needed in the sequel.

2. PRELIMINARIES

Notation 2.1. Let my denote the kernel of the complex homomorphism
f— f(0): A— C, that is,

mo = {f € A| f(0) = 0}.

Then my is a maximal ideal of A, and this maximal ideal plays an impor-
tant role in the proof of our main result in the next section. We will prove
a few technical results about mg in this section, which will be used in the
sequel. The following result is analogous to [5, Lemma 1]:

Lemma 2.2. Let L # (0) be an ideal in A contained in the maximal ideal
mg. If L = Lwmy, that is, if every function f € L can be factorized in a
product f = hg of two functions h € L and g € mg, then L cannot be finitely
generated.

Proof. Suppose that
L=(fi,---,fn) #(0)

is a finitely generated ideal in A contained in the maximal ideal my. By our
assumption there are functions h, € L, g, € mg with

Jn = hagn (n:l,,N)
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Since h,, € L, there exist functions q,in) € A with

N
=3 s (n=1,...N; k=1,...,N).
k=1
From this it follows that

N N N
Z ’hn| < NCZ |fn‘ = NCZ ’hngn| in C+,
n=1 n=1

n=1
where C' is a constant chosen so that
qu(cn)Hoo < C for all k and n.

(Here || - ||oo denotes the sup-norm over C,.) This implies together with the
Cauchy-Schwarz inequality that

N N 2 N 2 N N
Sl < (L tal) = 520X hhaal) < 823 ( X1l ) (X lanl?).
n=1 n=1 n=1 n=1 n=1

This inequality holds for all s € C. With § := 1/(N?C?), we obtain the
inequality

N

(1) §<D lgn(s)?
n=1

for all points s € F, where

N
E = {s e Cy Z |hn(8)]* > O}.
n=1
Since L # (0), E is a dense subset of C; (for otherwise, if so € C, is such
that it has a neighbourhood V in C; where there is no point of E, then
each h,, is identically zero in V', and by the identity theorem for holomorphic
functions, each h,, is zero; consequently each f, is zero, and so L = (0), a
contradiction). So by continuity, this inequality (1) holds in C;. But this
contradicts the fact that each g, vanishes at 0. ([

Since every maximal ideal is closed, mg is a commutative Banach subalge-
bra of A, but obviously without identity element. But there is a substitute,
namely the notion of the approximate identity, which turns out to be useful.

Definition 2.3. Let R be a commutative Banach algebra (without identity
element). We say that R has a (strong) approzimate identity if there exists a
bounded (sequence) net (e, ), of elements e, in R such that for any f € R,

lim [leaf — £ = 0.

We will now prove the following result, which shows that the maximal
ideal mg in A has a strong approximate identity.
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Theorem 2.4. Let

S
en = >, neN
S‘f‘ﬁ

Then (en)nen 8 an approximate identity for my.

The existence of an approximate identity for the maximal ideal mg in A
is not obvious (since A and therefore mg is not a function algebra). In order
to prove Theorem 2.4, we will need the following lemma.

Lemma 2.5. Suppose fE mg. Then for each € > 0, there exists a p € my
such that p has compact support in [0,00), and || f —p||la < €.

Proof. Let € > 0 be given. Let
f="rat+ D fub(-—tr),
k=0
where f, € L1(0,00), (fx)k>0 € 1, and 0 =ty < t; < ta < --- . Choose a

compactly supported p, € L'(0,00) such that

€

Hpa - faHL1 < 4

Furthermore, select N € N such that

Il < i

k>N
Now let T' € (0, 00) be any number satisfying ty < T < tn1, and define
o
fri= (/ pa(t)dt + > fk)-
0 k<N
Set

pi=pat Y fiS(-—tx) + fro(- = T).

k<N

Then p € A and

p(0) = /Ooop(t)dt = /Ooopa(t)dt+ > fetfr=0.

k<N
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So p € my. Clearly p has compact support contained in [0, 00). We have

= | [ w3

k<N
= / fa(t)dt+2fk+/ (pa(t)_fa(t))dt_ Z T
0 k=0 0 k>N
< | [T o]+l -+ X1
0 >N
= |F O+ lpa — fallr + > 1l
k>N
< 0FS4S=5
4 4 2
Thus
N ~ € € €
I1F = Blla = llfa = pallr + D> 1ful + |fr] < 1T1t3=¢
k>N
This completes the proof. O

We are now ready to prove the existence of an approximate identity for
the maximal ideal mg in A.

