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GLAUBER DYNAMICS FOR THE MEAN-FIELD ISING MODEL.:
CUT-OFF, CRITICAL POWER LAW, AND METASTABILITY

DAVID A. LEVIN, MALWINA J. LUCZAK, AND YUVAL PERES

Asstract. We study the Glauber dynamics for the Ising model on the
complete graph, also known as the Curie-Weiss Model.grarl, we
prove that the dynamics exhibits a cut:othe distance to stationarity
drops from near 1 to near 0 in a window of ordecentered at [2(%

Bl tnlogn. Forp = 1, we prove that the mixing time is of orda?#/?.

Forg > 1, we study metastability. In particular, we show that the Glauber
dynamics restricted to states of non-negative magnetization has mixing
time O(nlogn).

1. INTRODUCTION

1.1. Ising model and Glauber dynamics. LetG = (V, &) be a finite graph.
Elements of the state spa@e= {-1, 1}V will be calledconfigurationsand
for o € Q, the values-(v) will be called thespinatv. Thenearest-neighbor
energy Ho) of a configurationr € {—1, 1}V is defined by

H(o) = - Z IV, W (V) (W), (1.1)

V,WevV,
V~W

wherew ~ v means thatw, v} € &. The parameterd(v, w) measure the in-
teraction strength between vertices; we will always tagew) = J, where
J is a positive constant.
Forp > 0, thelsing modelon the grapt with parametep is the proba-
bility measureu onQ given by
e—ﬁH(O')

(o) = Z6) (1.2)

whereZ(B) = ¥, €71 is a normalizing constant.
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The parametes is interpreted physically as the inverse of temperature,
and measures the influence of the energy funddam the probability dis-
tribution. Atinfinite temperaturecorresponding t@ = 0, the measurg is
uniform overQ and the random variablés(v)},cy are independent.

The (single-sitefslauber dynamic$or u is the Markov chain o162 with
transitions as follows: When at, a vertexv is chosen uniformly at random
fromV, and a new configuration is generated froarmonditioned on the set

{neQ : nw) =oc(v), w=+ v}
In other words, if vertex is selected, the new configuration will agree with
o everywhere except possiblygtand atv the spin is+1 with probability
e58'(@)
PV) = S5 T ers @

(1.3)

whereSY(o) = J X wov o(W). Evidently, the distribution of the new spin
atv depends only on the current spins at the neighbovs kvfis easily seen
that (X,) is reversible with respect to the measuria (1.2).

In what follows, the Glauber dynamics will be denoted b){,. We
useP, andE, respectively to denote the underlying probability measure
and associated expectation operator whge: o

A coupling of the Glauber dynamics with starting statesand o is a
process X, Xi)wo such that X;) is a version of the Glauber dynamics with
starting stater and (X) is a version of the Glauber dynamics with starting
state. If a coupling (X, X;) is a Markov chain, we call it &1arkovian
coupling We writeP,.; andE, 5 for the probability measure and associated
expectation respectively corresponding to a coupling with initial states
ando.

1.2. Order nlogn mixing and cut-off. Given a sequendg, = (V,, E,) of
graphs, we writg:, for the Ising measure ani{) for the Glauber dynamics

on G,. The worst-case distance to stationarity of the Glauber dynamics
chain aftert steps is

dn(t) = I(’I;g.XHP(,(th € ) _,Un”TV’ (1-4)

wherellu — v|ltv denotes the total variation distance between the probability
measureg andv. Themixing time t,«(n) is defined as

tmix(N) ;= min{t : dy(t) < 1/4}. (1.5)

Note thatt,ix(n) is finite for each fixedh since, by the convergence theorem
for ergodic Markov chaingl,(t) — 0 ast — co. Nevertheless,ix(n) will

in general tend to infinity witm. Our concern here is with the growth rate
of the sequencg,x(n).
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The Glauber dynamics is said to exhibitat-gf at{t,} with window{w,}
if w, = o(t,) and
lim liminf d,(t, — yw,) = 1

y—00 N—oo

lim lim supdy(t, + yw,) = 0

Y72 pnooo

The first part of this paper is motivated by the following conjecture, due
to the third author:

Conjecture 1. Let(Gp) be a sequence of transitive graphs. If the Glauber
dynamics on Ghas t,x(n) = O(nlogn), then there is a cut#f

We establish this conjecture in the special case Wheis the complete
graph onn vertices angg < 1 (the “high temperature” regime), where the
Glauber dynamics has(nlogn) mixing time.

1.3. Results. Here we takés, to beK,, the complete graph amvertices.
That is, the vertex set g, = {1,2,...,n}, and the edge sél, contains all
(g) pairs{i, j} for 1 <i < j < n. We take the interaction paramet&to be
1/n; in this case, the Ising measyren {-1, 1}" is given by

W) = (@) = s explS S oe()]. @)
Z(B) 1<i<jsn
In the physics literature, this is usually referred to asGhee-Weissnodel.
For the remainder of this papésjng modelvill always refer to the measure
wuin (1.6), andGlauber dynamicsvill always refer to the one corresponding
to this measure. We will often omit the explicit dependencenan our
notation.

It is a consequence of the Dobrushin-Shlosman uniqueness criterion that
tmix(N) = O(nlogn) whenp < 1 (Aizenman and Holley, 1997 See also
Bubley and Dyer1997. Our first result is that there is a cuffgphenome-
non in this regime:

Theorem 1. Suppose thad < 1. The Glauber dynamics for the Ising model
on K, has a cut-gfat t, = [2(1 — 8)] *nlogn with window size n.

Remarkl. Most examples of Markov chains for which the cudfqhenom-

enon has been proved tend to have ample symmetry, for example, random
walks on groups. Part of the interest in Theorgns that the chain stud-

ied here is not of this type, and our methods are strictly probabilistic — in
particular, based on coupling. Recently, Diaconis and{B&loste 00§

have proven cut4b (for separation distance) for birth-and-death chains.

In the critical cas@ = 1, we prove that the mixing time of the Glauber
dynamics is orden®?.
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Theorem 2. If B8 = 1, then there are constants, (&, > 0 such that for the
Glauber dynamics for the Ising model oR,K

C1n3/2 < tmix(n) < C2n3/2.

Finally, we consider the low-temperature case correspondiggtol.
To state our result, it is necessary to mention herentivenalized magneti-
zation the functionS defined on configurations by S(o) := n™t 3, o(i).
Also, we define the s&* of states with non-negative magnetization,

Q" :={we X : S(r) >0}

By using the Cheeger inequality with estimates on the stationary distribu-
tion of the magnetization, the mixing time is seen to be at least exponential
in n — slow mixing indeed. Arguments for exponentially slow mixing in
the high temperature regime go back at least tdti@rs, Weng and Langer
(1969.

In contrast, we prove that the mixing time is of the orddéogn if the
chain is restricted to the s€*. To be precise, the restricted dynamics
evolve as follows oM*: Generate a candidate moyeaccording to the
usual Glauber dynamics. 8(y) > 0, accept; as the new state, while if
S(n) < 0, move instead ten.

Theorem 3. If 8 > 1 then there exist constantg(B), C4(8) > 0 depending
on B such that, for the restricted Glauber dynamics for the Ising model on
Kn,

Cs(B)nlogn < tyix(n) < C4(B)nlogn.

For other work on the metastability of related models, see Bovier, Eck-
hoff, Gayrard, and KleinBovier et al., 200}1 2002, and Bovier and Manzo
(2002.

The rest of the paper is organized as follows: SecHa@ontains some
preliminary lemmas required in our proofs. Theoreim8 and3 are proved
in Sections3, 4, and5, respectively. Sectiof contains some conjectures
and open problems.

2. PRELIMINARIES

2.1. Glauber dynamics for Ising on K,. We introduce here some nota-
tion specific to our setting of the Glauber dynamics for the Ising model on
K,. For a configuratiomr, recall that the normalized magnetizatig(vr) is

defined as .

1 .
S(0) =~ ; o (j).
Given that the current state of the chainri®nd a sita has been selected
for updating, the probability(c, i) of updating to a positive spin, displayed
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in (1.3, is in this case, (S(c) — n~1o (i), wherep, is the function given
by

€ 1+tanhys)
S R N
Similarly, the probability of updating siteto a negative spin ip_(S(o) —
n~to(i)), where

(2.1a)

e?*  1-tanhfs)

e (2.1b)

2.2. Monotone coupling. We now describe a process called ¢gnend cou-
pling, a Markov chain{X{},<q)t-0 such that for eactr € Q, the coordinate
process X{ )0 IS a version of the Glauber dynamics startedratlt will
sufice to describe one step of the dynamics. IUe¢ drawn uniformly from
the siteq1, 2,...,n}, and letU be a uniform random variable on,[0)], in-
dependent of. For eacho € Q, let U determine the spib” according
to

= +1 0<U < p.(S(o) = nta(l))),
-1 p.(S(e)-nto()) <U <L

For eachr, generate the next sta¥g” according to

o o) 1#1
Xl(')‘{sv =1
We write P> andE, for the probability measure and expectation operator
on the measure space where the grand coupling is defined.

