THE HERMITE PROPERTY OF A CAUSAL WIENER
ALGEBRA USED IN CONTROL THEORY

AMOL SASANE

ABSTRACT. Let C; := {s € C | Re(s) > 0} and let A denote the Banach
algebra

A—{s(e@+)»—>ﬁ(s)+2fke‘“k Oty <ty < to <.
k=0

fa € LY(0,00), (fu)rzo € €4, }

equipped with pointwise operations and the norm:
£ = 1 faller + 1 (Fe)nzollers f(s) = Fals)+ Y fre™™™* (s € Cy).
k=0

(Here ﬁ denotes the Laplace transform of f,.) It is shown that, endowed
with the Gelfand topology, the maximal ideal space of A is contractible.
In particular, the ring A is Hermite. The algebra A arises in control
theory, and the Hermite property has useful consequences in the problem
of stabilization of linear systems; see [3, Corollary 4.14]. The following
statements are equivalent for f € A™** k < n:

(1) There exists a g € A**™ such that gf = I on C,.

(2) There exist F,G € A™*™ such that GF = I,, on C, and F}; = fij,

1<i<n,1<j5<k.
(3) There exists a § > 0 such that f(s)*f(s) > 6Ix, s € C.

CDAM Research Report LSE-CDAM-2008-01

1. INTRODUCTION

The aim of this paper is to show that the maximal ideal space M (.A) of
the algebra A (defined below), is contractible. We also apply this result to
the problem of completing a left invertible matrix with entries in A to an
isomorphism, which has useful consequences in control theory.

Throughout the article, we will use the following notation:

C, :={s € C|Re(s) > 0}.
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Definition 1.1. Let A denote the Banach algebra

0
F(s)=fa(s)+ > _ fue ™ (s€C,),

k=0
fa € LI(O,OO), (fe)k>0 € o=ty<ti<ty<...
equipped with pointwise operations and the norm:

1= M faller + [[(f)rzollr-

Here fa denotes the Laplace transform of f,.

A=< f:C,. —-C

The above algebra arises as a natural class of transfer functions of stable
distributed parameter systems in control theory; see [1], [3], [4].

Notation 1.2. Let M (A) denote the maximal ideal space of A, that is the
set of all nonzero homomorphisms ¢ : A — C. We equip M (A) with the
weak-* topology (that is, the Gelfand topology).

In Proposition 1.4 below, we recall the known characterization of M (.A);
see for example [1, Lemma A.1, p. 658]. But first we give the following
definition.

Definition 1.3. x : R — C is a character if
Ix(t)] =1 and x(t+7)=x(t)x(7) for all t,7 € R.

Proposition 1.4. M(A) is the set of the following three types of nonzero
homomorphisms on A:

f'—)f(s)7 SG(C—O-

f=Fatd fre” " — fo

k=0

o oo
[= ]/C; + Z fre™ t— Z fre 7" x(t), o >0 and x is a character.
k=0 k=0

In the above, f € A, fo € LY(0,00) and (fx)k>0 € £ .

Notation 1.5.

(1) The homomorphism f — f(s) (f € A), corresponding to point eval-
uation at s € C, will be denoted henceforth by s. The set of all such
homomorphisms will be denoted by C,..

(2) The homomorphism o

ABﬁﬁ-kae*'t’“ — fo
k=0

will be denoted by @
(3) We define
U:=M(A)\C,.
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We will show that M(A) is contractible. We recall the notion of con-
tractibility below:

Definition 1.6. A topological space X is said to be contractible if there
exists a continuous map R : X x [0,1] — X and a zp € X such that

for all z € X, R(x,0) =z, and
for all z € X, R(x,1) = xo.

Our main result is the following:
Theorem 1.7. M(A) is contractible.

In particular, by a result proved in V. Ya. Lin [2, Theorem 3, p. 127],
the above implies that the ring A is Hermite. Before stating this result, we
recall the definition of a Hermite ring:

Definition 1.8. Let R be a ring with an identity element. A matrix f €
R™¥F is called left invertible if there exists a g € R¥*™ such that gf = I.

The ring R is called a Hermite ring if for all k,n € N with k < n and
all left invertible matrices f € R™¥¥, there exist F,G € R™" such that
GF =1, and F;; = fj; forall1 <i<nand 1 <j <k

Corollary 1.9. A is a Hermite ring.

