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GLAUBER DYNAMICS FOR THE MEAN-FIELD ISING MODEL:
CUT-OFF, CRITICAL POWER LAW, AND METASTABILITY

DAVID A. LEVIN, MALWINA J. LUCZAK, AND YUVAL PERES

A. We study the Glauber dynamics for the Ising model on the
complete graph, also known as the Curie-Weiss Model. Forβ < 1, we
prove that the dynamics exhibits a cut-off: the distance to stationarity
drops from near 1 to near 0 in a window of ordern centered at [2(1−
β)]−1n logn. For β = 1, we prove that the mixing time is of ordern3/2.
Forβ > 1, we study metastability. In particular, we show that the Glauber
dynamics restricted to states of non-negative magnetization has mixing
timeO(n logn).

1. I

1.1. Ising model and Glauber dynamics.LetG = (V,E) be a finite graph.
Elements of the state spaceΩ := {−1,1}V will be calledconfigurations, and
for σ ∈ Ω, the valueσ(v) will be called thespinatv. Thenearest-neighbor
energy H(σ) of a configurationσ ∈ {−1,1}V is defined by

H(σ) := −
∑

v,w∈V,
v∼w

J(v,w)σ(v)σ(w), (1.1)

wherew ∼ v means that{w, v} ∈ E. The parametersJ(v,w) measure the in-
teraction strength between vertices; we will always takeJ(v,w) ≡ J, where
J is a positive constant.

Forβ ≥ 0, theIsing modelon the graphG with parameterβ is the proba-
bility measureµ onΩ given by

µ(σ) =
e−βH(σ)

Z(β)
, (1.2)

whereZ(β) =
∑
σ∈Ω e−βH(σ) is a normalizing constant.
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The parameterβ is interpreted physically as the inverse of temperature,
and measures the influence of the energy functionH on the probability dis-
tribution. At infinite temperature, corresponding toβ = 0, the measureµ is
uniform overΩ and the random variables{σ(v)}v∈V are independent.

The (single-site)Glauber dynamicsfor µ is the Markov chain onΩ with
transitions as follows: When atσ, a vertexv is chosen uniformly at random
from V, and a new configuration is generated fromµ conditioned on the set

{η ∈ Ω : η(w) = σ(v), w , v}.

In other words, if vertexv is selected, the new configuration will agree with
σ everywhere except possibly atv, and atv the spin is+1 with probability

p(σ; v) :=
eβS

v(σ)

eβSv(σ) + e−βSv(σ)
, (1.3)

whereSv(σ) := J
∑

w : w∼vσ(w). Evidently, the distribution of the new spin
atv depends only on the current spins at the neighbors ofv. It is easily seen
that (Xt) is reversible with respect to the measureµ in (1.2).

In what follows, the Glauber dynamics will be denoted by (Xt)∞t=0. We
usePσ andEσ respectively to denote the underlying probability measure
and associated expectation operator whenX0 = σ.

A coupling of the Glauber dynamics with starting statesσ and σ̃ is a
process (Xt, X̃t)t≥0 such that (Xt) is a version of the Glauber dynamics with
starting stateσ and (X̃t) is a version of the Glauber dynamics with starting
stateσ̃. If a coupling (Xt, X̃t) is a Markov chain, we call it aMarkovian
coupling. We writePσ,σ̃ andEσ,σ̃ for the probability measure and associated
expectation respectively corresponding to a coupling with initial statesσ
andσ̃.

1.2. Order n logn mixing and cut-off. Given a sequenceGn = (Vn,En) of
graphs, we writeµn for the Ising measure and (Xn

t ) for the Glauber dynamics
on Gn. The worst-case distance to stationarity of the Glauber dynamics
chain aftert steps is

dn(t) := max
σ∈Ωn

‖Pσ(Xn
t ∈ ·) − µn‖TV , (1.4)

where‖µ− ν‖TV denotes the total variation distance between the probability
measuresµ andν. Themixing time tmix(n) is defined as

tmix(n) := min{t : dn(t) ≤ 1/4}. (1.5)

Note thattmix(n) is finite for each fixedn since, by the convergence theorem
for ergodic Markov chains,dn(t) → 0 ast → ∞. Nevertheless,tmix(n) will
in general tend to infinity withn. Our concern here is with the growth rate
of the sequencetmix(n).
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The Glauber dynamics is said to exhibit acut-off at {tn}with window{wn}

if wn = o(tn) and

lim
γ→∞

lim inf
n→∞

dn(tn − γwn) = 1,

lim
γ→∞

lim sup
n→∞

dn(tn + γwn) = 0.

