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Abstract

We consider an online routing problem in continuous time, where
calls have Poisson arrivals and exponential durations. The first-fit
dynamic alternative routing algorithm sequentially selects up to d
random two-link routes between the two endpoints of a call, via an
intermediate node, and assigns the call to the first route with spare
capacity on each link, if there is such a route. The balanced dy-
namic alternative routing algorithm simultaneously selects d random
two-link routes; and the call is accepted on a route minimising the
maximum of the loads on its two links, provided neither of these two
links is saturated.

We determine the capacities needed for these algorithms to route
calls successfully, and find that the balanced algorithm requires a much
smaller capacity.

1 Introduction

We consider here an online routing problem in continuous time, where calls
have Poisson arrivals and exponential durations. First, let us recall the fol-
lowing online routing problem in discrete time from [8], where calls do not
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end. There is a set V = {1, . . . , n} of n nodes, each pair of which may wish
to communicate. A call is an unordered pair {u, v} of distinct nodes, that is
an edge of the complete graph Kn on V . For each of the N =

(
n
2

)
unordered

pairs {u, v} of distinct nodes, there is a direct link, also denoted by {u, v},
with capacity D1 = D1(n). The direct link is used to route a call as long
as it has available capacity. There are also two indirect links, denoted by uv
and vu, each with capacity D2 = D2(n). The indirect link uv may be used
when for some w a call {u, w} finds its direct link saturated, and we seek an
alternative route via node v. Similarly vu may be used for alternative routes
for calls {v, w} via u.

We are given a sequence of M calls one at a time. For each call in turn,
we must choose a route (either a direct link or an alternative two-link route
via an intermediate node) if this is possible, before seeing later calls. These
routes cannot be changed later, and calls do not end. The aim is to minimise
the number of calls that fail to be routed successfully.

The calls are independent random variables Z1, Z2, . . . , ZM , where each
Zj is uniformly distributed over the edges e ∈ E(Kn). Let d be a (fixed)
positive integer. A general dynamic alternative routing algorithm GDAR
operates as follows. For each call e = {u, v} in turn, the call is routed on the
direct link if possible; and otherwise nodes w1, . . . , wd are selected uniformly
at random with replacement from V \ {u, v} and the call is routed via one
of these nodes if possible, along the two corresponding indirect links. The
first-fit dynamic alternative routing algorithm FDAR is the version when we
always choose the first possible alternative route, if there is one. The balanced
dynamic alternative routing algorithm BDAR is the version when we choose
an alternative route which minimises the larger of the current loads on its
two indirect links, if possible.

Results for this model were first obtained in [4, 9], and later strengthened
and extended in [8]. Consider the case where M ∼ cN for a constant c > 0.
It is known that with the algorithm FDAR we need both link capacities

D1, D2 of order
√

ln n
ln ln n

to ensure that asymptotically almost surely (aas),

that is ‘with probability → 1 as n →∞’, all M calls are routed successfully.
On the other hand, the balanced method BDAR succeeds with much smaller
capacities. Specifically, there is a tight threshold value close to ln ln n/ ln d
for D2 to guarantee that aas no call fails (and the precise value of D1 is
unimportant).

Here we consider a related continuous-time network model, with the de-
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sirable additional feature that calls end. Calls arrive in a Poisson process
with rate λN = λ

(
n
2

)
, where λ is a positive constant. The calls are iid

random variables Z1, Z2, . . ., where Zj is the j-th call to arrive and is uni-
form over the edges of Kn for each j; also let Tj be the arrival time of call
Zj. For each edge {u, v} there are two links, uv and vu, both with capacity
D = D(n) < ∞. Since in [8] the use of direct links was found to have a minor
effect on the total capacity requirements for efficient communication, here we
do not use direct links but instead demand that each call be routed along
a path consisting of a pair of indirect links. If a call is for {u, v}, then we
pick d possible intermediate nodes uniformly at random with replacement,
as in the GDAR algorithm. The FDAR algorithm always chooses the first
possible alternative route, if there is one. The BDAR algorithm chooses an
alternative route which minimises the larger of the current loads on its two
links, if possible. Call durations are unit mean exponential random vari-
ables, independent of one another and of the arrivals and choices processes.
Whenever a call terminates, both busy links are freed.

All random processes considered here are assumed to be right-continuous
(as is standard). For each edge e = {u, v} ∈ E and node w ∈ V \ e, let
Xt(e, w) denote the number of calls in progress at time t which are routed
along the path consisting of links uw and vw, that is calls between the end
nodes u and v of e routed via w. We call Xt = (Xt(e, w) : e ∈ E, w ∈ V \ e)
the load vector at time t, and let Ω = (Z+)N(n−2) denote the set of all possible
load vectors. The load vectors Xt for t ≥ 0 form a continuous-time discrete-
space Markov chain. By standard results, there exists a unique stationary
distribution Π; and, whatever the distribution of the starting state X0, the
distribution of the load vector Xt at time t converges to Π as t →∞.

Note that if there were no capacities then the calls in progress would form
an immigration-death process with immigration rate λ

(
n
2

)
and death rate 1.

Thus in equilibrium the total number ‖Xt‖1 of calls in progress at time t is
stochastically at most Po(λ

(
n
2

)
), and in particular

E‖Xt‖1 ≤ λ

(
n

2

)
< ∞. (1)

Our main interest is in the blocking probability, that is the probability
that a new call fails to find an available route. As in the discrete version
analysed in [8], or in the models analysed in [6] and [7], see also [2, 3, 11, 12],
we observe the ‘power of two choices’ phenomenon; that is, with the BDAR

3



algorithm for d ≥ 2 the capacity required to ensure that most calls are routed
successfully is much smaller than with the FDAR algorithm. Let us now state
our two theorems.

Theorem 1.1 shows that, when the FDAR algorithm is used, capacity
D(n) of order ln n

ln ln n
is needed in order to ensure that no call is lost in an

interval of length polynomial in n. The set-up is that we have capacity
D = D(n) ∼ α ln n

ln ln n
, and consider a time interval of length nK . In the case

d = 2, the result is roughly that, if α > K + 1 then all calls are expected
to be successful, and if α < K + 1 then many calls are expected to fail. For
general d we need to consider how K compares to d− 2, as there is a change
of behaviour at K = d− 2.

We allow any initial configuration X0 (for which E‖X0‖1 is finite). If the
system is in equilibrium at time 0 then our results apply to any time interval
of length nK : if the system is not in equilibrium at time 0 then we need to
assume that the starting time t0 of the interval is sufficiently large.

Theorem 1.1 Let λ > 0 be fixed and let d be a fixed positive integer. Then
there exists a constant κ = κ(λ, d) such that the following holds. Let K > 0
and α > 0 be constants. Let D = D(n) ∼ α ln n

ln ln n
. Let t1 = t1(n) ≥ ln(E ‖

X0‖1 +1) + κ ln n, and consider the interval [t1, t1 + nK ].

(a) Suppose that α > (K + 2)/d if K < d − 2, and α > K + 3 − d if
K ≥ d − 2. Whatever version of GDAR we use, the mean number of
calls lost during the interval is o(1).

(b) Suppose that α < (K + 2)/d and 0 < ε < K + 2 − dα if K < d − 2;
and that α < K + 3 − d and 0 < ε < K + 3 − d − α if K ≥ d − 2. If
we use the FDAR algorithm, then the mean number of calls lost during
the interval is Ω(nε).

If X0 is in equilibrium then E‖X0‖1 is finite by (1), so the conclusions above
apply to an interval [t1, t1 +nK ] for sufficiently large t1; and hence they apply
to all intervals [t, t + nK ] for t ≥ 0. Observe that for K < d − 2 the critical Colin: back

as it was, we
always keep λ
fixed

value of α is (K +2)/d, and for K ≥ d−2 the critical value of α is K +3−d;
and neither value depends on the arrival rate λ. As foreshadowed above, the
next result shows that the BDAR algorithm requires significantly smaller
capacities.

Theorem 1.2 Let λ > 0 be fixed and let d ≥ 2 be a fixed integer. Let K > 0
be a constant. Then there exist constants κ = κ(λ, d) and c = c(λ, d,K) > 0
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such that the following holds. Let t1 = t1(n) ≥ ln(E‖X0‖1 +1) + κ ln n, and
consider the interval [t1, t1 + nK ].

(a) If D(n) ≥ ln ln n/ln d + c and we use the BDAR algorithm, then the
expected number of failing calls during the interval is o(1).

(b) If D(n) ≤ ln ln n/ln d− c and we use any GDAR algorithm, then aas at
least nK+2−d−o(1) calls are lost during the interval.

We shall give further details, for example concerning the numbers of full
links, when we prove Theorem 1.2.

We mention that a process similar to the one defined above, but also with
direct links, was considered in [9], and then in [1]. The first of these works
obtained, heuristically, some preliminary results. In [1], Anagnostopoulos
et al. find an upper bound of ln ln n/ ln d + o(ln ln n/ ln d) for the capacity
required by the BDAR algorithm to ensure that, in equilibrium, an arriving
call is accepted with probability tending to 1 as n → ∞. Further, they
identify a lower bound of Ω(

√
ln n/ ln ln n) for the capacity needed by the

FDAR algorithm to achieve the same effect. Here we prove sharper versions of
these bounds, and supplement them with a lower bound on the performance
of the BDAR algorithm and an upper bound on the performance of the FDAR
algorithm. Further we extend them to prove upper and lower bounds on the
performance of these algorithms over long time intervals. In comparison
with [1], our bounds for the FDAR algorithm are of the order ln n/ ln ln n,
not

√
ln n/ ln ln n; this is due to the fact that we do not allow direct routing

between pairs of nodes.
Let us close this section by giving some further definitions and notation

which we shall need shortly, and then a brief plan of the paper.
Given an edge e = {u, v} ∈ E, let Xt(e) =

∑
w 6∈e Xt(e, w) denote the

number of calls between u and v in progress at time t. Also, given distinct
nodes v and u, let Xt(vu) =

∑
w 6=u,v Xt({v, w}, u), which is the load of link vu

at time t. Given a node v, let Xt(v) =
∑

u 6=v Xt(vu), which is the number

of calls with one end v at time t. Thus ‖Xt‖1=
1
2

∑
v∈V Xt(v) is the total

number of calls at time t. We say that a link is saturated (or full) if it has
load equal to its capacity D. Given a node v, we let SD

t (at v) denote the set
of saturated links vw for calls at v at time t; and let SD

t (at v) = |SD
t (at v)|,

which is the number of saturated links vw. Similarly, given a node w, we
let SD

t (via w) denote the set of saturated links vw for calls at some node v
at time t; and let SD

t (via w) = |SD
t (via w)|. Also, for each time t we let φt
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denote the σ-field generated by (Xs : s ≤ t), and let φt− denote the σ-field
generated by (Xs : s < t).