For a given pair of configurations; andc, the two-dimensional projec-
tion of the grand coupling X7, X -0, Will be called thenonotone coupling
with starting states- ando.

For two configurations- ando”’, the Hamming distancéetweers- and
o’ is the number of sites where the two configurations disagree, that is

. 1w, .
dist( o) = 5 > loi) - o ()1 (2.2)
i=1
Proposition 2.1. The monotone couplingX, X;) of the Glauber dynamics
started fromo- and o satisfies
E |dist(x., X)) | < p'dist(c, &), (2.3)

where
p:=1-n1(1-ntanh@/n)). (2.4)
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Proof. We first show thatZ.3) holds witht = 1 provided distf, o) = 1.
Indeed, suppose thatando agree everywhere exceptiaivhereo (i) = -1
ando(i) = +1.

Recall that the vertex which is updated in all configurations in the grand
coupling is denoted by. If | =i, then the distance decreases by 1;# i
and the evenB(l) occurs, where

B(J) := {p.(S(0) — o(j)/n) < U < p(S(5) - 7(j)/n)} ,

then the distance increases by 1. In all other cases, the distance remains the
same. Consequently,

distQ<s, Xo) = 1- 11 =i} + > 11 = j}dg. (2.5)
j#i
Note thatS(¢) — 5(j)/n = S(o) — o(j)/n+ 2/nfor j # i. Thus, letting
§j/n=S(c) —o(j)/n, for j #1i,

P2(B(j)) = %[tanhﬁ(éj +2)/n)) - tanh(Béj/n)] <tanh@/n). (2.6)

Taking expectation in4.5), by the independence &f andl together with
(2.6),

E[dist(X, X)) < 1 - % + tanh@/n) = p 2.7)

This establishes2(3) for the case where ando”’ are at unit distance.

Now take any two configurations, & with dist(c, &) = k. There is a se-
guence of states, ..., o such thatro = o, o« = &, and each neighboring
pair o, oj_; are at unit distance. Since we proved the contraction holds for
configurations at unit distance,

k
E, |dist(X7, X7)] < Z E, [dist(X", X{'")| < pk = pdist(, &).
i=1

This establishe2(3) for t = 1; iterating completes the proof. [ |

We mention another property of the monotone coupling, from which it
receives its name. We write < ¢’ to mean that-(i) < o’(i) for all i.
Given the monotone coupling((, X,), if X; < X;, thenXs < X, for all s > t.
This is obvious from the definition of the grand coupling, since the function
p, IS non-decreasing.

2.3. Magnetization chain. Let S; := S(X;), and note thatg,) is itself a
Markov chain onQg = {-1,-1+ 2/n,...,1 - 2/n,1}. The increments
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Sii1 — St take values if—2/n, 0, 2/n}, and the transition probabilities are
£2p (s—n™) S =s-2/n,
Pu(s. 8) =< &2p.(s+n?) s =s+2/n, (2.8)
1-%5p (s—nh)-Lep(s+n?) s=5
for se Qg, wherep, (s) andp_(s) are as in2.1).

Remark2. It is easily verified thaPy(-s, —5) = Pu(s S), so the distribu-
tion of the chain §;) started fromsis the same as the distribution 6f%;)
started from-s.

Remark3. Let (X{") be the Glauber dynamics restricted(6, and define
S; = S(X). The chain §;) has the same transition probabilities as the
chain|S;|.

In the remainder of this subsection, we collect some facts about the
Markov chain &;) which will be needed in our proofs.

If (X, X;) is a coupling of the Glauber dynamics, we will always wke
andS; for S(X;) andS(X,), respectively.

Lemma 2.2. Letp be as defined if2.4). If (X, X) is the monotone cou-
pling, started from states anda, then

(= [|st —~ §t|] < (%) pldist(o, &) < 20" (2.9)
Proof. Using the triangle inequality, we see th&t—S;| < (2/n)dist(X;, X;).
An application of Propositio@.1 completes the proof. [ |

Lemma 2.3. For the magnetization chaifs;), for any two states s an&lin
Qs with s> §,

0 < E{[S1] — E4[S4] < p(s- 9). (2.10)
Also, for any two states s aryj
[Es[Si] — Eg[S1]l < pls—§. (2.11)
Proof. Let (X;, X;) be the monotone coupling, started from ), where
o > o andS(o) = s,S(0) = S. Inthis cases - 5 = (2/n)dist(o, ), and
1S~ $ull = El2/mdistiXe, Xo)] < Zpdist. ) = p(s - 9

By monotonicity, X; > X; and soS; > S;. Thus,E,[Si] - E5[S1] =

E..+[|S1 — S1]], which, together with the preceding inequality, proves that
E,[S1] - E5[S1] < p(s- 9. (2.12)
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The left-hand side of,12) equal<E{S:]-E[S:], because$,) is a Markov
chain. Moreover, the left-hand side does not depends at all on the coupling.
This proves 2.10. An analogous bound in the caS¢5) > S(o) estab-
lishes @.17). [ |

We now study the drift of$;) in some detail. From2.8),

= —g LS -1 _E 1LS _nl
E[Sm—StlSt_s]_n( > )p+(s+n ) n( > )p_(s n—),

and hence
E[S;1—St|Si=9 = % [fa(S) — s+ 6n(9)], (2.13)
where
fo(s) = %{tanh[@(s+ n)] + tanh(s - n)]}
0n(9) := _78 {tanhp(s+ n™)] — tanh(s — ™1}
The approximation

1

- [tanh@Bs) — 5] (2.14)
will play an important role in our proofs, and we will need to control the
error fairly precisely. For the moment, let us observe tR2at4 is valid
exactly as an inequality fag > O:

E[Sti1 =St 1St =9 =

E[St;1 —Si|Si=9 < % [tanh@Bs) — 5| . (2.15)

This follows from the concavity of the hyperbolic tangent, together with the
fact that the tern#,(s) in (2.13 is negative. By Remarg, for s< 0,

E[St;1—St|Si=9 > % [tanh@Bs) — 5| . (2.16)

Since G;) does not change sign whisy| > n™%, and because tanh is an odd
function, putting together2(15 and @.16) shows that, fotS;| > n™?,

1
E [ISual| St < ISd + - [tanh@ISy) ~ ISt (2.17)
Since tanh) < x for x > 0, wheng < 1 equation 2.15 implies that, for
s> 0,
E[Sui—St|Si=9 < S(ﬂn_ 2] (2.18)
Define

To:=inf{t>0 : |S{] < 1/n}. (2.19)
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Note that, fom even,|S, | = 0, while forn odd, |S,,| = 1/n. The notation
7o Will be used with the same meaning throughout the paper.

On several occasions, we will need an upper bound on the probability
that an unbiased random walk remains positive for at laasteps. The
following lemma gives a classical estimate.

Lemma 2.4. Let (W,)0 be a random walk witle[W,.; — W, | W] = 0 and
IWi.1 — Wi < B for some constant B. Then there is a constant @ such
that, for all u,

K
P(Wil > 0,.... W, > 0) < IK. (2.20)

Va

(Here Py indicates probabilities for the random walk started witly WK.)

LemmaZ2.4 can be proved using hitting estimatesHgller (197); al-
ternatively, it can be seen to be a special case of equation (3.9) in Bender,
Lawler, Pemantle, and Wilf200304).

The following lemma is proved famn even. The proof can be modified to
deal with the case af odd by replacing 0 with An; we omit the details.

Lemma 2.5. LetB < 1, and suppose that n is even. There exists a constant
¢ such that, for all s and for allu > 0O,

P(ISu > 0,....ISuul > 0] Su=9 < % (2.21)

Proof. It will suffice to prove 2.21) for s > 0, in which case the absolute
values may be removed.
By (2.18, E[Si,1 — St | St] < 0 for S; > 0. Also, there exists a constant

b > 0 such thaP(Si,1 — St # 0] Sy) > b for all timest, uniformly inn. It
follows that &;) can be coupled with an unbiased nearest-neighbor random
walk (W) onZ satisfying

o P(W; —Wy # 0| W, =w) =bforall w,

[ ] WO B nS/Z,

e NS;/2 < W for t less than the first time whenS, < n™.

From LemmaeaR.4, there exists a constaat> 0 such that

P(Su:1>0,...,Sut>0]|Sy=9 <PW, >0,...,W, > 0| Wp = ns/2)
cns

<—.
Vi

2.4. Variance bound.



10 DAVID A. LEVIN, MALWINA J. LUCZAK, AND YUVAL PERES

Lemma 2.6. Let(Z;) be a Markov chain taking values i and with tran-
sition matrix P. We will writeP, and E; for its probability measure and ex-
pectation, respectively, whe Z z. Suppose that there is sofe& p < 1
such that for all pairs of starting stat€g, 2),

|EAZ] - EdZ]| < p'lz— 2. (2.22)
Theny := sup, Var,(Z) satisfies
Vi < v minft, (1 - p?)71).