The first part of this paper is motivated by the following conjecture, due
to the third author:

Conjecture 1. Let (Gn) be a sequence of transitive graphs. If the Glauber
dynamics on Gn has tmix(n) = O(n logn), then there is a cut-off.

We establish this conjecture in the special case whenGn is the complete
graph onn vertices andβ < 1 (the “high temperature” regime), where the
Glauber dynamics hasO(n logn) mixing time.

1.3. Results. Here we takeGn to beKn, the complete graph onn vertices.
That is, the vertex set isVn = {1,2, . . . ,n}, and the edge setEn contains all(
n
2

)
pairs{i, j} for 1 ≤ i < j ≤ n. We take the interaction parameterJ to be

1/n; in this case, the Ising measureµ on {−1,1}n is given by

µ(σ) = µn(σ) =
1

Z(β)
exp

βn ∑
1≤i< j≤n

σ(i)σ( j)

 . (1.6)

In the physics literature, this is usually referred to as theCurie-Weissmodel.
For the remainder of this paper,Ising modelwill always refer to the measure
µ in (1.6), andGlauber dynamicswill always refer to the one corresponding
to this measure. We will often omit the explicit dependence onn in our
notation.

It is a consequence of the Dobrushin-Shlosman uniqueness criterion that
tmix(n) = O(n logn) whenβ < 1 (Aizenman and Holley, 1987). See also
Bubley and Dyer (1997). Our first result is that there is a cut-off phenome-
non in this regime:

Theorem 1. Suppose thatβ < 1. The Glauber dynamics for the Ising model
on Kn has a cut-off at tn = [2(1− β)]−1n logn with window size n.

Remark1. Most examples of Markov chains for which the cut-off phenom-
enon has been proved tend to have ample symmetry, for example, random
walks on groups. Part of the interest in Theorem1 is that the chain stud-
ied here is not of this type, and our methods are strictly probabilistic – in
particular, based on coupling. Recently, Diaconis and Saloff-Coste (2006)
have proven cut-off (for separation distance) for birth-and-death chains.

In the critical caseβ = 1, we prove that the mixing time of the Glauber
dynamics is ordern3/2.
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Theorem 2. If β = 1, then there are constants C1,C2 > 0 such that for the
Glauber dynamics for the Ising model on Kn,

C1n
3/2 ≤ tmix(n) ≤ C2n

3/2.

Finally, we consider the low-temperature case corresponding toβ > 1.
To state our result, it is necessary to mention here thenormalized magneti-
zation, the functionS defined on configurationsσ by S(σ) := n−1 ∑n

i=1σ(i).
Also, we define the setΩ+ of states with non-negative magnetization,

Ω+ := {ω ∈ X : S(σ) ≥ 0}.

By using the Cheeger inequality with estimates on the stationary distribu-
tion of the magnetization, the mixing time is seen to be at least exponential
in n – slow mixing indeed. Arguments for exponentially slow mixing in
the high temperature regime go back at least to Griffiths, Weng and Langer
(1966).

In contrast, we prove that the mixing time is of the ordern logn if the
chain is restricted to the setΩ+. To be precise, the restricted dynamics
evolve as follows onΩ+: Generate a candidate moveη according to the
usual Glauber dynamics. IfS(η) ≥ 0, acceptη as the new state, while if
S(η) < 0, move instead to−η.

Theorem 3. If β > 1 then there exist constants C3(β),C4(β) > 0 depending
on β such that, for the restricted Glauber dynamics for the Ising model on
Kn,

C3(β)n logn ≤ tmix(n) ≤ C4(β)n logn.