The rest of the paper is organised as follows. Section 2 contains some
preliminary lemmas that will be needed in our proofs. In Section 3 we es-
tablish concentration of measure inequalities for the total number of calls as
well as the number of saturated links. In Section 4 we prove Theorem 1.1,
and in Section 5 we prove Theorem 1.2.

2 Preliminary results

In this section we give some elementary results which will be used in our
proofs.

If X has the Poisson distribution with mean µ let us write X ∼ Po(µ).
For such a random variable X we shall use the bound

Pr(X ≥ k) ≤ µk/k! ≤ (eµ/k)k

for each positive integer k. Given a positive integer D, let

pD(µ) = e−µ
∑
k≥D

µk

k!
≤ µD/D!

be the probability that a Po(µ) random variable takes value at least D. The
following are a pair of standard concentration inequalities for a binomial or
Poisson random variable X with mean µ:

Pr(X − µ ≥ εµ) ≤ exp(−1

3
ε2µ) (2)

and

Pr(X − µ ≤ −εµ) ≤ exp(−1

2
ε2µ) (3)

for 0 ≤ ε ≤ 1 (see for example Theorem 2.3 (c) and inequality (2.8) in [10]).
We shall use the following version of Talagrand’s inequality, see for ex-

ample Theorem 4.3 in [10]. (In the notation in [10], the function h below is
a (c2r)-configuration function.)

Lemma 2.1 Let X = (X1, X2, . . .) be a finite family of independent random
variables, where the random variable Xj takes values in a set Ωj. Let Ω =∏

j Ωj.
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Let c and r be positive constants, and suppose that the non-negative real-
valued function h on Ω satisfies the following two conditions for each x ∈ Ω.

• Changing the value of a co-ordinate xj can change the value of h(x) by
at most c.

• If h(x) = s, then there is a set of at most rs co-ordinates such that
h(x′) ≥ s for any x′ ∈ Ω which agrees with x on these co-ordinates.

Let m be a median of the random variable Z = h(X). For each x ≥ 0

P (Z ≥ m + x) ≤ 2 exp

(
− x2

4c2r(m + x)

)
, (4)

and

P (Z ≤ m− x) ≤ 2 exp

(
− x2

4c2rm

)
. (5)

The next lemma concerns hitting times of a generalised random walk with
‘drift’. It is the ‘reverse’ of Lemma 7.2 in [6], and can be deduced from that
result by replacing the Yi with −Yi; we omit the details.

Lemma 2.2 Let φ0 ⊆ φ1 ⊆ . . . be a filtration, and let Y1, Y2, . . . be random
variables taking values in {−1, 0, 1} such that each Yi is φi-measurable. Let
E0, E1, . . . , be events where Ei ∈ φi for each i, and let E = ∩iEi. For each
t ∈ N, let Rt = R0 +

∑t
i=1 Yi. Let 0 ≤ p ≤ 1/3, let r0 and r1 be integers such

that r1 < r0, and let m be an integer such that pm ≥ 2(r0− r1). Assume that
for each i = 1, . . . ,m,

Pr(Yi = 1|φi−1) ≤ p on Ei−1 ∩ (Ri−1 > r1),

and
Pr(Yi = −1|φi−1) ≥ 2p on Ei−1 ∩ (Ri−1 > r1).

Then

Pr (E ∩ {Rt > r1 ∀t ∈ {1, . . . ,m}}|R0 = r0) ≤ exp
(
−pm

28

)
.

We can use the last lemma to upper bound hitting times for a type of discrete-
time ‘immigration-death’ process.
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Lemma 2.3 Let φ0 ⊆ φ1 ⊆ . . . , be a filtration, and let Y1, Y2, . . . be random
variables taking values in {−1, 0, 1} such that each Yi is φi-measurable. Let
E0, E1, . . . be events where Ei ∈ φi for i = 0, 1, . . .. Let a, b > 0 be constants.
Let r̃ and r be integers with 2a/b ≤ r ≤ r̃ − 1.

Let R0 = r0, and let Rt = R0 +
∑t

i=1 Yi. Assume that for each i = 1, 2, . . .
and each y ≥ r + 1

Pr(Yi = 1|φi−1) ≤ a on Ei−1 ∩ (Ri−1 > r);

and
Pr(Yi = −1|φi−1) ≥ by on Ei−1 ∩ (Ri−1 = y)

for each y = r + 1, . . . , r̃, and

Pr(Yi = −1|φi−1) ≥ br̃ on Ei−1 ∩ (Ri−1 > r̃).

Let m′ = d4
b
e dlog2

r̃
r
e, and let E be the event ∩m′

i=1Ei. Then

Pr(E ∩ {Rt > r ∀t ∈ {1, . . . ,m′}}) ≤ 2 exp
(
− r

14

)
. (6)

Proof. Let k = dlog2
r̃
r
e − 1, so that 2kr < r̃ ≤ 2k+1r. Let T0, T1, . . . , Tk be

the hitting times to cross the k intervals from r0 down to 2kr, from 2kr down
to 2k−1r, and so on, ending with the interval from 2r down to r. Thus

T0 = min{t ≥ 0 : Rt = 2kr},

and for j = 1, . . . , k,

Tj = min{t > Tj−1 : Rt = 2k−jr}.

Consider j ∈ {0, . . . , k}. We may use the last lemma with p as pj = b 2k−j−1r,
r0 = 2k−j+1r (except that for j = 0 we let r0 = r̃), r1 = 2k−jr and m as
mj = d4

b
e. Note that pjmj ≥ 2k−j+1r, which is at least twice the length of

the interval. (It may look at first sight that we are ‘giving away’ rather a lot
on the ‘upward’ probability but this makes only a constant factor difference.)
Hence, with T−1 ≡ 0,

Pr(E ∩ {Tj − Tj−1 > mj}) ≤ exp
(
−pjmj

28

)
≤ exp

(
−2k−jr

14

)
.
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But now

Pr(E ∩ {Rt > r ∀t ∈ {1, . . . ,m′}}) ≤
k∑

j=0

Pr(E ∩ (Tj − Tj−1 > mj))

≤
k∑

j=0

exp

(
−2k−jr

14

)
≤ e−

r
14 /(1− e−

r
14 ).

Hence
Pr(E ∩ {Rt > r ∀t ∈ {1, . . . ,m}}) ≤ 2e−

r
14 ,

by the above if e−
r
14 ≤ 1

2
and trivially otherwise.

The next lemma is Lemma 7.3 in [6], and shows that if we try to cross
an interval against the drift we rarely succeed.

Lemma 2.4 Let a be a positive integer. Let p and q be reals with q >
p ≥ 0 and p + q ≤ 1. Let φ0 ⊆ φ1 ⊆ φ2 ⊆ . . . be a filtration, and let
Y1, Y2, . . . be random variables taking values in {−1, 0, 1} such that each Yi

is φi-measurable. Let E0, E1, . . . be events where each Ei ∈ φi, and let E =
∩iEi. Let R0 = 0 and let Rk =

∑k
i=1 Yi for k = 1, 2, . . .. Assume that for

each i = 1, . . . ,m,

Pr(Yi = 1|φi−1) ≤ p on Ei−1 ∩ (0 ≤ Ri−1 ≤ a− 1),

and
Pr(Yi = −1|φi−1) ≥ q on Ei−1 ∩ (0 ≤ Ri−1 ≤ a− 1).

Let
T = inf{k ≥ 1 : Rk ∈ {−1, a}}.

Then
Pr (E ∩ {RT = a}) ≤ (p/q)a.

We shall require another lemma, similar to Lemma 2.1 in [6]. Consider
the n-node case, with set Ω = (Z+)N(n−2) of all load vectors. Let us say that
a real-valued function f on Ω has bounded increase at a node v if whenever s
and t are times with s < t, then f(xt) is at most f(xs) plus the total number
of arrivals in the interval (s, t] for v; f has bounded increase via a node v
if whenever s and t are times with s < t, then f(xt) is at most f(xs) plus
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twice the total number of arrivals in the interval (s, t] routed via v as the
intermediate node; and f has strongly bounded increase at a node v if f(xt)
is at most f(xs) plus the maximum number of arrivals for v in the interval
(s, t] which use any given link incident on v. Thus for example, given v ∈ V ,
f(x) = x(v) has bounded increase at v, f(x) = |{w ∈ V \ {v} : x(wv) ≥
D}| has bounded increase via v, and f(x) = maxu∈V \{v} x(vu) has strongly
bounded increase at v.

Lemma 2.5 Let v be a node in V . Let σ, τ > 0 and let a, b be non-negative
integers. Let f : Ω → R and g, h : R → R be functions.Let E ∈ φt1. Suppose

that, for all a ∈ R and all times t1 ≤ t ≤ t1+τ , Pr
(
E∩{f(Xt) ≤ a}

)
≤ g(a)

and Pr
(
E ∩ {f(Xt) ≥ a}

)
≤ h(a). Assume further that

(a) f has bounded increase at v and θ = Pr(Po(λ(n− 1)σ) ≥ b + 1), or

(b) f has strongly bounded increase at v and θ = (n−1)Pr(Po(λdσ) ≥ b+1).