Remarkd. Suppose that, for every paiz, §), there is a couplingZy, Z,) of
P(z -) andP(Z, -) such that

Eoz| 121~ 21l | < plz~ 2. (2.23)
By iterating .23,
|EAZ] - B Z]| < EzallZi - Z]] < pllz- 2.

The left-hand side does not depend at all on the coupling, and in particular,
(2.22 holds. Moreover, if the state-space @ )(is discrete with a path
metric and 2.23 holds for all neighboring pairg 7, then it holds for all
pairs of states; sédubley and Dyer (1997

Proof. Let (Z) and ¢*) be independentopies of the chain, both started
from z,. By the Markov property and2(22),

|EnlZi1 Z1 = 21] - E4[Z} 1 Z = Z]| = | EnlZia] - Ex[Z4] |
<pMa -7l
Hence, lettingp(2) = E,[Z;_4], we see that

Vary, (E4[Z: | Z1]) = %Ezo [[‘10(21) - o(Zy )]2]

< %Ezo [0z, - ;2
) (2.24)
By the “total variance” formula, for everg,
Var,(Z;) = Eg, [Var,(Z: | Z1)] + Vary, (E[Z: | Zi]),
so that
Vi < Szl;lp{EZO[VarZO(Zt | Z1)] + Vary, (Ex[Z: | Z1])} (2.25)
Now, Var,(Z; | Z, = z;) < v, for everyz;, and so
E, [Var,(Z: | Z1)] < Vi-a. (2.26)
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Thus we have shown thet < vi_; + vip?®3, whence
t-1

V<V sz(“” < min{ (1-p271, t} .
i=0
[ |
Proposition 2.7. If 8 < 1, thenVar(S;) = O(n™!) as n— oo. If g = 1, then
Var(S;) = O(t/n?) as n— co.

Proof. The conclusion follows from combining Lemnfa3 with Lemma
2.6, and observing that; is bounded by (4n)? since the incrememnts of
(Sy) are at most M in absolute value. [ |

2.5. Expected spin value.In order to establish the cufaat high tempera-
ture, not only do we need to consider the magnetization chain, but also the
number of positive and negative spins among subsets of the vertices.

Lemma 2.8. Letgs < 1.
() Forallce Qandeveryi=1,2,...,n,

Eo[Sdl < 2674, and [, [X(i)]| < 24,

(i) For any subset A of vertices, if

1 .
M(A) 1= 5 ) %i(0). (2.27)
ieA
then|E,[M(A)]| < |Ale A" andVar(M(A)) < cn for some constant
c>0.
(iif) For any subset A of vertices and alle Q,

E, [IM(A)]] < ne A" 1 O(+n). (2.28)

Proof. Let 1 denote the configuration of all plus spins, and Détf,(f(t) be
the monotone coupling witiX] = 1 and such thaX, has distribution..
(Note that therX; has distributioru for all t > 0, by stationarity.) From
Lemma2.2, becausEﬂ[ét] =0, we have

= [StT] < By [|StT - §t|] +E, [ét] < 2e71AIN,
By symmetry,E; | X[ (i)| < 2e"@#"" for all i. By monotonicity, for anyr,
E,[X(i)] < E4[X{ (i)] < 2e”*AV",

Because the chain-§;) started from—o has the same distribution as the
chain ;) started fronu,

—2e-AUN < E_TX(1)].
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For part (i), the bound on the expectation follows from (i). As for the
variance, since the spins are positively correlated,

n
Var[z Xt(i)) < Var(z Xt(i)] <n*Var(S) < cn, (2.29)
icA i=1
where the last inequality follows from Propositi@rv.
For part (iii), let (X, X;) be the monotone coupling wit, = o~ and the
distribution ofXy equal tou. From the triangle inequality,

E,[IM(A)] < Egy [IM(A) = M(A)I| + E,, [IN(A)]]
By the Cauchy-Schwartz inequality and sifibR(A)— M, (A)| < dist(X;, X,

E[IM(A)]] < E,,, [distX, X)| + E. [M(A)2].
Applying Propositior2.1 shows that

E-[IM(A)] < o' + JE, [N(A)?]. (2.30)

Since the variable§(t(i)}i”:l are positively correlated undgr

E, [Mi(A?] < "e 57| = " Var Sy = O(n) (2.31)
U 4 MLt 4 u ’

where the last equality follows from Propositigdry. Using €.31) in (2.30
shows that
E, [IM(A)]] < ne A" + O( ). (2.32)

2.6. Coupling of chains with the same magnetization.The following
lemma holds at all temperatures, though we will only be using iBfarl.

It shows that once the magnetizations of two copies of the Glauber dy-
namics agree, the two copies can be coupled in such a way that the entire
configurations agree after at most anot¥nlogn) steps. Note that this
simple coupling is not fast enough to show diifavhere we need that once

the magnetizations agree, only ordesteps are required to fully couple).

A more sophisticated coupling for this purpose is given in Se@ion

For any coupling X;, X), we will let r denote the coupling time:
Ti=min{t>0 : X = XJ.

Lemma 2.9. Leto, o € Q be such that §) = S(¢). There exists a cou-
pling (X, X;) of the Glauber dynamics with initial stateg % o andX, = &
such that

lim supP,s(t > co(B)nlogn) = 0,

Nn—oo

for some constanty(3) large enough.
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Proof. To update the configuratiox; at timet, proceed as follows: Pick a
sitel € {1,2,...,n} uniformly at random, and generate a random spin
according to

S- +1 with probability p,(S; — X¢(1)/n),
~|-1  with probability p_(S; — X:(1)/n).

Set

X() i#]1,

Xt+1(i):{S i=1

As for updatingX;, if X;(1) = X(1), then let

0= X0 1!

If X(1) # Xi(1), then we pick a vertek uniformly at random from the set
{i © %) # X(i), andX,(i) = Xe(1)},

and set

{501

Let Dy = XL, IX() - )?t(i)l/z be the number of fliering coordinates be-
tweenX; andX;.

There exists a constant = ¢;(8) > 0 such thatp,(s) A p_(s) > ¢,
uniformly over allse {-1,...,1}and alln. If X,(I) = )~(t(l), thenDy,1—Dy =
0 while if X,(1) # X(1), thenDy,; — D; = —2. It follows that

~ 2¢c,D
E[Dtz1— Dt | Xi, Xi] < — ; t,

soY; = Dy(1 - 2c1/n)" is a non-negative supermartingale, whence
2c,\'
E[D:] < E[Do] (1 — Tl) < ne2avn,

Takingt = conlogn for a suficiently large constant, = co(8), we can
make the right hand side less tham1say. Markov’s inequality yields

1
n

PO’ (T > C0n|Og n) S P(]' (Dconk)gn Z 1) S EO-[DCOn|Ogn] S
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3. CurtoFF FOR THE GLAUBER DYNAMICS AT HIGH TEMPERATURE

In this section we prove Theorefh As always, K;) will denote the
Glauber dynamics, ang, = S(X;) = n"1 31", X(i) is the normalized mag-
netization chain. Recall the definitions

to = [2(1 - B)] nlogn,
p = 1—(1_ﬁ)/n9
To=min{t >0 : |S < 1/n}.

3.1. Upper bound. For convenience, we restate the upper bound part of
Theoreml.:

Theorem 3.1.1f B8 < 1, then
lim lim supd, ([2(1- 8)] " nlogn + yn) = 0. (3.1)

Y7 pooo
Our strategy is to first construct a coupling of the dynamics so that the
magnetizations agree with high probability aftes O(n) steps.

Lemma 3.2. Leto and & be any two configurations. There is a coupling
(X;, X¢) of the Glauber dynamics withoX% o and Xy = ¢ such that, if

Tmag:= Min{t >0 : Sy = Sy}, (3.2)

then for some constant€ 0 not depending omr, & or n,

C
P& (Tmag > th +yN) < W (3.3)

Proof. Assume without loss of generality th&(c) > S(¢). Let ~O(t,>~(t)
be the monotone coupling of Secti@?. DefineA; := (n/2)|S; — S¢|. By
Lemma2.2, for somec; > 0,

Eoi [Ay] < G VA, (3.4)

Definer; := min{t > t, : |Ad < 1}. Fort, <t < 74, allow (X)) and (X to
run independently.

SinceS; > S; for t < 71, from Lemma2.3, the process; — S);,<t<, has
non-positive drift. Moreover, since&();, <tr, and ()(t)tn<t<T1 are independent
given th,xtn, fort > t, the conditional probability tha; — §, is non-
zero is bounded away from zero uniformly. Thus there is a random walk
(Wh)ist, defined on the same probability space¥sX;) and satisfying: the
incrementd\;.,, —W, are mean-zero and bounde\(jSt—ét) <W;on[ty, 71),
andn(S;, - §;,) = W,
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By LemmaZ2.4,
Pro(t1> th +yN | X, %) < Pos(Wee1 > 0, ..., W 9n > 0] X, Xi,)
< NSy, — étn|
RG

Taking expectation above3.@) shows that

Po—’a—(‘l']_ >ty + ’)/n) <0 (’)/_1/2) .