Proof of Theorem 2.4. Given ]? € A, and € > 0 arbitrarily small, in view
of Lemma 2.5, we can find a p € mg such that p has compact support and
|f = Plla <. Then

lenf = flla < llenp — Plla + llenllall f = Blla + 1f = Pll.a-
So it is enough to prove that
lim |[ep — plla =0
n—oo

for all p € mg such that p has compact support in [0,00). We do this below.
We have

1 1 -

o 1
p—-p=-—— p= —E(e‘t/”*p)-

S|

. s+
Enp — D= B

1
n

+ |31~
S| |
3
Va)
+

Let C denote the convolution e~/ x p:

We note that C' € L'(0,00), since L'(0,00) is an ideal in A. Let T > 0 be
such that

supp(p) C [0, T7.
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We have
R 1 1 [ 1 [T 1 [®
lenD —DPlla = =[ICllpr = = IC()|dt =— [ [C(t)|dt+ — |C(t)]dt .
n n 0 n 0

n.Jr

() (11)

We estimate (I) as follows:

(DziAﬂdMﬁ::i/T/%tT(Mmﬁ
< :L/ / ldrdt
< i(// |d7-dt>

III

Since the integral (I1I) does not depend on n, we obtain that

1 T
lim / |C(t)]dt = 0.
0

n—oo n
t T
/ enp(T)dr
0

dt (since supp(p) C [0,7T])

Furthermore,

o 1 oo ¢
I = C(t)|dt = — ~n
1 = o[ Ciowla== [~
1 & _t & T
= / e n/ enp(T)dT
nJjr 0
1 [ 1
ey
n Jr n

Since p has compact support in [0, 7], p is an entire function by the Payley-
Wiener theorem; see for instance [8, Theorem 7.2.3, p. 122]. Consequently,
dt =e¢

=L (a5}

This completes the proof. O

| —=

dt

"L [F0) = 10 = 0.

We will also need the following, which is based on a key step from Brow-
der’s proof of Cohen’s factorization theorem; see [1, Theorem 1.6.5, p. 74].
We will need this version since in our application in the proof of Theorem
1.3, we cannot use Cohen’s factorization theorem directly.

Lemma 2.6. Let f1,fo € mg and 6 > 0. Let G(A) denote the set of all
invertible elements in A. Then there exists a sequence (gn)nen in A such
that

(1) for alln €N, g, € G(A).
(2) (gn)nen is convergent in A to a limit g € my.

(3) for alln €N, |lgy ' fi — gpfy filla < 6/27, i =1,2.
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Proof. Let (e,)nen denote the strong approximate identity for mg from The-
orem 2.4. Let K > 1 be such that ||e,||4 < K for all n € N. Choose ¢ such
that

0<e< ! < !
< — < -.
4K 4
(A): If e € mp and |le]|a < 2, then 1 — ¢+ ce € G(A): indeed,
c 1/(4K) 1
ell < K== <1,
c—1 ‘A 3/4 3

and so

1 1 > C kk

(B): Furthermore, we now show that if ||eF’ — F'|| 4 is small for some F', then
so is |EF — F||4, where E := (1 — c+ ce)~!. Since

1 — c k
1=
1—cz<c—1> ’

k=0
we have
1 c \*
EF —Fl4 = KPR
r-Fla = |3 () @rop)
k=0 A
[ c k k
< F — F|l4.
< X () e Fl
k=0
But
k—1 ' k—1 4
[P —Fla = |SeF—F| <3 |dlalleF - Fl
i=0 4 =0
k-1 ok
< [l eF ~ Flla Y llelly < lleF ~ Pl
=0
Hence
1 &1 1 \" 2
EF—F|4<|eF—F < F—F| 4.
IEP Pl <leF~Flar=, 3 ooy (5ag) < mogler Tl

This estimate will be used in constructing the sequence of g,,’s.

We shall inductively define a sequence (e, )reny with terms from the
approximate identity for mg such that if

n

(2) gn ‘= CZ(l - C)k_lemk + (1 - C)na
k=1

then we have || f — g7 flla < 6/2 and
(P1) for alln € N, g, € G(A)
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(P2) for all n €N, |lg, fi — gp ity filla < 6/2", i=1,2.
Choose e, such that

d .
lem fi = filla < (K =1), i=1,2

Define g1 = cepm, +1 —c. So by (A), g1 € G(A) and using the calculation
in (B), we see that

_ )
I =g flla <5

Suppose that e, ,. .., emn, have been constructed, so that g, defined by (2)
satisfies (P1) and (P2). We assert that if we choose e, ., such that