Then

Pr
[
E ∩{f(Xt) ≤ a for some t ∈ [t1, t1 + τ ]}

]
≤ (

τ

σ
+1) (g(a + b) + θ) , (7)

and

Pr
[
E ∩{f(Xt) ≥ a + b for some t ∈ [t1, t1 + τ ]}

]
≤ (

τ

σ
+ 1) (h(a) + θ) . (8)

(c) Suppose that f has bounded increase via v and θ = Pr(Po(λd(n −
1)σ/2) ≥ b + 1). Then

Pr
[
E∩{f(Xt) ≤ a for some t ∈ [t1, t1+τ ]}

]
≤ (

τ

σ
+1) (g(a + 2b) + θ) ,

(9)
and

Pr
[
E∩{f(Xt) ≥ a+2b for some t ∈ [t1, t1+τ ]}

]
≤ (

τ

σ
+1) (h(a) + θ) .

(10)

Proof. Consider first the case (a), when f has bounded increase at v. Note
that the j = b τ

σ
c+ 1 disjoint intervals [t1 + (r− 1)σ, t1 + rσ) for r = 1, . . . , j

cover [t1, t1 + τ ]. Let Ar denote the event that there are at least b + 1
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arrivals for node v in the interval [t1 + (r − 1)σ, t1 + rσ), so that Pr(Ar) =
Pr[Po(λ(n− 1)σ) ≥ b + 1] = θ. But

E ∩ {f(Xt) ≤ a for some t ∈ [t1, t1 + τ ]}

⊆ E ∩
{(

∪j
r=1{f(Xt1+(r−1)σ) ≤ a + b}

)
∪

(
∪j

r=1Ar

)
},

and (7) follows. Similarly

E ∩ {f(Xt) ≥ a + b for some t ∈ [t1, t1 + τ)}

⊆ E ∩
{(

∪j−1
r=0{f(Xt1+(r−1)σ) ≥ a}

)
∪

(
∪j

r=1Ar

) }
,

and (8) follows.
To handle the case (b) when f has strongly bounded increase at v, note

that the arrival process onto any given link vu is stochastically dominated
by a Poisson process with rate

(n− 2)λ
(n− 2)d − (n− 3)d

(n− 2)d
≤ λd.

Thus if Br denotes the event that there are at least b + 1 arrivals in the
interval [t1 + (r − 1)σ, t1 + rσ) that are routed on some link vu, u 6= v, then

Pr(Br) ≤ (n− 1)Pr[Po(λdσ) ≥ b + 1];

and we can complete the proof as above.
Finally, in the case (c) the arrival process onto links with v as the inter-

mediate node is stochastically dominated by a superposition of
(

n−1
2

)
inde-

pendent Poisson processes, each with rate

λ
(n− 2)d − (n− 3)d

(n− 2)d
≤ λd

n− 2
.

If Cr denotes the event that there are at least b + 1 arrivals in the interval
[t1 + (r − 1)σ, t1 + rσ) that are routed via v, then Pr(Cr) ≤ Pr[Po(λd(n −
1)σ/2) ≥ b + 1]. The rest of the proof is as above.

Consider a continuous-time Markov process (Xt) with countable state
space S and with q-matrix q = (q(x, y) : x, y ∈ S). Under certain con-
ditions we can compare features of its behaviour with that of independent
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immigration-death processes. We shall need the following lemma to handle
the lower bound part of Theorem 1.1.

Let N be a positive integer and let the index j run over {1, . . . , N}. For
each j let ej denote the jth unit N -vector and let fj be a function from S
to the non-negative integers; and write f(x) for (f1(x), . . . , fN(x)). Assume
that the following two conditions hold:

(i) for all distinct x and y in S such that q(x, y) > 0 we have f(y) = f(x)±ej

for some j ; and

(ii) for each x ∈ S and each j ∑
y∈S:fj(y)=fj(x)−1

q(x, y) = fj(x).

Now define λj(x) for each x ∈ S and each j by setting

λj(x) =
∑

y∈S:fj(y)=fj(x)+1

q(x, y).

Lemma 2.6 For each j let λj > 0 be a constant. Let 0 ≤ t1 < t2. Let
Yt = ((Yj)t : j = 1, . . . , N) be a vector of independent immigration-death
processes where (Yj)t has immigration rate λj and death rate 1, and has
population 0 at time t1. Let F ⊆ S be such that for each x ∈ F and each j
we have λj(x) ≥ λj, and let A be the event that Xt ∈ F for each t ∈ [t1, t2].
Then for each downset B in {0, 1, . . .}N ,

Pr({f(Xt2) ∈ B} ∩ A) ≤ Pr(Yt2 ∈ B).

Now let nj be a given positive integer for each j. Let Ỹt = ((Ỹj)t : j =
1, . . . , N) be like Yt except that (Ỹj)t has upper population limit nj. Let
F̃ ⊆ S be such that, for each x ∈ F̃ and each j = 1, . . . , N , if fj(x) < nj

then λj(x) ≥ λj. Let Ã be the event that Xt ∈ F̃ for each t ∈ [t1, t2]. Then
for each downset B in {0, 1, . . .}N ,

Pr({f(Xt2) ∈ B} ∩ Ã) ≤ Pr(Yt2 ∈ B).

Proof. Let x0 ∈ F , and condition on Xt1 = x0. Then we may assume that
λj(x) ≥ λj for each x ∈ S, since the values λj(x) for x 6∈ F are irrelevant;
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and then we may ignore the event A. But now an easy coupling argument
shows that

Pr(f(Xt2) ∈ B|Xt1 = x0) ≤ Pr(Yt2 ∈ B),

and since this is true for each x0 ∈ F the result follows. The second part,
with population limits, may be proved similarly.

3 Failure probability, total load and saturated

links

In this section we give upper and lower bounds on the failure probability of
a call, upper and lower bounds on the total number of calls for a node v,
and upper bounds on the number of saturated links incident on v over long
periods of time. All the results are valid for any GDAR algorithm.

First we consider the failure probability of a call. For each time t and
node v, let dt(v) = SD

t (at v), and let ∆t = maxv dt(v). Recall that T is
the random departure time of the last one of the ‖X0‖1 initial calls, and for
j = 1, 2, . . . the call Zj arrives at time Tj.

Lemma 3.1 On Tj = t

Pr(Zj fails |φt−) ≤
(

2∆t−

n− 2

)d

, (11)

and

Pr(Zj fails |φt−) ≤ 2d+1n−1
∑
v∈V

(dt−(v)

n− 2

)d

; (12)

also,

Pr(Zj fails |φt−) ≥ n−1
∑
v∈V

(dt−(v)

n− 2

)d

. (13)

and so

Pr(Zj fails |φt−) ≥
(minv dt−(v)

n− 2

)d

. (14)

13



Proof. Recall that N =
(

n
2

)
. On Tj = t we have

Pr(Zt fails |φt−) ≤ 1

N

∑
u 6=v

(
dt−(u) + dt−(v)

n− 2

)d

≤ 2d−1

N(n− 2)d

∑
u 6=v

(dt−(u)d + dt−(v)d),

and both upper bounds follow. (For the second inequality we used the fact
that (x + y)d ≤ 2d−1(xd + yd) for x, y > 0.)

On the other hand, on Tj = t

Pr(Zt fails |φt−) ≥ 1

N
(n− 2)−d

∑
v∈V

∑
u 6=v

(dt−(v)− IXt−(vu)=D)d.

But for each v ∈ V ,∑
u 6=v

(dt−(v)−IXt−(vu)=D)d = (n−1−dt−(v))dt−(v)d+dt−(v)(dt−(v)−1)d ≥ 1

2
(n−1)dt−(v)d

for n ≥ 3. Hence on Tj = t

Pr(Zt fails |φt−) ≥ 1

N
(n− 2)−d

∑
v∈V

1

2
(n− 1)dt−(v)d

= n−1
∑
v∈V

(dt−(v)

n− 2

)d

,

and so both lower bounds (13) and (14) follow.

To obtain our estimates for the total number of calls for a node v, and
upper bounds on the number of saturated links incident on v, we compare
the process (Xt) to a ‘superprocess’ (X̃t) which satisfies X̃0 = X0 and evolves
as follows. The unordered pairs of distinct nodes u and v receive independent
rate λ Poisson arrival streams of calls; each link uv has infinite capacity; and
each call throughout its duration occupies d two-link routes chosen uniformly
at random with replacement. (If a route is chosen more than once by a given
call, the call will still be counted only once on the corresponding two links.)
All call durations are unit mean exponentials independent of one another
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and of the arrivals and choices processes. For each pair of distinct nodes
u and v, X̃t({u, v}) =

∑
w 6=u,v X̃t({u, v}, w) denotes the number of calls in

progress between u and v at time t. Note that the process (X̃t({u, v}) :
u, v ∈ V, u 6= v)t≥0 is itself Markov, since the capacities are infinite. It has
a unique equilibrium distribution, and in equilibrium the X̃t({u, v}) are all
independent Po(λ) random variables. Thus, in equilibrium the total number
‖X̃t‖1 of ongoing calls at time t is Po(λ

(
n
2

)
); and, for each v, the total number

X̃t(v) of ongoing calls with one end v is Po(λ(n− 1)).
We shall use Tv to denote the time that the last of the X0(v) initial calls

with one end v departs. Also, we let T = maxv∈V Tv. For various events A
we shall give an upper bound on Pr(A ∩ {T ≤ t}). We may later obtain an
upper bound on Pr(A) using

Pr(A) ≤ Pr(A ∩ {T ≤ t}) + Pr(T > t), (15)

and noting that
Pr(T > t) ≤ E‖X0‖1 e−t. (16)

To see why (16) holds, temporarily let St be the number of initial calls
surviving to time t, and observe that

Pr(T ≥ t) = Pr(St > 0) ≤ ESt = E‖X0‖1 e−t

The next lemma shows that for any node v ∈ V , Xt(v) is unlikely to
deviate far above λ(n− 1) once the initial calls have gone.