The motivation for proving that A is a Hermite ring arises from control
theory, where it plays an important role in the problem of stabilization of
linear systems. Indeed, A being Hermite implies that if a transfer function
G has a right (or left) coprime factorization, then G has a doubly coprime
factorization, and the standard Youla parameterization yields all stabilizing
controllers for G. For further details on the relevance of the Hermite prop-
erty in control theory, see [3, Corollary 4.14, p. 296] and [4, Theorem 66, p.
347].

The corona theorem for A gives an analytic test for left invertibility (see
1)):

Proposition 1.10. Let f € A"k, Then the following are equivalent:

(1) There exists a g € A¥*™ such that gf = I}, on C,.
(2) There exists a 6 > 0 such that f(s)*f(s) > 621, s € C_.

Combining this with the fact the A is a Hermite ring now yields the
following:

Corollary 1.11. Let k < n and f € A"**. Then the following are equiva-
lent:

(1) There exists a g € A**™ such that gf = I, on C,.

(2) There exist F,G € A™" such that GF = I, on C; and Fj; = fij,
1<i<n,1<5<k.

(3) There exists a 6 > 0 such that f(s)*f(s) > 6%I, s € C,.
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In Section 3, we will give the proof of Theorem 1.7, but before doing that,
in Section 2, we first prove a few technical results we will need in the sequel.

Acknowledgement: The author would like to thank Alexander Brudnyi
for a useful discussion.

2. PRELIMINARIES

In this section, we prove a few technical results we will need in order to
prove our main result.
First we prove that the subset U := M(A) \ C, is closed in M(A).

Lemma 2.1. C, is open in M(A).
Proof. We observe that if -¢ denotes the Gelfand transform, then ¢ € C, iff
there exists a f, € L'(0,00) such that
|[(fa)" ()| = ¢ (fa)] > 0.
Thus g is a union of open sets:
c.= U {reMI|() @) >0},
fa€L1(0,00)

and is consequently open. O

Next we show that there is a one-to-one correspondence between C, and
C., and moreover their topologies coincide.

Lemma 2.2. C, is homeomorphic to C,.

Proof. The map
- :C, —-C, givenby s s
is clearly onto. It is also one-to-one, since if
51 = 852,

then in particular, their action on the Laplace transform of e~t € L(0, 00)
must be identical:

—~ 1 1 1 1 -
—t) = — = — - — —t
s1(e™) 81<s+1) s+l sl 82(3+1> s2(e7);

and so s; = s9. Thus - is invertible.
Let (sq) be a net such that s, — sg. Since f € A is continuous in C,, it
follows that f(sa) — f(s0), that is,

sa(f) = so(f)-

But the choice of f was arbitrary, and so

Sfaﬁsioin(CJr.
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Finally we prove the continuity of the inverse. Let (s) be a net such that
S — So. In particular, since e~! € L1(0, 00), we must have

—t) — — N — — —t
Sj(e ) SO‘<S 1) So, 1 S0 1 SO<S 1) Sio(e )7

which yields s, — sp in C,. O

We will also need the following.

Lemma 2.3. If (sq4) is a net in C, such that it is convergent in M(A) to
p €U, then (sq) — 0.

Proof. In particular, for et € L*(0,00), we have

— 1 1 1 —
—\ _ _ _ _ —t
sa(e )—sa<8+1>_Sa+1—>0—g0(8+1>—g0(e ),

and so 1/(sq +1) — 0. Thus s, — oc. O

The following lemma gives a useful criterion for convergence to an element
in U.

Lemma 2.4. Let p € U and let (¢q) be a net in M(A) such that

(1) For all f, € L'(0,00), pq (]/‘;) — 0, and
(2) for all T >0, pa(e™*T) — p(e~*T).

Then o — @ in U.