The number of plus spins X, is either one more than, or the same as, the
number of plus spins iX.,. Match each plus spin iX,, with a plus spin in

X:,, and match the remaining spins arbitrarily. From timenwards, run

a modified version of the monotone coupling, where matched vertices are
updated together in the two chains. Define’distthe number of disagree-
ments between matched vertices. The conclusion of Leg2waow holds

for this modified monotone coupling, with the distance’displacing dist

in (2.9). Thus,

PU,&(Tmag >T1+ )”n I X‘rla )271) < Pa',&(A‘rl+y’n >1 I X‘rl’ )z‘rl)
< EO',&[A71+y/n | X‘rla X‘rl]

3(1_1;5)”1

n
< e_(l_ﬁ)yl .

We conclude that

P s o+ Y+ Y1) 2 1~ O(y17).

3.2. Good starting states. To show the cut-fi upper bound, we will start
by running the Glauber dynamics for an initial burn-in period. This will en-
sure that the chain is with high probability in a ‘nice’ configuration required
for the coupling argument in Secti@3. The following lemma is required:

Lemma 3.3. For any a subse®); c Q,
dto+1t) = TE%X”PU(XtOH € ) — nllrv

< m%xlngo(Xt €:)—nllrv + m%xP(T(Xt0 ¢ Qo). (3.5)
o€l [oaS
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Proof. For A c Q, we can boundP,, (X, € A) — 7(A)| above by

D, [Po(Xigst € Al Xy = 070) = w(A)] Py (X, = 070)

0eQ

+ [PO'(XI()+I €A | Xto ¢ QO) - ﬂ-(A)] PO’(Xto ¢ QO) :

Using the triangle inequality, the preceding displayed quantity is bounded
above by

Z |P0'(Xto+t €A Xy, = o0) — 7T(A)|Pfr(xto = 00) + Pcr(xto ¢ Qo).

00€Qo

Taking a maximum over subseAsshows that

IPy(Xigst € -) — v
< D IPe(Xigut € - | Xig = 70) = mllry P (X4, = 00) + P (X, # Qo).

00€Qo

By the Markov propertyP, (Xt € - | X, = 00) = P,,(X% € ), and
bounding the average above by the maximum term yields

IPs(Xi+t € -) = 7ty < m%XHPcro(Xt € ) —nllvv + Po(Xy, € Qo).
o€l

Taking a maximum ovewr € Q establishes3.5). [ ]
In the proof of Theoren3.1, we apply Lemma.3with
Qo ={oe€Q : |S(0) < 1/2).
For a configurationry € Q define
Up :=I{i : oo(i) =1}, Vor=I{i : oofi) = -1},

the number of positive and negative spins, respectively,yinAlso, define
Ao :={(u,Vv) : n/4 < u,v < 3n/4}. Note that

oo € Qg if and only if (Ug, Vo) € Ao. (3.6)

By LemmaZ2.8, there is a constariy > 0 such thalE,[Sy,]| < 1/4,
whence, fom large enough,

Py (Xgon & Q0) = P (I1Sgenl > 1/2)
< Py ([Sgon — Eo[Sanl| > 1/4)
< 16 Var,(Sg,n) = O(n™). (3.7)

The last equality follows from Propositich7.
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3.3. Two-coordinate chain. Fix a configurationrg € Qp. Foro € Q,
define

Upo(0) = 1l €{0,1,..., 1) : (i) = oo(i) = 1}
V(o) = 1l € (0,L,...,n) : o(i) = ooli) = —1.

In what follows, we shall usually omit the subscript, writing simplyo)
for U, (o) andV(o) for V(o).

For a copy of the Glauber dynamicX;), the processU;, Vy)o defined
by

Ut = U(Xt), and Vt = V(Xt) (38)

is a Markov chain o0, 1,...,up} x {0,1,...,Vo} (with transition proba-
bilities depending on the designated configuratigy). We will refer to
the chain Uy, V) as thetwo-coordinate chaipand its stationary measure
will be denoted byr,. Note also thatly;, V;) determines the magnetization
chain, as we can write

_2Ui-V)  U-Vo
n n -

It turns out that, by symmetry, the distance of the laviXatio u equals the
distance of the law of{;, ;) to n», as established in the following lemma:

St (3.9)

Lemma 3.4. If (X,) is the Glauber dynamics started framg and (U, V) is
the chain defined bfB.8) started from(uo, Vo), then

IPs (Xt € -) = tllrv = IP@7) (U, Vi) € -) — mollrv. (3.10)
Proof. Let
Qu,v) :={oceQ : (U(r),V(r)) = (uv)}.
Since bothu(- | Q(u,v)) and
Poo(Xt € - | (U, Vi) = (U, V)
are uniform overg)(u, v), it follows that

Poo(Xe = 1) — u(m)

_ Z 1{n € Q(u,v)}

1Q(u, V)] [Poo (Ui, Vi) = (U, V) — u(Q(u, v))] .

uv

Applying the triangle inequality, summing ovgr and changing the order
of summations shows that

”Pa'o(xt € ) —plltv < ”P(UO,VO)((Utth) € ) — mollyv.
The reverse inequality holds sindd(V;) is a function of ;). [

Identity (3.10 implies that it stfices to bound from above the distance
to stationarity of the two-coordinate chain.
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1 2 3 e n
oo + + + + + + -
Uo Vo
X + + + - - + + + + - -
AX) B(Xt) C(X) D(Xt)
Xt + + + + + + + - - -
A(X) B(Xt) C(%) D(Xy)

Ficure 1. The vertices irX; andX; are partitioned into four categories.

Lemma 3.5. Suppose two configuratian and & satisfy o) = S() and
Ro = U(c) - U(o) > 0. Define

E1:={o : min{U(c), up— U(c), V(0), Vo — V(0)} > n/16}.  (3.11)
There exists a Markovian coupling, X;) of the Glauber dynamics with
starting states X= o- and Xy = ¢ such that the following hold:

(i) S(X) = S(X)forallt > 0.
(i) f R :=U(X)-U(X)and R >0, then R> 0and for all t and

Evs [Rur—R X% %] <0. (3.12)

(iii) There exists a constant ¢ not depending on n so that on the g¢ent
Ela Xt € El}y

Prs(Ru1—R # 0| X, X) > c. (3.13)

Proof. Given the couplingX., X;), we definel;, := U(X,) andV, := V(X)),
and note that); = U; + R, andV; = V; + R..
For any configuratiowr, we divide the vertices into four sets:
Alo) ={ie{l,2,...n} : oo(i) = +1, o(i) = +1},
B(o)={ie{l,2,...n} : oo(i) =+1, o(i) = -1
Clo)=1{ie {1 2,...n} 1 oo(i) =-1, o(i) =+1
D(o) ={i €{1,2,...n} : oo(i) = -1, o(i) = -1}, (3.14)

and so
|A()l = U(0), IB(0)l = Up — U(0), IC(a)| = Vo = V(0), ID(0)| = V(o).

See Figurél for a schematic representation of this partition ¥pandX;.
Our coupling is as follows: To updatg, select a uniformly randorh e
{1,2...,n}, and generate a random sgrior | according to the distribution

S +1 with probability p, (S; — X(1)/n),
~|-1 with probability p_(S; — X:(1)/n).
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0= {50 12}

For X;, we seleci uniformly at random fromi : X;(i) = X(1)}, and let

Rea(i) = {Xt(‘) 1

Set

S i=1.

The diferenceR,,; — R is determined by the values bfi andS according
to the following table:

I I S|Ru-R
e B(X) |eD(X) +1 -1
leC(X) TeAX) -1 -1
le AX) TeC(X) -1 +1
leD(X) 1eBX) +1 +1
all other combinations 0

It follows that
Pra(Ri1 — R = =11 %, X) = a(Uy, Vi, R),
Pri(Ri — R = +11 %, X) = b(Uy, Vi, R),
where (using the identitied, = U, + R, andV, = V, + R)

a(Ur’Vt,Ro=( OEVI)( U+ R

V0+Ut

7 )p-si-1m

Uo — U Vi+ R
+ (= )(JO o vt) p.(S: + 1/),
(UL W R) = (5 )(V T LACEEL

(VF)(UO Ui+ Vt) P, (St + 1/n).