Lemma 3.2 Let 0 < δ < 1, let n be a positive integer, and let At be the
event that Xt(v) ≥ (1 + δ)λ(n − 1) for some vertex v. Then for all times
t ≥ 0

Pr(At ∩ {T ≤ t}) ≤ ne−
1
3
δ2λ(n−1). (17)

(The value of D is not relevant here.)
Proof. Consider links vu incident on a given node v. The total number of
calls on those links is stochastically dominated by the number of calls for
v corresponding to the process (X̃t). Let (Ỹt) = (Ỹt({u, v}) : u, v ∈ V ) for
t ≥ 0 be a Markov process with the same q-matrix as (X̃t) but in equilibrium.
We couple (Xt), (X̃t) and (Ỹt) as follows. We assume that X0 = X̃0. All
subsequent arrival and potential departure times of new calls are the same
for the three processes, except that the departures of calls that were not
accepted in (Xt) are ignored in that process. Additionally, every one of the

15



‖X0‖1 initial calls in (Xt) is coupled with a corresponding initial call in (X̃t),
and the paired calls have the same departure times.

Under the coupling, on the event Tv ≤ t, for all times t and all u 6= v,

Xt(vu) ≤ X̃t(vu) ≤ Ỹt(vu),

and so also
Xt(v) ≤ X̃t(v) ≤ Ỹt(v).

But Ỹt(v) is a Poisson random variable with mean λ(n − 1), and so by the
concentration inequality (2), we have

Pr ({Xt(v) ≥ (1 + δ)λ(n− 1)} ∩ {Tv ≤ t}) ≤ e−
1
3
δ2λ(n−1).

Now (17) follows.

We shall need to upper bound the number of saturated links around any
given node, as in the following lemma.

Lemma 3.3 Let n and D be positive integers, and let k ≥ 4pD(dλ)(n − 1).
Then for each t ≥ 0

Pr({SD
t (at v) ≥ k} ∧ {T ≤ t}) ≤ 2 exp

(
− k

2d2D

)
(18)

and

Pr({SD
t (via v) ≥ k} ∧ {T ≤ t}) ≤ 2 exp

(
− k

8D

)
. (19)

Observe that if δ > 0 and D = D(n) → ∞ then for n sufficiently large we
may for example take k as δn.

Proof. We use the coupling of the three processes (Xt), (X̃t) and (Ỹt) de-
scribed in the proof of Lemma 3.2. Let v ∈ V be a node. Note that, for each
u 6= v, the load Ỹt(vu) of link vu is a Poisson random variable with mean

λ(n− 2)
(n− 2)d − (n− 3)d

(n− 2)d
≤ dλ.

We write S̃D
t (at v) to denote the set of links vw for calls at v that have load at

least D at time t in the stationary superprocess (Ỹt); and we write S̃D
t (at v) =

|S̃D
t (at v)|. Also, for w ∈ W , S̃D

t (via w) denotes the set of links uw for calls
at some node u, and routed via w, that have load at least D at time t in
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(Ỹt); and S̃D
t (via w) = |S̃D

t (via w)|. Then E[S̃D
t (at v)] ≤ (n − 1)pD(dλ) and

E[S̃D
t (via w)] ≤ (n− 1)pD(dλ) for all times t ≥ 0.
For a given v ∈ V , the loads Ỹt(vu) of links vu for u 6= v are determined

by a set of (n− 1)(n− 2)d independent Poisson random variables each with
mean λ/(n−2)d (corresponding to n−1 choices of the other end node w and
(n− 2)d choices of d routes for a call with end nodes v and w), and so there
is strong concentration of measure. Note that the median m(v) of S̃D

t (at v)
is at most 2(n − 1)pD(dλ). We can use Talagrand’s inequality Lemma 2.1,
with c = d and r = D. This gives, for all t ≥ 0,

Pr(S̃D
t (at v) ≥ m(v) + z) ≤ 2 exp

(
− z2

4d2D(m(v) + z)

)
.

Now take z ≥ 2(n− 1)pD(dλ) ≥ m(v), so that

Pr(S̃D
t (at v) ≥ 2z) ≤ 2 exp

(
− z

8d2D

)
.

Similarly, given w ∈ V , the loads Ỹt(uw) of links uw for u 6= w are determined
by a set of

(
n−1

2

)
[(n−2)d−(n−3)d] independent random variables Po(λ/(n−

2)d) (corresponding to calls for all possible pairs of distinct nodes v, u ∈
V \ {w} choosing a route via node w). Applying Talagrand’s inequality with
c = 2 and r = D, we have, for t ≥ 0 and z ≥ 2(n− 1)pD(dλ),

Pr(S̃D
t (via w) ≥ 2z) ≤ 2 exp

(
− z

32D

)
.

On the event {T ≤ t}

Xt(vu) ≤ X̃t(vu) ≤ Ỹt(vu)

for each link vu, and we deduce that inequalities (18) and (19) hold.

The next lemma uses the last one to show that for any node v ∈ V , for all
sufficiently large times t, Xt(v) is unlikely to deviate much below λ(n− 1).

Lemma 3.4 Let 0 < δ < 1 be a constant. Let the capacity D = D(n) be
such that pD(dλ) ≤ δ/32 and D = o(n). Let Bt be the event that Xt(v) ≤ changes here

and to the
proof(1− δ)λ(n− 1) for some vertex v. Then there exists a constant η = η(δ) > 0

such that, for each positive integer n we have

Pr(Bt2 ∩ {T ≤ t1}) ≤ 2e−ηn/D (20)

for all times t1 ≥ 0 and t2 ≥ t1 + ln(4/δ).
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I did not
always
remember to
put in the
factor 1/D -
now done

Proof. Observe that the left hand side of (20) is non-decreasing in t1, and
so we need only consider the case when t2 = t1 + ln(4/δ). For each t1 ≥ 0,
let t2 = t1 + ln(4/δ); and each v ∈ V let At1(v) be the event that

SD
t (at v) ≤ (n− 2)δ/4 for all t ∈ [t1, t2]

and let At1 = ∩vAt1(v). By (18) in Lemma 3.3, we have

Pr({SD
t (at v) ≥ (n− 2)δ/8} ∩ {T ≤ t1}) ≤ 2 exp

(
−(n− 2)δ

16d2D

)
. (21)

We now apply Lemma 2.5, part (a), with a = b = (n− 2)δ/8, σ = δ/dλ, and
E as the event that T ≤ t1. Thus

Pr({T ≤ t1} ∩ At1(v)) ≤ (
ln(4/δ)

σ
+ 1)(h(a) + θ),

where h(a) is the right hand side of (21), and

θ = Pr(Po(λ(n− 1)σ ≥ b + 1) ≤ e−δ(n−1)/3d,

by inequality (2). Now summing over all v ∈ V we obtain

Pr({T ≤ t1}∩At1) ≤ n (d ln(4/δ)λ/δ + 1)

(
2 exp

(
−(n− 2)δ

16d2D

)
+ e−δ(n−1)/3d

)
.

Thus there exists a constant η = η(δ) such that for all n ∈ N and all t1 ≥ 0
we have do not care

about large t
here

what do you
mean?? now
changed

Pr({T ≤ t1} ∩ At1) ≤ 2e−ηn/D.

Now, by (11) in Lemma 3.1, on the event that SD
t−(at u) ≤ (n − 2)δ/4

for each vertex u, the probability, conditional on φt− and on the end points
of the call, that a new call arriving at time t would not be accepted is at
most δ/2, and so the rate at which calls for a given node v are accepted is
at least (n − 1)λ(1 − δ/2). We may now apply Lemma 2.6 in the special
case with N = 1, f1(x) as the number of calls in progress with one end v,
and λ1 = (n − 1)λ(1 − δ/2). Also 1 − e−(t2−t1) = 1 − e− ln(4/δ) = 1 − δ/4.
Hence, on At1 , Xt2(v) stochastically dominates a Poisson random variable
Po((n − 1)λ(1 − 3δ/4)). Then, using the concentration inequality (3), for
all v,

Pr(At1 ∩ {Xt2(v) ≤ (1− δ)λ(n− 1)}) ≤ e−δ2λ(n−1)/128.
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Combining the above estimates we have that Pr({T ≤ t1} ∩ {Xt2(v) ≤
(1− δ)λ(n− 1)}) is at most

Pr
(
{T ≤ t1} ∩ At1

)
+ Pr(At1 ∩ {Xt2(v) ≤ (1− δ)λ(n− 1)}) ≤ 2e−ηn/D

for all n with a suitable new value of η: thus

Pr({T ≤ t1} ∩ {Xt2(v) ≤ (1− δ)λ(n− 1)}) ≤ 2e−ηn/D, (22)

and the lemma follows easily.

To end this section we put together two of the results above to show that
we are unlikely to observe large deviations of Xt(v) from λ(n − 1) for any
node v even during very long time intervals.

Lemma 3.5 Given 0 < δ < 1, there exists a constant β = β(δ) > 0 such that
the following holds. Let the capacity D = D(n) be such that pD(dλ) ≤ δ/32,

and say D = O(n
1
2 ). Let θ > 0 and let t0 = ln(E ‖X0‖1 +1) + (θ + 1) ln n.

Let Ct denote the event that |Xt(v)−λ(n−1)| > δλ(n−1) for some vertex v.
Then for each positive integer n and each time t1 ≥ t0 + ln(4/δ)

Pr(Ct holds for some t ∈ [t1, t1 + eηn/D]) = o(n−θ).

Proof. Observe that Ct = At∪Bt, where At and Bt are defined in Lemmas 3.2
and 3.4 respectively. Hence by these lemmas there exists a constant γ > 0
such that for any time t ≥ t0 + ln(4/δ) we have

Pr
(
Ct ∩ {T ≤ t0}

)
≤ 2e−γn/D.