Hemn+1fi - f’LHA (Z =1,2) and Hemn+1emk - emkHA (1<k< n)

are sufficiently small, then g,,11 defined by (2) satisfies (P1) and (P2), com-
pleting the induction step.
Indeed, if E := (1 — ¢ — cep,,,,) "', we have

n
g = E ¢ Z(l — o) Eep, + (1 — )" and
k=1

gny1 = FE71 (czn:(l — o) 1Eep, + (1 - c)") .

k=1
Let Gy =Y p_,;(1 = ¢)*1Eey, + (1 — c)™. Then

n
k—1
G snlla < B, emyllac 301 = 0 < e [, — o

< K _1 élggn [€mi i1 €my, — €my,[l.a-

Hence G, € G(A) and moreover ||G,;! — g, !||.4 is small, provided only that
l€mnir€my, — €my||.4 s small for k. =1,...,n.

Since g1 = E~'G,,, we have then g, 1 € G(A), g;il =G, 'E, and so
fori=1,2,

G Efi — 97" fill a

< |G Efi — g7 " Efilla+ g " Efi — g, filla

< NG = g Al Efilla + lgn Al E S = fill 4.
Thus if |lem, ., fi — fill.a (i = 1,2) and |lem, . em;, — €mylla (1 <k < n) are
sufficiently small, we will have || g;il fi— 9 fill 4 as small as we please. This

completes the induction step.
Since [|em,|la < Kand 0 <1—-c<1,

lgm1fi = 9" fill 4

o0
gn — 02(1 — )" e, =g €my,
k=1

and the proof is completed. O
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3. NONCOHERENCE OF A

Proof of Theorem 1.3. We will use the characterization that an integral do-
main is coherent if and only if the intersection of any two finitely generated
ideals of in the ring is again finitely generated; see [3, Theorem 2.3.2, p. 45].
In fact, we present two finitely generated ideals I and J such that I N J is
not finitely generated.

Let

14e~ 8

p=(1—-e%3 and S=e 1-c+.

Clearly p € myg.
It is known, see for example [5, Remark after Theorem 1, p. 224], that

oo
Z lan| < oo}.
n=0

(1-— 2)367% ewt = {f(z) = ianz" (z €D)
n=0

Here D := {2 € C | |2] < 1}. So if a,,’s are defined via

1+z

(3) (1—2)3e 12 =ap+ a1z + a2’ +azz> +..., zeD,
then

o

Z lax| < oo.

k=0

If Re(s)> 0, then e™* € D, and so from (3), we have
(4) pS =ag+aje”® +age”* +aze™> +..., Re(s) > 0.

Since Y ;7 lag| < oo, the right hand side in (4) belongs to A. So pS € A.
We define the ideals I = (p) and J = (p95).
Let

K :={pSf|feAand Sf € A}.

We claim that K = I N J. Trivially K C I N J. To prove the reverse
inclusion, let g € I NJ. Then there exist two functions f and h in A such
that g = ph = pSf. Hence Sf =he A Soge K.

Let L denote the ideal

L:={feA|SfeA.

Then K := pSL. Since S has a singularity at s = 0, it follows that L C my.
We will show that L = Lmg. Let f € L. We would like to factor f = hg
with h € L and g € my. Applying Lemma 2.6 with f; := f € mg and
fo = Sf € mg, for any 6 > 0, there exists a sequence (g )nen in A such
that

(1) for all n € N, g, € G(A).
(2) (gn)nen is convergent in A to a limit g € my.

(3) for alln € N, [lg, ' f = 951 flla < g and (|9, 'S f = g, 515 flla < oo
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Put
hy:=g,'f and H, :=g,'Sf.

Then h,, € my. Also H,, € my, since |S| is bounded by 1 on Re(s) > 0 and
f£(0) = 0. The estimates above imply that (h,)neny and (Hp)nen are Cauchy
sequences in A. Since my is closed, they converge to elements h and H,
respectively, in mg, that is, h, = g, 'f — h and H,, = g, 'Sf = Sh, — H.
Let H* denote the Hardy space of all bounded analytic functions in the
open right half plane equipped with the norm [[¢|loc := SUPRe(s)0 [¢(5)];
@ € H®. Since convergence in A implies convergence in H, it follows that

he 251 (since hy —25 h)
Shy 25 Sh (since hy, A, hand S € H™)

Sho 25 H  (since H, -2 H)

and so Sh = H. Also, in A norm we have
f= lim h,g, = hg.

Since h and Sh = H belong to my C A, we see that h € L. Moreover, as
g € my, we have got the desired factorization and L = Lmy.

But L # (0), since p € L. By Lemma 2.2, it follows that L cannot be
finitely generated. Therefore, pSL = I N J is not finitely generated. U
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