We obtain

Ers |Rir = R 1 %, X = b(Ut, Vi, R) — a(Uy, Vi, R)
= R oS- 1)+ putSe+ 1),
S0, in particular,
Ers[Re1 =R I X, %] < 0. (3.15)
Furthermore, on the evetX; € Z;, X; € Z4},

Prs(Re1— R # 0| X, X) = b(U, Vi, R) > ¢
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for some constant > 0, uniformly inn, since the functiong, andp_ are
uniformly bounded away from 0 and 1. [ ]

Proof of Theoren8.1 Applying Lemma3.3 with ty = 6gn, together with
the bound 8.7), shows that

Ohn(Bon + t) < Max|IPy,(X; € ) = pillry + O(™). (3.16)
[V S )

Hence, using Lemma.4and @3.6),
dn(eon + t) < _max ||P(Uo,\70)((Ut’ Vt) € ) - 7T2||TV + O(n_l)’ (317)
(Uo,Vo)€Ao

recalling thatAg = {(u,V) : n/4 < u,v < 3n/4}.
We will call a pair of chains{;, V;)o and Us, Vi)io a coupling of the
two-coordinate chainvith initial values (i, Vo) and (I, V) if
e The two chains are defined on a common probability space,
e Each of Ui, Vy) and Uy, V;) has the same transition probabilities as
(U(X), V(X)), where ¥ is the Glauber dynamics,
e (Uo, Vo) = (U, Vo) and U, V) = (0, V).
We will always consider couplings which haw (Vo) € Ao, but (U, ¥) will
not be so constrained.
For a given coupling of the two-coordinate chain as above, we let

7¢ 1= min{t D (Ue V) = (O W),
For a coupling with initial statesué, Vo) and (1, V),

P (Ur, Vo) € 2) = Pag (0. V) € ) llrv < Poiy e (e > ). (3.18)

(See, for examplel.indvall (2002 Equation 2.8).) A simple calculation
shows that

max ||Pgz (U, Vi) € ©) = mallry

(Uo,Vo)eAo

< (Uora))aéx ||PU0V0((UI’VI) € ) PUV((UU Vt) € )”TV (319)
(@9

We say thatf(n,t) is a uniform coupling boundf for any initial states
(Uo, Vo) € Ao and (0, V), there is a coupling of the two-coordinate chain
with

P@o.w).@y(te > 1) < f(n,1).
If f(n,t) is a uniform coupling bound, then combining.18 with (3.19
shows that

max [|Pgw((U, Vi) € ) = mollrv < f(n, 1),

(Uo,Vo)eAo

and by 8.17),
da(Bon + 1) < F(n,t) + O(N7Y).
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Recall thatt, = [2(1 — 8)] (nlogn). For anyy > 0, lett,(y) := t, + yn.
The theorem will be proved if we can establish a uniform coupling bound
f(n,t) such that

lim limsupf(n,t,(y)) = 0.

Y7 pnooo

Fix (Up, Vo) € A and arbitrary (;V). Let oy be any configuration with

(U(c0), V(00)) = (Uo, Vo), and letr"be any configuration with{(5), V(5)) =
(0,¥). We will construct, in two phases, a coupling,(X;) of the full
Glauber dynamics with initial state§ = oo andX, = &. Given such a
coupling, the projections

(U, Vi) == (U(X), V(X)), and @t,vt) = (Xt)’v(;(t))

are a coupling of the two-coordinate chains, started fragnvg) and (1, V).
The magnetization coupling phase, lasting from time O to tiftg will
ensure thaS,,,) = S;,(,) with high probability, and that

Ecos [lotn(y) - Utn(y)l] = O(Vn).

During the two-coordinate coupling phase, from tity(e) to timet,(2y),
with high probability the chaindJ;) and (J;) coalesce. To facilitate coales-
cence, we must ensure that throughout the second phase with high probabil-
ity X € E5 andX; € &y, whereg; is as defined in3.11). Also, the coupling
will ensureS; = S; for all t € [ty(y), t.(2y)].

(i) Magnetization couplingRecall thatrm,g, defined in 8.2), is the first
time the normalized magnetizations agree. Het= {tmag < ta(y)} be the
event that the magnetizations couple by titye). By Lemma3.2, there
exists a constartt not depending oag or & such that

Po-o,& (HD < Cy_l/2~

(i) Two-coordinate chain coupling phasAssume thatjtn > Uy, ; if this
is not the case, just reverse the roles<pfind X, in what follows. On the
eventH,, fort > t,(y), use the coupling constructed in Lemi&&. On the
eventH?, we let the two chains run independently far t.(y).

The outline of the remainder of the proof is as follows: Byl@), the drift
of the diferenceJ; — U, is non-positive, so it can be dominated by a process
with independent and unbiased increments with valugs-1n0, 1}, until
U; — U; hits zero. Provided that the incrementd bt U; are non-zero with
probability bounded away from 0 uniformly in, the dominated process
can be taken to be an unbiased random walk. We will establish that at time
tn(y), the beginning of the second coupling phase, the expectiatatice
Evos[Ut) — U] is order yn. Thus by comparison with random walk,
the two-coordinate process will couple@{n) more steps.
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We begin by showing that, Hl,(t) := {X; € 21, X; € E4}, then

Ho(t)¢] = O(n™). (3.20)

PO'O,("T

[tn(y)ststn(Zy)
(Note that the bound above dependsyonThis does not pose a problem,
because the limit im is taken before the limitiry in (3.2).)
Recall the definition oM;(A) in (2.27). We introduce the following def-
initions:
Ao =i 1 oofi) = 1},
B = | (M(A)I2n/32),

te[th+yn, th+2yn]
Yi= > UIM(A) > n/64).
te[th+yn, th+2yn]
(Note thatAo| = Up.) SinceM(Ao) has increments ifi-1,0, 1}, if |[My,(Ag)| >
n/32, thenM;(Ao)| > n/64 for allt in any interval of lengtim/64 containing
to. ConsequenthyB* c {Y > n/64} and

EO' o
Poo#(B*) < Pyo(Y > n/64) < w.

By Lemma2.§(ii), P, (Mi(Ao)| > n/64) = O(n™?) for t > t,, SOE, 5[Y] =
O(1) and
P,,&(B*) = O(n™Y).
Making analogous definitions and deductions for the ch&ipnghows that
P,.s(B*) = O(n™Y).
If Ui < n/16, thenup— U, > 3n/16, since we are assuming thgt> n/4.
Consequently, itJ; < n/16, then
_ _ n
IM¢(Ao)l = [Uy = (Up — Up)l = (Up — Uy) — Uy > 8
Similarly, up — Uy > n/16 implies thaiM(Ag)| > 1/8. An analogous ar-
gument applied t&; andvy — V; shows that if eithe¥, or vy — V; does not
exceedn/16, then|M(Ao)| > n/8, sincelV; — (Vo — Vi) = [Vo| > n/4. Fi-
nally, the same implications are obtained for the chaiq}k (U;) and ).
To summarize,

Ha(t)® € {IMi(Ao)| > n/16} U {|Mi(Ag)| > n/16}.
Thus,

P(ro,;,( | Hz(t)c] < P (B*) + Pyy o(B4) = O(7).
tn(y)<t<tn(2y)
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Recall thaR, = |U; — Uy, and letH, := (M, ()<t<t,(25) H2(t). ON the event
H,, the proces® can be dominated by a nearest-neighbor random walk,
with delay, until the first time whenR) visits 0. Then by Lemma.4, on
Hi,

CIRy )

Ty

Pooi (17e > t(22)) N1 Ha [ Xy, Koy <

Taking expectation gives

1E 0.6 [ IR )]

Poos ({7 > tn(29)) N Ha N Hy) < < 5 (3.21)

Observe that
Ut = Mi(Ao) + Up/2,  and U, = My(Ao) + Uo/2,
whence
Ut = Udl = [Me(Ao) = Mi(Ao)] < IMi(Ao)| + [Me(Ao)l.
Taking expectation shows that

Eros[IRI] < Eoo[IMi(A0)l] + E5[IMi(Ao)I].
Applying Lemma2.§iii) shows thatE,, 5[IR;.,)]] = O(+vn) .
Using this estimate in3(21), we conclude that
Pros (Tc > ta(2y)) < Py (ITc > ta(2y)} N H2 N Hy)
+ Pa'o,ﬁ'(Hg) + PUO,&(H]?)

Cz 1
< —+0(n™).
AR
This gives the uniform coupling bound required. [ |

3.4. Lower bound. Recallt, = [2(1 - B) Y]nlogn, andp = 1 - (1 - B)/n.
Let us first restate the lower bound part of Theorem

Theorem 3.6.1f 8 < 1, then
lim liminf d, (t, — yn) = 1.

y—e0  N—eo
Proof. It is enough to produce a suitable lower bound on the distance of the
distribution of S; from its stationary distribution, since the chaf®)is a
projection of the chainX).

Sincedn(s) = O(n~?), expanding taniff(s + n~1)] aroundssin f,(s) and
using equationd.13 shows that, fos > 0,

E[St1lSi=9 > ps- ; - o). (3.22)
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By Remark2, if |S;| > n,

S 3
Ex[1Sual| S 2 piSd - 22 - o). (3.239)

This also clearly holds foS;| = 0 or|S;| = n*. (In the latter cas€S;.1| >
1/n.)