For other work on the metastability of related models, see Bovier, Eck-
hoff, Gayrard, and Klein (Bovier et al., 2001; 2002), and Bovier and Manzo
(2002).

The rest of the paper is organized as follows: Section2 contains some
preliminary lemmas required in our proofs. Theorems1, 2 and3 are proved
in Sections3, 4, and5, respectively. Section6 contains some conjectures
and open problems.

2. P

2.1. Glauber dynamics for Ising on Kn. We introduce here some nota-
tion specific to our setting of the Glauber dynamics for the Ising model on
Kn. For a configurationσ, recall that the normalized magnetizationS(σ) is
defined as

S(σ) :=
1
n

n∑
j=1

σ( j).

Given that the current state of the chain isσ and a sitei has been selected
for updating, the probabilityp(σ, i) of updating to a positive spin, displayed
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in (1.3), is in this casep+(S(σ) − n−1σ(i)), wherep+ is the function given
by

p+(s) :=
eβs

eβs+ e−βs
=

1+ tanh(βs)
2

. (2.1a)

Similarly, the probability of updating sitei to a negative spin isp−(S(σ) −
n−1σ(i)), where

p−(s) :=
e−βs

eβs+ e−βs
=

1− tanh(βs)
2

. (2.1b)

2.2. Monotone coupling. We now describe a process called thegrand cou-
pling, a Markov chain ({Xσt }σ∈Ω)t≥0 such that for eachσ ∈ Ω, the coordinate
process (Xσt )t≥0 is a version of the Glauber dynamics started atσ. It will
suffice to describe one step of the dynamics. LetI be drawn uniformly from
the sites{1,2, . . . ,n}, and letU be a uniform random variable on [0,1], in-
dependent ofI . For eachσ ∈ Ω, let U determine the spinSσ according
to

Sσ =

+1 0< U ≤ p+(S(σ) − n−1σ(I ))),

−1 p+(S(σ) − n−1σ(I )) < U ≤ 1.

For eachσ, generate the next stateXσ1 according to

Xσ1 (i) =

σ(i) i , I

Sσ i = I
.

We write P~σ andE~σ for the probability measure and expectation operator
on the measure space where the grand coupling is defined.

For a given pair of configurations,σ andσ̃, the two-dimensional projec-
tion of the grand coupling, (Xσt ,X

σ̃
t )t≥0, will be called themonotone coupling

with starting statesσ andσ̃.
For two configurationsσ andσ′, theHamming distancebetweenσ and
σ′ is the number of sites where the two configurations disagree, that is

dist(σ,σ′) :=
1
2

n∑
i=1

|σ(i) − σ′(i)|. (2.2)

Proposition 2.1. The monotone coupling(Xt, X̃t) of the Glauber dynamics
started fromσ andσ̃ satisfies

E~σ
[
dist(Xt, X̃t)

]
≤ ρtdist(σ, σ̃), (2.3)

where

ρ := 1− n−1 (1− n tanh(β/n)) . (2.4)
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Proof. We first show that (2.3) holds with t = 1 provided dist(σ, σ̃) = 1.
Indeed, suppose thatσ andσ̃ agree everywhere except ati, whereσ(i) = −1
andσ̃(i) = +1.

Recall that the vertex which is updated in all configurations in the grand
coupling is denoted byI . If I = i, then the distance decreases by 1; ifI , i
and the eventB(I ) occurs, where

B( j) := {p+(S(σ) − σ( j)/n) ≤ U ≤ p+(S(σ̃) − σ̃( j)/n)} ,

then the distance increases by 1. In all other cases, the distance remains the
same. Consequently,

dist(X1, X̃1) = 1− 1{I = i} +
∑
j,i

1{I = j}1B( j). (2.5)

Note thatS(σ̃) − σ̃( j)/n = S(σ) − σ( j)/n + 2/n for j , i. Thus, letting
ŝj/n = S(σ) − σ( j)/n, for j , i,

P~σ(B( j)) =
1
2

[
tanh(β(ŝj + 2)/n)) − tanh(βŝj/n)

]
≤ tanh(β/n). (2.6)