Let β = γ/3. We may now apply case (a) of Lemma 2.5, with τ = eβn and
σ = δ/4, and b = δλ(n−1)/2. We use inequality (7) with a = (1−δ)λ(n−1)
for deviations below the mean, and inequality (8) with a = (1− δ/2)λ(n−1)
for deviations above the mean. Thus for all positive integers n and all times
t1 ≥ t0 + ln(4/δ) we have

Pr
(
{Ct for some t ∈ [t1, t1 + eβn/D]} ∩ {T ≤ t0}

)
≤ 2e−βn/D.

We may now use (15) and (16) to complete the proof.
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4 Proof of Theorem 1.1

Recall that T denotes the departure time of the last one among those calls
that were present in the system at time 0. Let τ1 = τ1(n) be any time such
that

τ1 ≥ ln(E‖X0‖1 +1) + (K + 3) ln n. (23)

4.1 Theorem 1.1: upper bound

Since D ∼ α ln n/ ln ln n, we have pD(dλ) = n−α+o(1). Then

Pr(T ≥ τ1) ≤ E‖X0‖1 e−τ1 ≤ n−K−3.

Let NA be the number of calls that arrive in the interval [τ1, τ1 + nK ]. Thus
NA ∼ Po(λ

(
n
2

)
nK . Let NF be the number of calls that fail in the interval

[τ1, τ1 + nK ]. We must show that ENF = o(1).
Suppose first that K < d − 2 and α > (K + 2)/d. We are going to

upper bound ∆t in order to use (11), and for that we argue as in the proof
of Lemma 3.3. By Talagrand’s inequality (Lemma 2.1), for each v ∈ V ,

Pr
(
{dt(v) > 4(n− 1)pD(dλ) + ln3 n} ∩ {T < t}

)
≤ Pr

(
S̃D

t (at v) > 4(n− 1)pD(dλ) + ln3 n
)

= exp(−Ω(ln3 n/D)) = exp(−Ω(ln2 n)).

For t′ > t > 0, let At,t′ be the event that ∆s ≤ 4(n− 1)pD(dλ) + ln3 n for all
s ∈ [t, t′). By the above inequality and Lemma 2.5,

Pr(At,t+nK ∩ {T < t}) = exp(−Ω(ln2 n)),

and it follows using (15) and (16) that Pr(Aτ1,τ1+nK ) = o(n−K−3). was A
τ1,nK

By Lemma 3.1 inequality (11), on At,t′ ∩ {Tj = t′} was φt+t′−

Pr(Zj fails |φt′−) ≤
(

8(n− 1)pD(dλ) + 2 ln3 n

n− 2

)d

= p0 = o(n−K−2).

Let N0 = d2ENAe = d2λ
(

n
2

)
nKe. Then

ENF ≤ E [NAINA>N0 ] + N0p0 + E
[
NF IA

τ1,τ1+nK
INA≤N0

]
≤ o(1) + E

[
NF IA

τ1,τ1+nK
INA≤N0

]
≤ o(1) + N0Pr(Aτ1,τ1+nK )

= o(1).
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This completes the proof of the case K < d − 2 and α > (K + 2)/d. In
the case where K ≥ d− 2 and α > K + 3− d, the proof is somewhat longer.
Note first that α > 1. By Lemma 3.1 inequality (12), for each time t > 0, on
Tj = t

Pr(Zj fails ∩ {T < t}|φt−) ≤ 2d+1

n(n− 2)d

∑
v∈V

dt−(v)dIT<t.

Recall from Section 3 that, for all v ∈ V , on T < t, the number of full links
ending in v is stochastically dominated by the number of links vu, u 6= v
such that Ỹt(vu) ≥ D, where Ỹt is a stationary copy of the superprocess. Let
us consider time t = 0 say, and call this quantity d̃(v). Therefore for each
time t ≥ τ1, on Tj = t we have

Pr(Zj fails) ≤ Pr(T ≥ t) + Pr(Zj fails ∩ {T < t})

≤ Pr(T ≥ τ1) +
2d+1

n(n− 2)d

∑
v∈V

E[dt−(v)dIT<t]

≤ O(n−K−3) +
2d+1

n(n− 2)d

∑
v∈V

E[d̃(v)d]. (24)

Consider a fixed node v ∈ V . We show next that

E[d̃(v)d] = E[d̃(v)](1 + o(1)) = n1−α+o(1). (25)

Consider the superprocess at time 0. Let u1, . . . , ud be distinct nodes in
V \ {v}. Let N(ui) be the number of live calls with one end v that have
selected the link vui but none of the links vuj for j 6= i. Let Ñ be the
number of live calls that have selected at least two of the links vui. Then the
N(ui) are iid, each is Poisson with mean at most λd, and Ñ is Poisson with
mean O(1/n).

Let x = d + α, and let A be the event that Ñ ≤ x. Note that Pr(Ā) =
O(n−x); and

E

[
k∏

i=1

IỸ0(vui)≥DIA

]
≤ E

[
k∏

i=1

IN(ui)≥D−x

]
= Pr(N(u1) ≥ D − x)k.

Now let ak be the number of partitions of 1, . . . , d into exactly k non-empty
blocks. In the sums below the wj run over V \ {v}. We find

E[d̃(v)dIA] = E

 d∏
j=1

∑
wj

IỸ0(vwj)≥DIA


21



=
∑

w1,...,wd

E[
d∏

j=1

IỸ0(vwj)≥DIA]

=
d∑

k=1

ak(n− 1)kE[
k∏

i=1

IỸ0(vui)≥DIA]

≤ E[d̃(v)IA] +
d∑

k=2

akn
kPr(N(u1) ≥ D − x)k

≤ E[d̃(v)] + O(
d∑

k=2

(n1−α+o(1))k)

= E[d̃(v)] + n−2(α−1)+o(1)

= n1−α+o(1).

Also
E[d̃(v)dIĀ] ≤ ndPr(Ā) = O(nd−x) = O(n−α),

and so (25) holds, as desired. Thus on Tj ≥ τ1

Pr(Zj fails ) ≤ O(n−K−3) +
2d+1

n(n− 2)d
n n1−α+o(1)

= O(n−K−3) + n1−d−α+o(1)

= o(n−K−2)

since α > K + 3− d. It follows that

E[NF ] ≤ E [NAINA>N0 ] + o(N0 n−K−2) = o(1).

as required.
Note that a much easier proof works in the case d = 1. Let α > K + 2.

On Tj ≥ τ1, by symmetry

Pr(Zj fails ) ≤ 2Pr(Ỹ0(vu) ≥ D) + Pr(T ≥ τ1)

for any pair of distinct nodes u, v ∈ V ; and so

Pr(Zj fails ) ≤ n−α+o(1) + o(n−K−2) = o(n−K−2).

It now follows as above that E[NF ] = o(1).
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4.2 Theorem 1.1: lower bound

Suppose first that K < d− 2 and 0 < α < (K + 2)/d; or that K ≥ d− 2 and
0 < α < 1. Let D ∼ α ln n/ ln ln n. Let 0 < δ < (K + 2)/d−α. We shall use
Lemma 3.1 inequality (13) to obtain a lower bound on the probability that
a call Zt is lost; this will entail lower bounding the quantity

∑
v dt−(v)d. deleted ‘We

use notation
much as
earlier’

For 0 ≤ t1 ≤ t2 let A1
t1,t2

be the event that SD
t (at v) ≤ (n− 2)δ/2 for all

vertices v and all times t ∈ [t1, t2]. Then for any v ∈ V , any link vj and any
time t ∈ [t1, t2], on A1

t1,t2
the probability that a call for a node v arriving at

time t which selects link vj as its first choice is blocked by the ‘partner’ link
uj (where u is the random other end of the call) is at most δ/2.

Fix a node v. We apply Lemma 2.6 with N = n−1. For each load vector
x and each node j 6= v, we let fj(x) be the number of calls in progress on the
link vj. Also, for each j we let λj = λ(1− δ/2) and nj = D. It follows that
on A1

t1,t2
the random variable SD

t2
(at v) stochastically dominates S̃D

t2−t1
(at v),

where
S̃D

t (at v) =
∑
j 6=v

I
Ỹ

(vj)
t =D

,

and the Ỹ (vj) are independent immigration-death processes each with arrival
rate λ(1−δ/2), death rate 1, population 0 at time t1 and population limit D.
It is well known that in equilibrium the n − 1 immigration-death processes
Ỹ

(vj)
t are iid random variables with a Poisson distribution Po(λ(1 − δ/2))

truncated at D, that is the Erlang distribution with parameters λ and D.
Since, by standard theory, each Ỹ

(vj)
t converges to equilibrium exponentially

fast, there exists a constant c̃ > 0 such that, for all t ≥ c̃ ln n and all j 6= v
we have Pr(Ỹ

(vj)
t = D) ≥ n−α+o(1), and so E[S̃D

t (at v)] ≥ n1−α+o(1).
We have assumed that 0 < α < 1, and so E[S̃D

t (at v)] tends to infinity
as n →∞. Let 0 < ε < K + 2− dα and refine the condition on δ so that it
now must satisfy δ < K+2

d
− α− ε

d
. Using inequality (3), on A1

t1,t2

Pr(S̃D
t (at v) ≤ n1−α−δ) ≤ exp(−n1−α+o(1))

for all t such that t1 + c̃ ln n ≤ t ≤ t2. For 0 ≤ t1 ≤ t2 let At1,t2 denote the
event that dt(v) ≥ n1−α−δ for all v ∈ V and all t ∈ [t1, t2].

Recall that τ1 was introduced in (23). Let τ2 = τ1 + c̃ ln n. Let I denote
the interval [τ2, τ2 +nK ], and let A denote the event Aτ2,τ2+nK . By the above
and Lemma 2.5,

Pr(A ∩ A1
τ1,τ2+nK ) = o(n−K).
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Also, we know by Lemmas 3.3 and 2.5 that

Pr
(
A1

τ1,τ2+nK ∩ {T ≤ τ1}
)

= o(n−K).

Further by (16)

Pr(T > τ1) ≤ E‖X0‖1 e−τ1 = o(n−K).

It thus follows that
Pr(A) = o(n−K).