Take the initial stat&, to besy = 5(8); we will specify the value ok,
later. DefineZ, := |Syp~!, whenceZy = Sy = S. Sincep™ < 2 for largen,
from (3.23 it follows that

p IS + O(1/n)]

EsolZii1 1 Z] > Z - .

for nlarge enough. Since8|S;| < 1,
< p '[IS{® + O(1/n)] < p'[IS{? + O(1/n)]

EqlZ —Zu1 | Z] < - . (3.24)
Applying Lemma2.§(iii) with A= {1,2,...,n}, we find that
Eo[ISi] < Isolo" + a2, (3.25)

Here and below, the constamsdepend only orB.
Using the variance bound V&) < c,n™* (c.f. Propositior2.7) together
with the inequality 8.25 shows that

Eq [S?] = (E[S1)? + Var(Sy) < $0% + 2cin¥isglp! + con™ . (3.26)
Taking expectations ir3(24) and using 8.26) yields
1
Eq[Z ~ Zua] < [0 + 200 iso] + g0/ + O(07?).

Lett* = t, — an/(1 — B). Adding the increment&g [Z] — Eg[Z:.1] for
t=0,...,t* — 1, the above inequality gives that

2C|Solt* -t
$ st . p

— Eg[Z] < Oo(t*n™2).
Sincep™ < n%2, we deduce that
$ . 2logn)
So-EelZel <7 gt Tz ten vz, (3.27)

If 55 < (1-B)/3 andnis large enough, then the right-hand side®2() is
less tharsy/2. Thus
Soo" So€”

- 2Bi= .

EsllSel] >
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By Proposition2.7, maxVars,(S;), Var,(S)} < ¢s/n. Thus
e”
B/2 < Eq[Se] - % WVarg (Se),
B/2 > E,[S] + f v/ Var,(S).

Let s be the stationary distribution 0§(), and letA := [-B/2, B/2]. Then
IPs,(Stx € -) = sllry = ms(A) — Pg,(ISi+| € A) > 1 - 32058—205/%,

where the last inequality follows from application of Chebyshev’s inequal-
ity. The right-hand side clearly tends to 1@s~ . [ ]

4. CrrricaL CAaSE

In this section, we analyze the mixing time of the Glauber dynamics in
the critical casgg = 1, proving Theoren?. We consider the upper and
lower bounds separately.

4.1. Upper bound.
Theorem 4.1.1f 8 = 1, then fix = O(n%/?).
Recall the definition oty in (2.19: 7o :=min{t > 0 : |S{ < 1/n}.

Proof. We show that we can couple Glauber dynamics so that the magneti-
zations agree in order/? steps, and then appeal to Leméhato show the
configurations can be made to agree in another ortyn steps.

Step 1:Our first goal is to prove that lim,., P, (o > cn®/?) = 0, uniformly
inn.
Recall the inequalityd.17): For|S,| > n1,

Eo [1Stal|St] < (1 - —) ISl + 1tanh¢st|)

Multiply both sides above b¥{ry > t} and use the fact that tanh(8)0 to
find that

1
E, [IStalliro > t}| S < (1 - —) [Silizo > t} + = tanh(Sil{zo > ).
Sincel{ry >t +1} < 1{ry > t},

E, |ISualliro > t+ 1}| S| < (1 - —) ISt liTo > t} + }tanh(Stll{To > t)).
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Define&; = E,[|Si|1{ro > t}]. Take expectation above and apply Jensen’s
inequality to the concave function tanh restricted to the non-negative axis,
to see that

ft+1 = (1 - _)‘ft ~ tanhﬁ ) (4-1)
Thus, there exists a constant> 0 such that, i > &, then
Ce
g — & < T

We conclude that there exists a time= t,(n) = O(n) such that} < 1/4
forallt > t,.
Expand tanh) in a Taylor series and usé.() to obtain

) o

é:t+1 = ft -

fort > t,.

This shows that, fon sufficiently large & is decreasing fot > t,. We
will assume from now on that is large enough for this to hold. Given a
decreasing sequence of numbers

1/42 b1>b2>-">0,

letu ;== minft > t, : & < b} Sinc_egt+ is decreasingy.1 < & < by for all
timesuy, <t < u,;. Leth = (1/4)27". Fort € (u;, Ui;1],
3

fﬁlﬁff—@+o(n ?).

It follows that 16
-3 -1
U — U < b—lz [1+ C)(bI n )]
Letip = min{i : by < n*!}, wherea is a parameter to be chosen below.
If o > 2/3, thenb; > n"¥3* for i < iy, for somes > 0. In particular,
b3 < n'? andO(b3*n™) = o(n) for i < io. Thus forn large enough, for

O<|<|0,

32n
ui+l uI —= b2 .

Summing the above,

IA
cr‘ w
IA
I
@)
—~~
=
P
N
=)
Y

Ui, — Uo

SO

U, < O(N*2) + O(n),
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where the second inequality follows singg= t* = O(n). To summarize,
provided 1> « > 2/3, there is a constarg; such thatg < n*! for
t > ¢;,n*2, In particular, lettingr,, = ¢;n®>?, there is a constar, > 0
such that

E, [IS! 1o > rn}] < con* 2. (4.2)
By the Markov property and Lemnfa5, for some constards,
C3n|Srn|

Ve
Multiplying both sides byl{ro > r,}, taking expectation, and then using
(4.2) shows that

Py(to > I+ yn? | X)) <

P, (1o > rn +yn®®) = O(y 7).
Choosinge = 3/4 > 2/3, we see that
P, (10 > (C1 + y)n*?) = O(y /%),

Step 2: Construction of couplingVe now describe how to build a Markov-
ian coupling ¥, X;) of the Glauber dynamics such that the following holds:
There are constants > 0 andb < 1 such that, ifrmagis as defined in3.2),
then foranytwo configurationgr andd,

Po-,&(Tmag > C1n3/2) <h. (43)

This is suficient, since we only desire to protig, = O(n®/?).

Fix two configurationsr ando, and suppose without loss of generality
that|S(o)| > |S(6)|. Define the stopping timeays to be the first time the
two chains cross over one another, i.e.

Tabs:= MIiNft >0 : |S] < Iétl},

and letG; = {|S; 41l = |§Tabs+1|} be the event that the two chains meet one
step afterrpns There is a constard, > 0, not depending on, such that
Pos (G1) > Ca.

OnG{, couple the two chains independently. Gp we divide into two
cases:

Case S, .1 = Sfabsﬂ. If this situation occurs, then couple such that the
magnetizations continue to agree. To do so, if alsiteselected to update
X; with a spinS, then pick a site ifX; at random from those with the same
spin asX(l), and update this site also with sp#h

~

Case §,.1 = —S;,..1. In this case, we use theflection coupling Sup-
pose staté is selected to updabs;, and the spin used to updateSs Then
pick a site inX; at random from those with spinX(l), and update with
spin —S. In this case, the procesSJ and &) will be reflections of one
another fort > s
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If nis even, in either situation the magnetizations agree at t4neo
Tmag < To. FOr evem, run the chains together afteg. If nis odd, at time
7o run the chains independently of one another for a single step.

By Step 1 of the proof, there exists a constanteindcs > 0 such that,
for all o,

Py(to + 1< c,n®?) > c. (4.4)

LetGy, ={rg+1< C*n?’/z}.

Let Gz be the event that the two chains couple at tigie 1. There exists
somecs > 0 not depending on such thatP,(Gz | G1 N Gy) > ¢s. (If nis
even, this probability is one.)

Then

P,(G1 NGy N G3) < Py(rc < c,n¥?).

The probability on the left is uniformly bounded away from zero, complet-
ing the proof. [ ]

4.2. Lower bound.

Theorem 4.2. Supposg = 1. There is a constant{C> 0 such that tx >
C1n3/2.

Proof. It will suffice to prove a lower bound on the mixing time of the mag-
netization chain%;).

As usual,S denotes the normalized magnetization in equilibrium. The
sequencat’4S converges to a non-trivial limit law as — oco. (This is
proved in Simon and Gitiths (1973); see alsdllis (1985 Theorem V.9.5).)
TakeA > 0 such that

w (ISl < AmY4) > 3/4, (4.5)

Takesy = 2AnY4. Let (S;) be a chain with the same transition probabil-
ities as 6,), except ak,. At S, theS-chain remains as, with probability
equal to the probability that tH&-chain either moves up or remains in place
atsy. The two chains can be coupled so tBatc S, when both are started
from 5. In particular, for alls, the inequalityPs,(S; < S) < P (St < 9
holds.

LetZ = Sp — Sirr, Wherer := min{t > 0 : §; < An%/4}. Note that Z,)
iS non-negative.