Taking expectation in (2.5), by the independence ofU and I together with
(2.6),

E~σ[dist(X1, X̃1)] ≤ 1−
1
n
+ tanh(β/n) = ρ (2.7)

This establishes (2.3) for the case whereσ andσ′ are at unit distance.
Now take any two configurationsσ, σ̃ with dist(σ, σ̃) = k. There is a se-

quence of statesσ0, . . . , σk such thatσ0 = σ,σk = σ̃, and each neighboring
pairσi , σi−1 are at unit distance. Since we proved the contraction holds for
configurations at unit distance,

E~σ
[
dist(Xσ1 ,X

σ̃
1 )

]
≤

k∑
i=1

E~σ
[
dist(Xσi

1 ,X
σi−1
1 )

]
≤ ρk = ρdist(σ, σ̃).

This establishes (2.3) for t = 1; iterating completes the proof. �

We mention another property of the monotone coupling, from which it
receives its name. We writeσ ≤ σ′ to mean thatσ(i) ≤ σ′(i) for all i.
Given the monotone coupling (Xt, X̃t), if Xt ≤ X̃t, thenXs ≤ X̃s for all s≥ t.
This is obvious from the definition of the grand coupling, since the function
p+ is non-decreasing.

2.3. Magnetization chain. Let St := S(Xt), and note that (St) is itself a
Markov chain onΩS := {−1,−1 + 2/n, . . . ,1 − 2/n,1}. The increments
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St+1 − St take values in{−2/n,0,2/n}, and the transition probabilities are

PM(s, s′) =


1+s
2 p−(s− n−1) s′ = s− 2/n,

1−s
2 p+(s+ n−1) s′ = s+ 2/n,

1− 1+s
2 p−(s− n−1) − 1−s

2 p+(s+ n−1) s′ = s,

(2.8)

for s ∈ ΩS, wherep+(s) andp−(s) are as in (2.1).

Remark2. It is easily verified thatPM(−s,−s′) = PM(s, s′), so the distribu-
tion of the chain (St) started froms is the same as the distribution of (−St)
started from−s.

Remark3. Let (X+t ) be the Glauber dynamics restricted toΩ+, and define
S+t := S(X+t ). The chain (S+t ) has the same transition probabilities as the
chain|St|.

In the remainder of this subsection, we collect some facts about the
Markov chain (St) which will be needed in our proofs.

If (Xt, X̃t) is a coupling of the Glauber dynamics, we will always writeSt

andS̃t for S(Xt) andS(X̃t), respectively.

Lemma 2.2. Let ρ be as defined in(2.4). If (Xt, X̃t) is the monotone cou-
pling, started from statesσ andσ̃, then

Eσ,σ̃
[
|St − S̃t|

]
≤

(
2
n

)
ρtdist(σ, σ̃) ≤ 2ρt. (2.9)

Proof. Using the triangle inequality, we see that|St−S̃t| ≤ (2/n)dist(Xt, X̃t).
An application of Proposition2.1completes the proof. �

Lemma 2.3. For the magnetization chain(St), for any two states s and̃s in
ΩS with s≥ s̃,

0 ≤ Es[S1] − Es̃[S1] ≤ ρ(s− s̃). (2.10)

Also, for any two states s and̃s,

|Es[S1] − Es̃[S1]| ≤ ρ|s− s̃|. (2.11)

Proof. Let (Xt, X̃t) be the monotone coupling, started from (σ, σ̃), where
σ ≥ σ̃ andS(σ) = s,S(σ̃) = s̃. In this case,s− s̃= (2/n)dist(σ, σ̃), and

Eσ,σ̃[|S1 − S̃1|] = Eσ,σ̃[(2/n)dist(X1, X̃1)] ≤
2
n
ρdist(σ, σ̃) = ρ(s− s̃).