Proof. From the hypothesis, we see that for every f, € L'(0,00) and for
every exponential polynomial

N
p=> freH, 0=tg<ti<--- <ty
k=0

we have @ (fa +p) — @(fa +p). Let

fzf;—i-kae_'tkeA

k=0

be given and let € > 0. Choose an exponential polynomial p such that

I = Fupll = | X e -] < 5
k=0

Since gpa(ﬁb +p) — gp(ﬁl + p), there exists an «, such that for all o > ax,

0o (fa+p) —o(fa+p)| < g
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Then for all o > a,, we have

[ealf) = o (f)] (oalfatp+f—Jo—p)—¢fatp+f— fa—Dp)|

< |palfa+p) = @(fa + )| + [(0a = 0)(f = fa — D)|
6 ~

< stlea—elllf=Fo—p|
€ €

< 5t lleall +llel) 5

<

€ €
Cha+ns=e
2+(+)46

Hence for all f € A, po(f) — @(f). Consequently, (o) converges in the
weak-* topology on M (A). O

3. CONTRACTIBILITY OF M (A)

In this section we will prove our main result. Before giving the proof, we
explain the main idea behind it: The maximal ideal space can be partitioned
into the following three subsets:

ga {eoot, U\{po}

We will construct a continuous contraction R : M (A) x [0,1] — M (A) which
takes the identity map to the constant map (identically equal to ), via
translations along [0,00]: On C., R acts as follows:

s—s—log(l—1t).
So if f € A, then the action of s — log(1 —¢) on f gives

Fals —log(1— 1) + fo+ 3 fre(s-Toxt1=0
k=1

and when ¢ becomes 1, formally this goes to

0+ fo+ > fr-0=fo=pulf).

k=0

In this manner the part C, of the maximal ideal space will be shown to
contractible to Y.

On the other hand, we will define the action of R on U \ {ps} as follows:
if

P(f) =D frex(te), f=Fat Y freT €A,
k=0 k=0
then

(R(p,0)(f) = Y fre™ 180Dy (1),

k=0
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and once again, when ¢ becomes 1, this goes to
o0
fot+ D fe-0-x(tk) = fo = poolf)-
k=1

In this way, we will show that the part U\ {¢o} of the maximal ideal space
is also contractile to Yoo.
We now give the proof our main result.
Proof of Theorem 1.7. Let R : M(A) x [0,1] — M (A) be defined as follows:
(1) If s € C, then

R(s,t) =s—1log(l1—t) forte[0,1), and R(s,1)= pco-

(2) For all t € [0,1], R(¢oo,t) = Yoo-
(3) Let ¢ € U\ {poo}. Then there exists a ¢ > 0 and a character y such
that

P(F) =D fre " x(th), f=Tat+ Y fre” €A
k=0

k=0
With this notation, we define

(R(p, 1)) (f) = ifke_("_bg(l_t”t’“x(tk) for t €[0,1), and
k=0

R(p,1) = poo-
We prove below that R is continuous. First note that any net (¢q,tq) in
M (A) can be partitioned into three subnets:

1° One with terms (¢q,ta) € {po} % [0,1],
2° another one with terms (pq,to) € (U \ {¢¥x}) X [0,1],
3° and finally one with terms (sqa,ta) € C4 x [0, 1].

So it is enough to prove that for each of the nets of the above type, if (¢q, ta)
is convergent to (¢, ) in M(A) x [0, 1], then (R(pa,tq)) converges to R(y,t)
in M(A).
1° We have R(pq,ta) = R(¥co,ta) = Yoo. Moreover, poo = 0o — ¢, and so
© = Yoo- Thus R(p,t) = @oo. Hence R(pa,ta) = @oo = R(p,1t).
2° By Lemma 2.1, U is closed, and so ¢ € U. Thus

(R($asta)) (fa) = 0= (R(p,1)(fa) for all fo € L'(0,00).

We break this subnet into two further subnets: First consider the case when
to is identically 1. Then ¢, — t gives t = 1. Thus we have

R(pasta) = R(pa, 1) = oo = R(p, 1) = R(p,1).
Now consider the case that each ¢, € [0,1). Thus if

Palf) =D fre W xalte), f=fat Y freT €A,
k=0

k=0



8 AMOL SASANE
then
(R(pas ta))(e™*T) = em(oamlos=ta) Ty (T, T > 0.

We now consider the following two cases:
(1) ¢ # ¢oo- Let

o(f) =" fre 7x(te), f=Ffat D> fre €A
k=0

k=0
Since @, — ¢, it follows in particular for T° > 0,
pale™™") = e I(T) — e 7TX(T) = p(e™*).
If t < 1, then
ef(aaflog(lfta))TXa(T) _ 67(0710g(17t))TX(T)’

that is, (R(a,ta))(e™*") = (R(p,1))(e™*T).
On the other hand, if t = 1, then

e~ (Tarlosllte))Ty (T) — 0 e~ 7T x(T) = po(e*T),
that is, (R(¢a,ta))(e™*T) = (R(p,1))(e*T).