We will now show that ifF; is the sigma-algebra generateday. . ., Z,
then there is a constagf so that

EolZ81-Z2 1 7] < % (4.6)

The equation4.6) is clearly satisfied whed; = 0. On the even§; = s,
whereAnY* < s < s, the conditional distribution 06.,; is the same as
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the conditional distribution 0%, givenS; = s. Thus
. ~ s
EolSti1 | St =9 = Eg[St1| St =9 > s- COF, (4.7)

for a constant,. The inequality is obtained by expanding tanh 11Q3.
From @.7), it follows that

Eq[Zoi | Fil < Z+ %éﬁ. (4.8)
We decompose the conditional second momeiz; gfas
Eq[Z2, | 7] = VarZuy | 7) + (Ee[Zut | 7). (4.9)

Since|Ziy1 — 4| < 2/n,
4
Var(Z,y | F1) = Var(Zuy — Ze+ 2| F1) = Varlea - 2| F) < . (4.10)
By (4.8), fort < 7, there is a constamt (depending o) so that
236

~, €3S
7,58 + ‘r’] < ZZ+con (4.11)

C
EqlZua | 7] <20+ 22

Using the bounds4(10 and @.17) in (4.9 establishes4.6). We conclude
that

E¢[Z7] < can™t. (4.12)

Note that ,

A
Eo[Z%] = E¢[Z%1r < t)] > Pe(7 <),
which together with4.12) shows that

Cal
A2n3/2°
Takingt = (A?/4ca)n®? above shows that

Pe(t <t) <

P, (St < Ant%) < %.

This, together with the boundt (), proves thaid(csn®?) > 1/2, where
C3 = A?/4c,. That is,tmix > c3n®/2. m

5. TrRuUNcATED DyNAMICS FOR Low TEMPERATURE

We now consider the cage> 1. As stated in the introduction, the mixing
time for the full Glauber dynamics is exponentialrin This is proved via
an upper bound on the Cheeger constant, defined as

- X)P(X,
= m Dxeayea LX) P( Y),
A:p(P)=1/2 u(A)
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whereP is the transition matrix for the Glauber dynamics. By takhg

(o : p(o) > 0} and estimating uea xea HYP(X.Y)| /(A), wheng > 1
there are positive constantg andc, such thatd < c,e™%". The spectral
gap ofP is bounded below bygs/® (see, for examplesinclair (1993.) The
mixing time, in turn, is bounded below by the spectral gap (see, for example,
Aldous and Fill (in progregs) The details of this standard argument can
be found in the forthcoming bookevin et al. (200}. That the Glauber
dynamics is slow mixing fog > 1 was understood as far back@sffiths

et al. (1969, although they lacked the tool of the Cheeger inequality to
make a complete proof.

Here we study the Glauber dynamics confined to the configurations where
the magnetization is non-negative, and show that the restricted Glauber dy-
namics has a mixing time of ordatogn.

We remind the reader of the exact mechanism for restricting the dynam-
ics. The usual dynamics are run from a state with non-negative magnetiza-
tion. If a move to a state is proposed, ang has negative magnetization,
then the chain moves ter instead.

To establish ar©(nlogn) upper bound on the mixing time, we need to
estimate the hitting times of the normalized magnetization chain.

Lemma 5.1. Let3 > 1. Let s denote the unique positive solution to
tanhs) = s, and fora > 0 define

™ =1%(@) = inf{t>0:S; < s +an/?) (5.1)
There exists a constant€0, depending o andg, such that
lim P,(* > cnlogn) = 0.
N—oo

Proof. Lety* := Bcosh?(8s*). First, we show that

1 d=7
n

E[Sty - IS =9 < (s- ). (5.2)

By Remark3 and @.17), for S{ > 1/n
1
E,[Siy- S/ S < - [tanhs;) - S{].

SinceB > 1, it follows thaty* = Bcosh?(8s*) < 1. By the mean-value
theorem, fory > O,

by

cosi(5)”

for somes € [s*, s* +y]. Since costX) is increasing forx > 0, the right-
hand side is bounded above f%y. Thus, fory > 0,

tanhB(s* +y)] < s* +y™y. (5.3)

tanhPB(s* +y)] — tanh3s*) =
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Hence,
* 1- *
Es[Si—-S{ 1S =9 <-(s-s )%,
from which (5.2) follows.
By (5.2,
*\ 1t
Yt = [1— %] (S;— _ S*)

defines a non-negative supermartingaletferr*. By optional stopping,
1> Eo[Yerd > Eo [(1— (A= »")/n) " (SE — )]

> e Y21 — (1= y*)/n] Py (v > t).
HenceP,(7* > t) < ¢;n¥2[1 — (1 - y)/n]}, and the lemma is proved. m
Proposition 5.2. Lets > 1. For ¢z > O, if
7, = 7,(C3) :=min{t > 0 : S} > s* + N2},

then
Eo[74x] = O(nlogn). (5.4)

Proposition5.2is proved in Sectio®.2 Meanwhile, we state and prove
Theoremb.3 below, which establishes the upper bound.

Theorem 5.3.LetB > 1. There is a constan{8) so that f,ix(n) < c(8)nlogn
for the Glauber dynamics restricted €.

Proof. We show that there is a coupling{, >~<1+) of the restricted Glauber
dynamics started from statesand o such that, ifrmag is the first timet
with S} = S/, then
lim supP,.5(Tmag > cnlogn) — 0 asc — oo.
n—oo
An application of Lemma&.9will then complete the proof.
By monotonicity, it is enough to consider the the starting positions 0 and
1. The “top” chain with starting position 1 we denote g/}, and the
“pottom” chain with starting position 0 we denote b§). Letu™ be the
stationary distribution of the restricted magnetization chain, an&|¢be
a stationary copy of the restricted magnetization chain, that is, started with
initial distributionu™.
Initially, all the chains are independent of one another. Given constants
C1 < Cy, let

rp=minft>0 : S| < s +¢nt?,

T, =mint >0 : SB > s* + ¢n 3.
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Suppose that; < 7,. On the evenS,, > s* + c;n"Y/2, fort > 7; we couple
together monotonically thB-chain and th&T -chain (that is, such th&; >
S/ for all t > r;), and continue to evolve tH8®-chain independently o8
andS/. Onthe evenS,, < s* +c;n"Y2, we continue to run all three chains
independently. Then at time, on the event tha,, < s* + co,nY/2, couple
together all three chains monotonically (so tBat< S; < SE forallt > 1,).
If S;, > s* + ¢y, just let the chains run independently. The case 7 is
handled analogously.

Note that, since,) is independent ofg]) until after timery, the random
variableS,, is independent of; and hence still stationary.

Letcs > 0 be a constant, and define eveHtsH, by

Hi = {r1 < gsnlogn} N (S;, > s* + cin?),

H, = {12 < csnlogn} N {S,, < s* + c,n V2.
Then
Pys(HS) < Pys(t1 > canlogn) + (0, s* + ¢n/?), (5.5)
and
P(r,ﬁ'(Hg) < P(r,(?(TZ > C3n |Og n) + :u+(S* + CZn_l/Z’ 1) (56)

Now observe that on the eved{NH, the chains$/) and SP) have crossed
over by the timessnlogn, and that by %.5) and 6.6),

Prs(HiNHy) > 1-P,5(r1 > cgnlogn) — P, 5(t2 > csnlogn) — " (1°),

wherel = (s* + ¢;nY/2, s* + con12).

Since, as a consequence of Theorem 2.4 of Ellis, Newman, and Ric®&&h (
the stationary magnetization satisfies a central limit theogerfi’) < 1
uniformly in n. Further,

lim P, s(ry > csnlogn) =0 and  limP, (72 > cznlogn) = O,
n—oo n—oo

by Lemmab.1and Propositiorb.2, respectively. Hence the probability that
ST andSB will have crossed by the timenlog n stays bounded away from
0 asn — co.

Finally, observe that, whenever the two chains cross, they coalesce with
probability bounded away from O uniformly in, which completes the
proof. [ |

5.1. Hitting times for birth-and-death chains. A birth-and-death chain
on{0,1,...,N}is a Markov chainZ;) onZ* with transitionsZ;,; — Z; con-
tained in the set-1, 0, 1}.

This section contains a few standard results concerning the hitting times
of birth-and-death chains. We shall use these in the proof of PropoSion
in the next section.
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Define
Pk =P(Zy1 -2 =+112Z =K) k=0,1,...,N-1,
quP(ZHl_Zt:_lth:k) k:l’_“,N’
rk =P(Zu1-2 =012 =K) k=0,...,N.

Clearly, px + gk + rx = 1 for all k if we defineqy = py = 0. Usingr to
denote the stationary distribution of the chain, we have

n(1) = Cpars

k
Pj-1

ﬂ'(k) = Cp’q’r .
=1

k=1,...,N,

whereCpq, = [1 + Xk, pj-10;'] 7 is @ normalizing constant.

Now, let¢ < N be a positive integer, and Iéff) be a restriction o
to the set{0,...,¢}. In other words, when & € {0, ..., ¢ — 1}, the chain
makes transitions frork as the original chain, but when étit moves to
¢ — 1 with probabilityq, and stays af with probability p, + r,. Let ) be
the stationary measure Zf‘)). It is easy to verify that there is a constant

Cpqr Such that

aOk) = Cpqm(K) fork=0,1,....¢

In other words, under the stationary measure of the restricted chain, the
states 01,. ..,k each have the same relative weights as in the unrestricted
chain.
Forke {0,1,..., N} let

Tw=inf{t>0 : Z =k},

Ty =inf{t >0 : Z =k}.
Then (see for instandeevin et al. (200)) fork=0,1,...,N -1,

1
7O(£)

In the aboveE; and Ef respectively denote the expectation operators corre-

sponding to the unrestricted and restricted chain starting\ie shall now
apply identity 6.7) to the Glauber dynamics magnetization chain.