By Lemma 3.1 equation (14), for each t ∈ I, on A ∩ {Tj = t} we have

Pr(Zj fails | φt−) ≥ n−d(α+δ) = p0.

Let F be the event that fewer than nε calls arriving during the interval I
fail; and let NF be the number of calls that fail during this interval. Let
N0 = bλ

2

(
n
2

)
nKc. Then

Pr(F ) ≤ Pr(A) + Pr(Po(2N0) < N0) + Pr(Bin(N0, p0) < nε) = o(n−K)

and hence ENF = Ω(nε).
Now consider the last case remaining, when K ≥ d − 2 and 1 ≤ α <

K + 3 − d. As in the case 0 < α < 1 considered above, for each t ≥ τ2 and
v ∈ V , E[dt(v)] ≥ n1−α+o(1). By Lemma 3.1 inequality (13), for each t ≥ 0,
on Tj = τ2 + t

Pr(Zj fails ) ≥ n−1(n− 2)−d
∑

v

E[d(τ2+t)−(v)d]

≥ n−1−d
∑

v

E[d(τ2+t)−(v)]

≥ n−1−d · n · n1−α+o(1)

= n1−d−α+o(1),

and hence ENF = Ω(nK+3−d−α+o(1)) = Ω(nε), as required.

5 Proof of Theorem 1.2

Fix an integer d ≥ 2 and a constant K > 0. Fix a constant 0 < δ < 1.
Let θ be a constant with θ > (100 + K)/ ln 2. We now define times τ0, τ1, τ2
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depending on n (not quite as when we introduced τ1 in (23) in the last
section): we let

τ0 ≥ ln(E‖X0‖1 +1) + θ ln n, τ1 = τ0 + θ ln n and τ2 = τ1 + nK . (26)

For each t ∈ [τ0, τ2], let A0
t be the event

{(1− δ)λ(n− 1) ≤ Xs(v) ≤ (1 + δ)λ(n− 1) ∀s ∈ [τ0, t], ∀v} ;

by Lemma 3.5, Pr(A0
τ2

) = o(n−K−1). Also, let A1
t be the event{

SD
s (via v) ≤ (n− 2)δ/4 ∀s ∈ [τ0, t], ∀v

}
;

then Pr(A1
τ2

) = o(n−K−1), by Lemmas 3.3 and Lemma 2.5.
Recall that for each link vw, Xt(vw) is the load of link vw at time t, that

is the number of channels in use at time t. For h = 0, 1, . . ., let Lt(v, h) be the
number of links vw at v with Xt(vw) ≥ h (so, in particular, Lt(v, 0) = n− 1
for all t). For an integer j, if Tj ≤ t and the call Zj is for node v routed via
node w and is still in progress at time t, then the height Ht(j, v) at v at time
t of the call is one plus the number of calls in progress on vw at time t that
arrived before it; and the call has height 0 at v at time t if the conditions do
not all hold. Thus we have Ht(j, v) ≤ Xt(vw). For h = 1, 2, . . ., we define
Ht(v, h) to be the total number of calls on the links vw for w ∈ V \ {v} with
height at least h at time t. Clearly, Lt(v, h) ≤ Ht(v, h) for each node v and
each positive integer h.

Let c = max{c1, c2}, where c1 and c2 are constants respectively defined
in Sections 5.1 and 5.2 below.

5.1 Upper bound

Let the constant c1 = c1(λ, d,K) be as in (29) below, and let D = D(n) ≥
ln ln n
ln d

+ c1. We shall show that aas no calls arriving during the interval [τ1, τ2]
of length nK fail.

Given a positive integer h0, for h = h0, h1 + 1, . . . let Bt(h, α) denote
the event that Ht(v, h) ≤ α for each v. Also, given numbers αh for h =
h0, h0 + 1, . . . and times th for h = h0, h0 + 1, . . . satisfying τ0 ≤ th ≤ τ1, let

B(h0) = {Lt(v, h) ≤ 2αh0 ∀t ∈ [th0 , τ2], ∀v},
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and for h = h0 + 1, h0 + 2, . . . let

B(h) = {Ht(v, h) ≤ 2αh ∀t ∈ [th, τ2], ∀v}.

The idea of the proof is to choose a sequence of about ln ln n/ ln d numbers
αh decreasing quickly from a constant multiple of n to zero, and an increasing
sequence of times th for h = 0, 1, 2, . . . satisfying τ0 ≤ th ≤ τ1 for all h. Then
the aim is to show that B(h0) holds aas, and if B(h) holds aas then so does
B(h + 1); and to deduce that B(h) holds aas for some h ≤ D with αh = 0.
Thus aas no link is ever saturated during [th, τ2], and so no call can fail during
that interval.

Let h0 = dmax{8λ, 768λ2}e. We choose a decreasing sequence of numbers
αh ≥ 0 as follows. First, let

αh0 = min{n− 1

8
,
n− 1

768λ
}.

Note that αh0 ≥ λ(n − 1)/h0. Hence, on A0
τ2

, for each t ∈ [τ0, τ2], since
Xt(v) ≤ 2λ(n − 1) we have Lt(v, h0) ≤ 2λ(n − 1)/h0 ≤ 2αh0 ; and so A0

τ2
⊆

B(h0). Next let

αh

n− 1
= 6λ

(
8αh−1

n− 1

)d

, (27)

for h = h0 + 1, h0 + 2, . . ., until αh < 14(K + 2) ln n. [We shall see shortly
that there is such an h.] When this first occurs, we let h∗ = h∗(n) be
the current value of h and increase αh∗ to 14(K + 2) ln n. Finally we set
αh∗+1 = 2K + 5. Observe that on B(h∗ + 1), for each t ∈ [th∗+1, τ2] we have
maxv Xt(v) ≤ h∗ + 2K + 10. Note that the recurrence (27) can be rewritten
as

α̃h = 48λ · α̃d
h−1, (28)

where α̃h = 8αh/(n− 1). It follows that for h0 + 1 ≤ h ≤ h∗ − 1

α̃h = (48λ)1+d+···+dh−h0−1

α̃dh−h0

h0
≤ (48λ · α̃h0)

1+d+···+dh−h0−1

since α̃h0 ≤ 1. But now, since 48λ · α̃h0 ≤ 1
2
, for h0 ≤ h ≤ h∗ − 1 we have

8αh

n− 1
= α̃h ≤ (0.5)

dh−h0−1
d−1 ,

and so h∗(n) = ln ln n/ ln d + O(1). We now set

c1 = sup
k
{h∗(k) + 4K + 11− ln ln k

ln d
}, (29)
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so that

D ≥ ln ln n

ln d
+ c1 ≥ h∗(n) + 4K + 11.

Now define an increasing sequence th of times as follows. Let γh =
48dlog2 (2αh/αh+1)e for h = h0, . . . , h

∗ − 2, let γh∗−1 = 48 log2 n, and let
γh∗ = (K +3) ln n. Note that γh∗−1 ≥ 48dlog2 (2αh∗−1/αh∗)e for n sufficiently
large. Let th0 = τ0, and let th = th−1 + γh−1 for h = h0 +1, h0 +2, . . . , h∗ +1.
Thus th∗+1 = τ0 +

∑h∗

h=h0
γh. We shall show that with high probability

B(h∗ + 1) holds and so throughout the interval [th∗+1, τ2] there are no full
links.

Note that

th∗−1 − τ0 =
h∗−2∑
h=h0

γh = 48
h∗−2∑
h=h0

dlog2 (2αh/αh+1)e

≤ 96(h∗ − h0) + 48
h∗−2∑
h=h0

(log2 αh − log2 αh+1)

≤ 96h∗ + 48 log2 αh0 ≤ 49 log2 n

for n sufficiently large. It follows that

th∗+1 − τ0 = th∗−1 − τ0 + γh∗−1 + γh∗ ≤ θ ln n

for n large enough, as θ ≥ (100 + K)/ ln 2.
Recall that A0

τ2
⊆ B(h0), as we noted earlier. We shall show that

Pr(B(h) ∩ B(h − 1)) is small for each h = h0 + 1, . . . , h∗ + 1, which will
yield that Pr(B(h∗ + 1) is close to 1. Hence, as we discussed earlier, aas
throughout [th∗+1, τ2] there are no full links. Since th∗+1 ≤ τ1, this shows
that

Pr[∃j : {Tj ∈ [τ1, τ2]} ∩ {Zj is blocked}] ≤ Pr(B(h∗ + 1)) = o(n−k). (30)

This yields the desired upper bound of Theorem 1.2.
The main step is to prove that Pr(B(h) ∩ B(h− 1)) is small for each h.

With this aim in mind, we first show that if B(h− 1) holds then aas for each
v there exists a time th(v) ∈ (th−1, th] such that Hth(v)(v, h) ≤ αh. We then
show that aas Ht(v, h) ≤ 2αh for all t ∈ (th(v), τ2] and all v ∈ V . For each
node v ∈ V and for each integer h = h0 + 1, . . . , h∗ + 1, let

C(v, h) = {∃th(v) ∈ (th−1, th] : Hth(v)(v, h) ≤ αh}.
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Let also C(h) = ∩vC(v, h), so that

C(h) = {∃w : Ht(w, h) > αh ∀t ∈ (th−1, th]}

is the event that there is a node u such that the number of calls with height
at least h at u is greater than αh throughout (th−1, th].

Lemma 5.1 Uniformly over all h = h0 + 1, . . . , h∗ + 1,

Pr(C(h) ∩B(h− 1)) = o(n−K−1).

Proof. Fix a node v and a height h with h0 + 1 ≤ h ≤ h∗. Let J0(v) = th−1,
and enumerate the jump times of the process of arrivals (possibly failing)
and terminations of calls with one end v after time J0(v) as J1(v), J2(v), . . ..
For k = 0, 1, . . . let Rk = HJk(v)(v, h) and for k = 1, 2, . . . let Yk = Rk−Rk−1,
so that

Rk = R0 +
k∑

j=1

Yj.