(2) © = Yoo AS Qo — @ = Yoo, for T >0, pa(e”
that is, e 7Ty (T) — 0. Thus

e~ (e losl DTN (T) — 0= poo(e ™),

that s, (R(ga: ta))(€™T) = (R(goe, £)(e=7).
The result now follows from Lemma 2.4.

T) = (e ) =0,

3° We break this subnet into two further subnets: First consider the case
when t, is identically 1. Then ¢, — t gives t = 1. Thus we have

R(sa;ta) = R(sa, 1) = oo = Rp, 1) = R(p,1).
Now consider the case that each ¢, € [0,1). Then
R(sa,ta) = 50 —log(1 —t,).
We now consider the following three cases:
(1) ¢ =s. If t € ]0,1), then
R(s,t) = s —log(1—1t).

Since s, — s, it follows from Lemma 2.2 that s, — s in C,. More-
over, the map —log(l —-) : [0,1) — [0,00) is continuous, and so
—log(1 —to) — —log(1 —t). It follows that

Sq —log(l —ty) — s —log(l1—¢t) in C,.
Thus by Lemma 2.2 again,
R(sa,ta) = 8q —log(l —ty) — s —log(l —t) = R(s,t).
If on the other hand, ¢t = 1, then
R(s,1) = $oo-
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Since t, — 1, —log(1—t4) — +00. Thus Re(sq—log(1—t,)) — +oo.
If

f=lat+> fre €A,
k=0

then ]?a(sa —log(1l —t4)) — 0 and

Z fke—(sa—log(l—ta))tk
k=1

Hence for all f € A,
(80 —log(1 = ta))(f) = f(8a —log(1 —ta)) — fo = poo(f)-
But the choice of f was arbitrary. Consequently,

R(sq;ta) = sa —log(l —ta) — woo = R(s,1).

< | et %) — o,

© = Poo- Then

R(p,t) = R(poo: 1) = Poo-
Since
Sa 7T P = Poos
by Lemma 2.3 it follows that s, — co. So sq—log(1—t,) — oo. (This
is obvious if ¢, — 1. But otherwise, —log(1l — to) — —log(1l — t).)
Hence

falsa —log(1 —ta)) — 0 = woo(fa) for all f, € L'(0,00).

Also, for T' > 0, we have

—ST) —saT —sT).

sale =e — 0= peole

Since t;,log(1 — to) < 0, it follows that e~ (Sa—log(—~ta)T _, ( that
is,

(50 — log(1 = ta))(e~T) — oole™*T).
From Lemma 2.4, it follows that

R(Sa:ta) = Sa —10g(1 — ta) — poo = R(p,1).

© F# Poo- Since
Sa = P € U\{SOOO}U

by Lemma 2.3 it follows that s, — c0. So sq—log(1—t,) — oco. (This
is obvious if t, — 1. But otherwise, —log(1 — t,) — —log(1 —t).)
Hence

Fa(sa —log(1 —ta)) — 0= (fa) for all f, € L}(0,00).
Let
o(f) = kae_ath(tk)a f=rf+ kae_' b e A.
k=0

k=0
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If t =1, then

R(p,t) = R(p, 1) = ¢oo-
As s — ¢, we have for T' > 0,
sa(e™T) = &1 —s e~ T(T) = pleT).
Since log(1 — t,) — —o0, it follows that
¢~(salos(1—1))T __, (). =0T (7).

that is,
(30 —log(1 —ta))(e™") — poole™*T).
From Lemma 2.4, we can now conclude that
R(sa,ta) = sa —log(l —to) — @oo = R(p, 1).
On the other hand, if ¢ < 1, then for T > 0,
(R(ip, 1)) () = e (o losll=ONTy(T),
Since sqo — @,

sa(e™) = el — e77IN(T) = p(e).

So
e—(sa—log(l—ta))T _ 6_(0_10g(1_t))TX(T),

that is,
(30 —log(1 —ta))(e™") — (R(p,1))(e™*").
From Lemma 2.4, we can now conclude that
R(Sa,ta) = sa —log(1 —to) — R(p,1).
This completes the proof. O
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