By monotonicity,X1 ≥ X̃1 and soS1 ≥ S̃1. Thus,Eσ[S1] − Eσ̃[S̃1] =
Eσ,σ̃[|S1 − S̃1|], which, together with the preceding inequality, proves that

Eσ[S1] − Eσ̃[S̃1] ≤ ρ(s− s̃). (2.12)
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The left-hand side of (2.12) equalsEs[S1]−Es̃[S̃1], because (St) is a Markov
chain. Moreover, the left-hand side does not depends at all on the coupling.
This proves (2.10). An analogous bound in the caseS(σ̃) ≥ S(σ) estab-
lishes (2.11). �

We now study the drift of (St) in some detail. From (2.8),

E[St+1 − St | St = s] =
2
n

(
1− s

2

)
p+(s+ n−1) −

2
n

(
1+ s

2

)
p−(s− n−1),

and hence

E[St+1 − St | St = s] =
1
n

[
fn(s) − s+ θn(s)

]
, (2.13)

where

fn(s) :=
1
2

{
tanh[β(s+ n−1)] + tanh[β(s− n−1)]

}
θn(s) :=

−s
2

{
tanh[β(s+ n−1)] − tanh[β(s− n−1)]

}
.

The approximation

E[St+1 − St | St = s] ≈
1
n

[
tanh(βs) − s

]
(2.14)

will play an important role in our proofs, and we will need to control the
error fairly precisely. For the moment, let us observe that (2.14) is valid
exactly as an inequality fors≥ 0:

E[St+1 − St | St = s] ≤
1
n

[
tanh(βs) − s

]
. (2.15)

This follows from the concavity of the hyperbolic tangent, together with the
fact that the termθn(s) in (2.13) is negative. By Remark2, for s≤ 0,

E[St+1 − St | St = s] ≥
1
n

[
tanh(βs) − s

]
. (2.16)

Since (St) does not change sign when|St| > n−1, and because tanh is an odd
function, putting together (2.15) and (2.16) shows that, for|St| > n−1,

E
[
|St+1|

∣∣∣ St

]
≤ |St| +

1
n

[
tanh(β|St|) − |St|

]
. (2.17)

Since tanh(x) ≤ x for x ≥ 0, whenβ ≤ 1 equation (2.15) implies that, for
s≥ 0,

E[St+1 − St | St = s] ≤
s(β − 1)

n
. (2.18)

Define
τ0 := inf {t ≥ 0 : |St| ≤ 1/n}. (2.19)
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Note that, forn even,|Sτ0| = 0, while for n odd, |Sτ0| = 1/n. The notation
τ0 will be used with the same meaning throughout the paper.

On several occasions, we will need an upper bound on the probability
that an unbiased random walk remains positive for at leastu steps. The
following lemma gives a classical estimate.

Lemma 2.4. Let (Wt)t≥0 be a random walk withE[Wt+1 −Wt | Wt] = 0 and
|Wt+1 −Wt| < B for some constant B. Then there is a constant c> 0 such
that, for all u,

Pk(|W1| > 0, . . . , |Wu| > 0) ≤
c|k|
√

u
. (2.20)

(HerePk indicates probabilities for the random walk started with W0 = k.)

Lemma2.4 can be proved using hitting estimates inFeller (1971); al-
ternatively, it can be seen to be a special case of equation (3.9) in Bender,
Lawler, Pemantle, and Wilf (2003/04).

The following lemma is proved forn even. The proof can be modified to
deal with the case ofn odd by replacing 0 with 1/n; we omit the details.

Lemma 2.5. Letβ ≤ 1, and suppose that n is even. There exists a constant
c such that, for all s and for all u, t ≥ 0,

P( |Su| > 0, . . . , |Su+t| > 0 | Su = s) ≤
cn|s|
√

t
. (2.21)

Proof. It will suffice to prove (2.21) for s > 0, in which case the absolute
values may be removed.

By (2.18), E[St+1 − St | St] ≤ 0 for St ≥ 0. Also, there exists a constant
b > 0 such thatP(St+1 − St , 0 | St) ≥ b for all timest, uniformly in n. It
follows that (St) can be coupled with an unbiased nearest-neighbor random
walk (Wt) onZ satisfying

• P(W1 −W0 , 0 |W0 = w) = b for all w,
• W0 = ns/2,
• nSt/2 ≤Wt for t less than the first timeu whenSu ≤ n−1.