Note that each Yk ∈ {−1, 0, 1} and is φJk(v)-measurable, and that the sum∑
k:th−1<Jk(v)≤th

Yk is the net change in Ht(v, h) during the interval (th−1, th].

For h = h0, . . . , h
∗ − 1, let mh = d12λnedlog2(2αh/αh+1)e ≤ 1

2
γhλ(n− 1) for

n ≥ 2. Note that for each h = h0 + 1, . . . , h∗ + 1 we have Jmh−1
(v) ≤ th aas,

since by inequality (3)

Pr(Jmh−1
(v) > th) ≤ Pr(Po(λ(n− 1)γh−1) < mh−1) ≤ e−γh−1λ(n−1)/8,

which is e−Ω(n).
For k = 0, 1, . . . let

Ek = A0
Jk+1(v)− ∩BJk+1(v)−(h− 1) = A0

Jk(v) ∩BJk(v)(h− 1);

and let E = ∩mh−1−1
k=0 Ek. We saw earlier that Pr(A0

th
) = o(n−K−1). Thus

Pr(E ∩B(h− 1)) ≤ Pr(Jmh−1
(v) > th) + Pr(A0

th
) = o(n−K−1).

Now we obtain an upper bound q+
h for the probability of positive steps and

a lower bound q−h for the probability of negative steps. On Ek−1 ∩ (Rk−1 >
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αh), upper bounding Pr(Jk(v) is an arrival time) by 1, we obtain

Pr(Yk = 1|φJk(v)−) ≤
(

2 maxw LJk(v)−(w, h− 1)

n− 2

)d

≤
(

2 maxw HJk(v)−(w, h− 1)

n− 2

)d

≤
(

8αh−1

n− 1

)d

= q+
h

(for n ≥ 3). On A0
Jk(v)−, the probability that Jk(v) is a departure time of a

call with one end v is at least 1
λ(2+δ)(n−1)

≥ 1
3λ(n−1)

for n ≥ 3. It follows that,

for n ≥ 3, on A0
Jk(v)−

Pr(Yk = −1|φJk(v)−) ≥
HJk(v)−(v, h)

3λ(n− 1)
≥ Rk−1

3λ(n− 1)
;

and so, for each y ≥ αh, on Ek−1 ∩ {Rk−1 = y},

Pr(Yk = −1|φJk(v)−) ≥ y

3λ(n− 1)
≥ αh

3λ(n− 1)
= q−h .

We note that for h ≤ h∗

q+
h =

(
8αh−1

n− 1

)d

=
αh

6λ(n− 1)
= q−h /2.

Let a = αh

6λ(n−1)
and let b = 1

3λ(n−1)
. By Lemma 2.3, with r = αh and any

value of αh + 1 ≤ r̃ ≤ 2αh−1,

Pr(E ∩ {HJk(v)(v, h) > αh ∀k ≤ mh−1}| HJ0(v)(v, h) = r0) ≤ 2e−αh/14

= o(n−K−1).

It follows that, uniformly over h0 + 1 ≤ h ≤ h∗,

Pr(C(h) ∩B(h− 1)) = o(n−K−1).

Now we consider h = h∗ + 1. Let J ′
0(v) = th∗ , and enumerate arrival

times of calls with one end v after time th∗ as J ′
1(v), J ′

2(v), . . .. Define mh∗ =
2λ(n− 1)γh∗ , which is O(n ln n), recalling that γh∗ = (K + 3) ln n.
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Let Nt(v) denote the number of new calls for v arriving during [th∗ , t]
with height at v at least h∗ + 1 on arrival. For k = 0, 1, . . . let

E ′
k = A0

J ′k+1(v)− ∩BJ ′k+1(v)−(h∗).

Further let E ′ = ∩mh∗−1
k=0 E ′

k.
Consider the call that arrives at time J ′

k(v). On E ′
k−1 it has probability

at most p1 =
(
56(K + 2)n−1 ln n

)d

of choosing a link vw with at least h∗

calls for n large enough. Further we note that, for each positive integer r,

Pr(Bin(mh∗ , p1) ≥ r) ≤ (mh∗p1)
r = O((n−d+1(ln n)d+1)r).

Then, for each integer r ≥ K + 2,

Pr({Nth∗+1
(v) ≥ r} ∩B(h∗))

≤ Pr(Bin(mh∗ , p1) ≥ r) + Pr(Po(λ(n− 1)γh∗) > mh∗) + Pr(E ′ ∩B(h∗))

= O((n−d+1(ln n)d)K+2) + e−Ω(n) = o(n−K−1).

Also, on B(h∗) the probability that some call with height at least h∗ + 1
present at time th∗ survives to time th∗+1 is at most 28(K + 2) ln n e−γh∗ =
O(n−K−2). It follows that

Pr(C(h∗ + 1) ∩B(h∗)) = o(n−K−1)

as required.

We now show that for each h = h0 + 1, . . . , h∗ + 1, aas there will be no ‘ex-
cursions’ that cross upwards from αh to at least 2αh, that is Ht(v, h) cannot
exceed 2αh during (tv(h), τ2] for any v ∈ V and any h = h0 + 1, . . . , h∗ + 1.

Lemma 5.2 For h0 + 1 ≤ h ≤ h∗ + 1, let B′(h) = B(h − 1) ∩ C(h). Then
uniformly over h = h0 + 1, . . . , h∗ + 1

Pr(B(h) ∩B′(h)) = o(n−K−1).

Proof. The only possible start times for a crossing are arrival times dur-
ing [th−1, τ2]. Let N0 = 2λ(n − 1)τ2. The probability that more than N0

arrivals for any given node v occur during (th(v), τ2] is o(n−K−1). We apply
Lemma 2.4 with p = q+

h , q = q−h , a = bαhc − 1, and

Ek = A0
Jk+1(v)− ∩BJk+1(v)−(h− 1, 2αh−1).
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By Lemma 2.4, the probability that any given excursion leads to a ‘crossing’
is at most (q+

h /q−h )bαhc−1, and so for h = h0 + 1, . . . , h∗ + 1

Pr(B(h) ∩B′(h)) ≤ Nn(q+
h /q−h )bαhc−1 + Pr(E) + o(n−K−1).

For h = h0 + 1, . . . , h∗

(q+
h /q−h )bαhc−1 ≤ 2−αh+2 = 2−14(K+2) ln n+2 = o(n−2K−4);

for h = h∗ + 1

(q+
h /q−h )αh−2 ≤ (3λ/2K + 5)2K+3(112(K + 2) ln n)d(2K+3)(n− 1)−(d−1)(2K+3)

= O
(
n−2K−3(ln n)4K+6

)
,

and the lemma follows.

We may now complete the proof. As A0
τ2
⊆ Bh0 and Pr(A0

τ2
) = o(n−K−1),

we have

Pr(B(h∗ + 1))

≤ Pr(A0
τ2

) + Pr(B(h0) ∩ A0
τ2

) +
h∗+1∑

h=h0+1

Pr(B(h) ∩B(h− 1))

= Pr(A0
τ2

) +
h∗+1∑

h=h0+1

Pr(C(h) ∩B(h− 1)) +
h∗+1∑

h=h0+1

Pr(B(h) ∩ C(h) ∩B(h− 1))

= o(n−K).

This completes the proof of (30) and thus of the upper bound of Theorem 1.2.

5.2 Lower bound

Let 0 < ε < min{1, (K + 1)/d}. Recall that θ is a constant satisfying
θ > (100 + K)/ ln 2. Let the constant c2 = c2(λ, d,K) be as defined below,
and let D = D(n) ≤ ln ln n

ln d
− c2. Recall that τ0, τ1 and τ2 are defined in (26)

at the start of this section. We consider the interval [τ1, τ2] of length nK .
We shall show that aas for each v at least (n− 1)1−ε links vw incident on v
are saturated (and so unavailable) throughout the interval, and hence aas at
least nK+2−d−o(1) calls arriving during the interval fail.

Given a non-negative integer h and a real value α > 0, let Bt(h, α) denote
the event that Lt(v, h) ≥ α for each v. Given also a sequence of numbers
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αh, h = 0, 1, 2, . . . and a sequence of times th, h = 0, 1, . . ., let B(h) =
∩t∈[th,τ2]Bt(h, αh); thus B(h) is the event that for every v ∈ V , throughout
the interval [th, τ2], the number Lt(v, h) of links with one end v that carry at
least h calls remains at least αh. We shall choose positive numbers α0, α1, . . .,
starting with α0 = n− 1 and decreasing rapidly. These will satisfy 2αh+1 ≤
αh(1 − e−1), so that (αh − 2αh+1)

d ≥ (αh/e)
d. We shall further choose an

increasing sequence of times th, h = 0, 1, . . ., such that τ0 ≤ th ≤ τ1 for each
h. We want to show that B(D) occurs aas, with a value αD = Ω(n), so
that there are always many saturated links. Analogously to the upper bound
proof in Section 5.1, the main task is to show that Pr(B(h) ∩ B(h − 1)) is
small for each h ≤ D.

Again similarly to the upper bound proof, we first show that on Bth−1,th(h−
1, αh−1) aas there exists a time th(v) ∈ (th−1, th] such that Lth(v)(v, h) ≥ 2αh.
We then show that on B(h − 1) aas Lt(v, h) never falls below αh dur-
ing (th(v), τ2]. The numbers αh are given as follows. We let α0 = n − 1,
and for h = 1, 2, . . .

αh

n− 1
=

min{1, λ}
24edh

(
αh−1

n− 1

)d

. (31)

Thus 2αh ≤ αh−1(1− e−1) as required, since 1
12
≤ e− 1. We need to choose

the constant c2 in the upper bound on D(n) above such that for n sufficiently
large

αD ≥ (n− 1)1−ε.

It is easy to check that such a choice is possible. To see this, let ν = min{1,λ}
24ed

and let βh = αh

n−1
. Then 0 < ν < 1, β0 = 1 and for h = 1, 2, . . .