= EV7] = 1+ qE,a(ty). (5.7)

5.2. Hitting time for magnetization.

Proof of Propositiorb.2. Here it is more convenient to work withl; =
nS(X{)/2, which is a birth-and-death chain with values{®...,n/2 —
1,n/2}. Note that, ifn is odd, this chain is not integer-valued, but this
causes no dhiculties, as one can simply shift all states by2-1
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Let £* = |ns*]. Letc > 0 be a constant. Also, throughout the cal-
culation, C will denote a generic positive constant whose value may be
adjusted between inequalities. In the notation of Secdidnwe have for
te{l,...,[ns' +cnv/?]),

1
Ecal] < RECI0}

The probability of moving leftg,, is bounded away from 0, uniformly in
¢ € {1,...,n/2}. Consequently, writing = nxandj = ny, we obtain the
upper bound

Zizo (wzeny) ©¥P(B20Y)
(n/zrlnx) exp(2,8nx2)

Applying Stirling’s formula, the right-hand side is bounded above by

T _o(L+y)"E (L - 2y)-(-2V2(] — 4y?)~12 exp(2pny?)

(1 + 2x)—(1+2X)n/2(1 _ 2x)—(1—2X)n/2(1 _ 4X2)—1/2 eXp(Zﬁan) ?
which can be rewritten as
Tioexp[-nf(y)] (1 - 4y%)~*2
exp[-nf(X)] (1 - 4x?)~Y/?

4
- C Z exp[n(f(x) - f(y)] (
j=0

Ecafr] <C

1-42\"?
1—4y2) ’

where
f(2 = %(1 + 22)log(1+ 22) + %(1 - 22)log(1- 22) - 287

Sincef/n < (£* + O(+/n))/n < 1 uniformly inn, we can bound
1-4x2\'?
sup su —| <
n pOSygs*:e*/n ( 1- 4y2)

It follows that the behavior of each term in the sum is dominated by the
behavior of the exponential factor ex{f(x) — f(y))], and so it is enough
to upper bound the expression

l
> expln(f() - fy)].
i=0

We then need to look for stationary pointsfoh the interval [Q 1]; we have
f'(2) = log(1+ 22 — log(1- 22) — 4Bz

1
- 4B,

"a=1-22
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sof’(2) = 0if and only if

e¥? (5.8)

or, equivalently,
2z = tanh(32).
Wheng < 1, the unique maximum of is atx = 0. Wheng > 1, there is
a local maximum off ats = 0, and as mentioned earlier, there is a unique
0 < s* <1 minimizing f. As before, we writé¢* = |[ns*].
By the above, whemn < s*,

{
Ecalr] <C ) exp[n(f(x) - f(y)],
j=0

andf(x) < f(y)forally < x.

Throughout the calculation below, we shall use the fact thg) < O for
ally € [0, s*), and that the second derivativé(y) exists and is uniformly
bounded in that range, & < 1/2.

Suppose = O(n"Y?), i.e. £ = O(+/n). Then

E,aft] <C Z exp[2f'(x)(nx— ny) + O(n(x - y)?)]

j=0
4

< CZ exp[(f'(¢/n)(¢ - )]
i=0

< Vin[1+ 03,

valid for 1 < ¢ < Cy+/n. The final bound is valid a$’(¢/n) < 0, and so
each term is bounded by a constant.
Similarly (takingC, = 20) we have, for 28/n < ¢ < (*/2,

Eralrd <C ) exp| F'(cey)(t - i) + On(x - y)?)|

j=0
4
<C ) exp| ()¢ - )],
=0

wherec,, is betweenx andy (we could takec,y, = x, for eachy, by the
uniform boundedness of the second derivative). There exists a constant
¢, > 0 such that, ifj > ¢/2, thenf’(c,y) < —c;£/n. Then there exists a
constant, > 0 such that, forj < ¢/2,

f(j/n) — £(f/n) < —Ca.
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This in turn implies that the sum of remaining terms is negligible. More
precisely,

l/2

2 expIn(f(¢/n) - £(j/m)] < nexp(-czn)

j=0
It follows that

4
E,alt] < Z exp[—clfn‘l({’ - j)] + nexp(c;n)
j=L¢/2]

=1z expcit/n) nexpi-czn)

Cn
< )
{
for some constar@ > 0, uniformly inn.
Now suppose thaf*/2 < ¢ < ¢* — 20+/n. Then, for some constant
G > 0, f'(cry) < —Ci(¢* = €)/n, as long ag = yn > ¢/2. Also, there exists
a constant; > 0 such that, folj < ¢/2,

f(i/n) - f(¢/n) < =&,
and so the contribution due to the terms wjitk £/2 is negligible.
Then a calculation similar to that for 2fh < ¢ < ¢*/2 above implies that
there is a constar@ > O such that
Cn
=
uniformly in n. Similarly, if £* —20+/n < ¢ < [ns + c+/n], then we see that

Ecalr] = O(Vn).

Summing over, we obtain an upper bound on the expected hitting time
of [ns* + c+/n] starting from 0, as follows:

Ecalr] <

£*+c4/n
Eo[Te*+c\m] = Z Eé’—l[TL’]
£=0
n n */2 n
<Clvnx Yyn+ -+
- Ve ; ¢ f—é’Z*—l =t

< C(n+ nlogn),

whereC is once again a generic constant, and was changed o the last
inequality. [

Related results on the magnetization chain can be four@livmeri and
Vares (2005
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5.3. Lower bound.

Theorem 5.4. Assume thag > 1. For the Glauber dynamics restricted to
configurations with non-negative magnetizatign,(h) > (1/4)nlogn.

The Glauber dynamics restricted to configurations with non-negative mag-
netization will be denoted byx(").

Proof. Recall again thas* is the unique positive solution to tamis) = s*.

Since we are proving a lower bound, ittBoes to consider any specific
starting state; we taki; to be the all plus configuration.

We let (X, X;") be the monotone coupling, wheXxg is the all plus con-
figuration ano>~<g has the stationary distributiqit. We writePy - andEj
for the probability measure and expectation operator on the space where
(X, X) is defined.

LetB(o) :={i : o(i) = -1}, andB(o) := |B(0)|.

By the central limit theorem for the stationary magnetization, (c.f. Ellis,
Newman, and Roseri980), for some O< ¢; < 1,

P+ (B(X$) < cin) = u*(lo : B(0) < can}) = o().

Let N; be the number of the sites E\()N(g) which have not been updated
by timet. By writing N; as a sum of indicators,

Ex [N B(R)] = B - 7,
and so, for some, > 0,

Evu [Ny | BRG] 2 coB(X)n 4,
wheret* = (1/4)nlogn. Also, since these indicators are negatively corre-
lated, Vag ,+(Ny) < nfor allt. Applying Chebyshev’s inequality shows that,
for somecsz > 0, on the eventB(X;) > c.nj,

P (Ny < can®®| B(X$)) = o(1).
where theo(1) bound is uniform irB. We conclude that

P1ur (Nyg < can®’?) < Py (B(X3) < can)
+ Py (Ntn* < czn¥* andB(X3) > cln)
= 0(1).

Suppose now thalil: > csn®4. It follows that Sy > Si: + cn /4 for

somec, > 0. Thus, ifSix < s* + csn™/* for a small constants > 0, then
Si < s* + (cs — )4 Therefore,

Py, (Sm <s+ c5n‘1/4) < 0o(1)+ Py (Nt;; > cn®* andSy: < s + csn‘l/“)

<0o(1) + Py (S < 8" + (G5 — c4)n‘1/4).
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Again by the central limit theorem, the probability on the right-hand side
above tends to 0 as— oo, provided we choose; < c;.
On the other hand, appealing one final time to the central limit theorem,

w(fo : S(o) > s* + csn ) = o(1).
Consequently,
An(ty) = Py, (Syy > 8%+ csn )
—ut({o : S(0) > s* +csn )
=1-0(1),
and satmix(n) > (1/4)nlogn for n large. [ |

6. CONJECTURES

We believe the results proven in this paper should be generic for Glauber
dynamics on transitive graphs.

To be concrete, consider tidedimensional torus%/nz)®. Lets. be the
critical temperature for uniqueness of Gibbs measuregion

We make the following conjectures:

() Forp < B, there is a cut-fb.

(i) Forp = B, the mixing time is polynomial im. A stronger conjecture
is that there is a critical dimensiaf such that fod > d., the mixing
time tmix is O(|Va[>2).

(i) Forp > B, if the dynamics are suitably truncated, the mixing time
Is polynomial inn. A stronger version is that again there is a critical
dimensiond, such that fod > d., the mixing time iO(|V,| log|V,)).
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