βh =
ν

h
βd

h−1. (32)

It follows that for each positive integer h

βh =
ν1+d+...+dh−1∏h

i=1 idh−i
.

To upper bound the denominator, note that

ln(h(h− 1)d(h− 2)d2

. . . 2dh−2

) = dh

h∑
i=2

d−i ln i ≤ c3d
h
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for some constant c3 > 0, and so the denominator is at most ec3dh
. It follows

that for each h ∈ N
βh ≥ e−dh(ln( 1

ν
)+c3).

Let c4 be such that d−c4(ln( 1
ν
) + c3) ≤ ε. Hence if h ≤ ln ln(n− 1)/ ln d− c4

then

βh ≥ exp(−(ln(n− 1))d−c4(ln(1/ν) + c3))

≥ exp(−ε ln(n− 1)) = (n− 1)−ε.

For h = 0, 1, . . . we let γh = 4
max{1,λ}(h+1)

. Now define an increasing
sequence of times th as follows. Let t0 = τ0, and for h = 1, . . . , let th =
th−1 + γh−1. Then

tD − τ0 =
D−1∑
h=0

γh ≤ 4
D∑

h=1

1

h
≤ 4 ln(D + 1) = O(ln ln ln n).

It follows that tD ≤ τ1 for n sufficiently large.
We now recall that

B(h) = {Lt(v, h) ≥ αh ∀t ∈ [th, τ2],∀v}, h = 0, 1, . . . .

Thus Pr(B(0)) = 1; and we prove by induction that Pr(B(h)) = o(n−K−1)
for h = 1, . . . , D, so that aas throughout [τ1, τ2] for each v there are at least
(n− 1)1−ε saturated links vw incident on v.

Fix a node v and an integer h ≥ 1. Let J0(v) = th−1 and enumer-
ate the jump times of the process after time J0(v) that concern node v as
J1(v), J2(v), . . .. For k = 0, 1, . . . let Rk = LJk(v)(v, h) and for k = 1, 2, . . . let
Yk = Rk −Rk−1, so that

Rk = R0 +
k∑

j=1

Yj.

Then each Yk ∈ {−1, 0, 1}, is φJk(v)-measurable, and
∑

k:th−1<Jk(v)≤th
Yk is the

net change in Lt(v, h) during (th−1, th]. Let mh = 2 min{1, λ}(n−1)/(h+1) =
1
2
λ(n− 1)γh. Note that Jmh−1

(v) ≤ th with high probability for h ≤ D, since

Pr(Jmh−1
(v) > th) ≤ Pr(Po(λ(n−1)γh−1 < mh−1) ≤ e−γh−1λ(n−1)/8 = o(n−K−1).

For k = 0, 1, . . . let

Ek = A0
Jk+1(v)− ∩ A1

Jk+1(v)− ∩BJk+1(v)−(h− 1).
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Let E = ∩mh−1−1
k=0 Ek. Recall that Pr(A0

th
∪ A1

th
) = o(n−K−1). Thus

Pr(E ∩B(h− 1)) ≤ Pr(Jmh−1
(v) > th) + Pr(A0

th
∪ A1

th
) = o(n−K−1).

Now we want to give a lower bound on the probability that Yk = 1. First
note that on A0

Jk(v)− the probability that Jk(v) is an arrival time (for a call

for v) is at least 1/(2 + δ) ≥ 1
3
. Now consider picking the random other

end u of the call and the random intermediate nodes w1, . . . , wd in the order
w1, u, w2, . . . , wd. On A1

Jk(v)− we have SD
Jk(v)−(via w) ≤ (n−2)/2 for all nodes

w; and so, whatever w1 is picked, the probability that uw1 is saturated is at
most 1

2
. Hence on A0

Jk(v)− ∩ A1
Jk(v)− we have

Pr(Yk = 1|φJk(v)−)

≥ 1

3
·
LJk(v)−(v, h−1)−LJk(v)−(v, h)

n− 1
· 1

2
·
(

LJk(v)−(v, h−1)−1−LJk(v)−(v, h)

n− 2

)d−1

≥ 1

6

(
LJk(v)−(v, h− 1)− 1− LJk(v)−(v, h)

n− 1

)d

.

Similarly on A0
Jk(v)− the probability that Jk(v) is a departure time of a given

call with one end v is at most 1
λ(2−δ)(n−1)

≤ 1
λ(n−1)

, and so

Pr(Yk = −1|φJk(v)−) ≤
h(LJk(v)−(v, h)− LJk(v)−(v, h + 1))

λ(n− 1)
.

It follows that on Ek−1 ∩ (Rk−1 < 2αh)

Pr(Yk = 1|φJk(v)−) ≥ 1

6

(
αh−1 − 2αh

n− 1

)d

≥ e−d

6

(
αh−1

n− 1

)d

= q+
h .

Also for each y < 2αh, on Ek−1 ∩ (Rk−1 = y)

Pr(Yk = −1|φJk(v)−) ≤ hy

λ(n− 1)
≤ 2hαh

λ(n− 1)

≤ 2hαh

min{1, λ}(n− 1)
= q−h .

We note that q−h = 1
2
q+
h for each positive integer h.

For each node v ∈ V and each positive integer h let

C(v, h) = {∃th(v) ∈ (th−1, th] : Lth(v)(v, h) ≥ 2αh},
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and let C(h) = ∩vC(v, h). We now show that, uniformly over h = 1, . . . , D,

Pr(C(h) ∩B(h− 1)) = o(n−K−1).

Let p = q+
h , let r1 = 2αh, and let r0 be any positive integer less than 2αh.

Note that q+
h mh−1 ≥ 4αh ≥ 2(r1 − r0). By a natural ‘reversed’ version of

Lemma 2.2

Pr(E ∩ (LJk(v)(v, h) < 2αh ∀k ∈ {1, , . . . , mh−1)| LJ0(v)(v, h− 1) = r0)

≤ e−αh/7 ≤ e−αD/7 ≤ e−Ω(n1−ε).

It follows that
Pr(C(h) ∩B(h− 1)) = o(n−K−1).

We now need to prove that for each h = 1, 2, . . . , D, aas there will be no
excursions that cross downwards from 2αh to less than αh, that is none of
the numbers Lt(v, h) can drop below αh during (tv(h), τ2].

For each positive integer h let B′(h) = B(h − 1) ∩ C(h). We shall show
that uniformly over 1 ≤ h ≤ D

Pr(B(h) ∩B′(h)) = o(n−K−1).

The only possible start times for a crossing are departure times affecting
links at v during [th−1, τ2]. Let N0 = 4λτ2(n − 1). Let F denote the event
that there are more than N0 such departures in [th−1, τ2]. Then

Pr(F ∩ A0
τ2

) = o(n−K−1).

We apply a reversed version of Lemma 2.4 with p = q−h , q = q+
h , a = bαhc−1,

and
Ek = A0

Jk+1(v)− ∩ A1
Jk+1(v)− ∩BJk+1(v)−(h− 1).

The probability that any given excursion leads to a ‘crossing’ is at most
(q−h /q+

h )bαhc−1 ≤ (1/2)αh−2. It follows that

Pr(B(h) ∩B′(h)) ≤ nN0(0.5)αh−2 + nPr(F ∩ A0
τ2

) + Pr(E)

≤ 4λτ2(n− 1)n(0.5)αh−2 + o(n−K−1)

≤ 4λnK+2(0.5)αD−2 + o(n−K−1) = o(n−K−1).
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The proof may now be completed in the same way as the proof of the upper
bound. We have

Pr(B(D)) ≤ Pr(B(0)) +
D∑

h=1

Pr(B(h) ∩B(h− 1))

=
D∑

h=1

Pr(C(h) ∩B(h− 1)) +
D∑

h=1

Pr(B(h) ∩ C(h) ∩B(h− 1))

= o(n−K).

For t ∈ [τ1, τ2] let Ft be the event that for each v at least (n− 1)1−ε links vw
with one end v stay saturated throughout the interval [τ1, t]. By the above,
provided that D ≤ ln ln n

ln d
− c2 the event Fτ2 holds aas. Now let s ∈ [τ1, τ2]

and consider a new call arriving at time s. On Fs− the probability that this
call is blocked is at least

p1 =

(
(n− 1)1−ε − 1

n− 2

)d

≥ 1

2
n−εd

for n sufficiently large. Let N1 = d1
2
λ
(

n
2

)
nKe. Let B∗ be the event that fewer

than b∗ = 1
16

λnK+2−dε calls are lost. Then

Pr(B∗) ≤ Pr(Fτ2)+Pr(Po(λ

(
n

2

)
nK) < N1)+Pr(Bin(N1, p1) < b∗) = o(1).

This completes the proof of the lower bound of Theorem 1.2.

6 Concluding remarks

We have considered the performance of two algorithms for a continuous-time
network routing problem, strengthening and extending the earlier results
in [9] and [1].

The analysis in [9] (see also [4]) suggests that the performance of the
model can be upper and lower bounded by differential equations. While this
analysis is non-rigorous, it is hoped that a suitable differential equation ap-
proximation, and concentration of measure bounds, can indeed be obtained.
The main challenge is to disentangle the complex dependencies within sub-
sets of links to obtain a tractable asymptotic approximation for the generator
of the underlying Markov process. The details will appear in [5].
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For simplicity we have assumed throughout that the underlying network
is a complete graph, but our results will carry over in a straightforward way
to a suitably ‘dense’ subnetwork. Consider for example the upper bound
in Theorem 1.2 part (a). Let δ > 0, and suppose that, in the network
with n vertices, for each pair of distinct vertices u and v the number of
possible intermediate nodes is at least δn. Then minor alterations to the
proof of Theorem 1.2 part (a) show that we obtain the same conclusion: if
D(n) ≥ ln ln n/ln d + c and we use the BDAR algorithm, then the expected
number of failing calls during the interval of length nK is o(1). The only
difference is that now the constant c depends also on δ. Note that the leading
term ln ln n/ln d depends only on the problem size n and the number d of
choices, and not on δ (or on λ or K).
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