From Lemma2.4, there exists a constantc > 0 such that

P(Su+1 > 0, . . . ,Su+t > 0 | Su = s) ≤ P(W1 > 0, . . . ,Wt > 0 |W0 = ns/2)

≤
cns
√

t
.

�

2.4. Variance bound.
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Lemma 2.6. Let (Zt) be a Markov chain taking values inR and with tran-
sition matrix P. We will writePz andEz for its probability measure and ex-
pectation, respectively, when Z0 = z. Suppose that there is some0 < ρ < 1
such that for all pairs of starting states(z, z̃),

|Ez[Zt] − Ez̃[Zt] | ≤ ρ
t|z− z̃|. (2.22)

Then vt := supz0
Varz0(Zt) satisfies

vt ≤ v1 min{t, (1− ρ2)−1}.

Remark4. Suppose that, for every pair (z, z̃), there is a coupling (Z1, Z̃1) of
P(z, ·) andP(z̃, ·) such that

Ez,z̃

[
|Z1 − Z̃1|

]
≤ ρ|z− z̃|. (2.23)

By iterating (2.23),∣∣∣Ez[Zt] − Ez̃[Z̃t]
∣∣∣ ≤ Ez,z̃[|Zt − Z̃t|] ≤ ρ

t|z− z̃|.

The left-hand side does not depend at all on the coupling, and in particular,
(2.22) holds. Moreover, if the state-space of (Zt) is discrete with a path
metric and (2.23) holds for all neighboring pairsz, z̃, then it holds for all
pairs of states; seeBubley and Dyer (1997).

Proof. Let (Zt) and (Z?t ) be independentcopies of the chain, both started
from z0. By the Markov property and (2.22),∣∣∣ Ez0[Zt | Z1 = z1] − Ez0[Z

?
t | Z

?
1 = z?1 ]

∣∣∣ = ∣∣∣ Ez1[Zt−1] − Ez?1
[Z?t−1]

∣∣∣
≤ ρt−1|z1 − z?1 |.

Hence, lettingϕ(z) = Ez[Zt−1], we see that

Varz0

(
Ez0[Zt | Z1]

)
=

1
2

Ez0

[
[ϕ(Z1) − ϕ(Z

?
1 )]2

]
≤

1
2

Ez0

[
ρ2(t−1)|Z1 − Z?1 |

2
]

≤ v1ρ
2(t−1). (2.24)

By the “total variance” formula, for everyz0,

Varz0(Zt) = Ez0

[
Varz0(Zt | Z1)

]
+ Varz0

(
Ez0[Zt | Z1]

)
,

so that
vt ≤ sup

z0

{
Ez0[Varz0(Zt | Z1)] + Varz0

(
Ez0[Zt | Z1]

)}
. (2.25)

Now, Varz0(Zt | Z1 = z1) ≤ vt−1 for everyz1, and so

Ez0

[
Varz0(Zt | Z1)

]
≤ vt−1. (2.26)
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Thus we have shown thatvt ≤ vt−1 + v1ρ
2(t−1), whence

vt ≤ v1

t−1∑
i=0

ρ2(i−1) ≤ v1 min
{

(1− ρ2)−1, t
}
.

�

Proposition 2.7. If β < 1, thenVar(St) = O(n−1) as n→ ∞. If β = 1, then
Var(St) = O(t/n2) as n→ ∞.

Proof. The conclusion follows from combining Lemma2.3 with Lemma
2.6, and observing thatv1 is bounded by (4/n)2 since the incrememnts of
(St) are at most 2/n in absolute value. �

2.5. Expected spin value.In order to establish the cutoff at high tempera-
ture, not only do we need to consider the magnetization chain, but also the
number of positive and negative spins among subsets of the vertices.

Lemma 2.8. Letβ < 1.

(i) For all σ ∈ Ω and every i= 1,2, . . . ,n,

|Eσ[St]| ≤ 2e−(1−β)t/n, and |Eσ[Xt(i)]| ≤ 2e−(1−β)t/n.

(ii) For any subset A of vertices, if

Mt(A) :=
1
2

∑
i∈A

Xt(i), (2.27)

then|Eσ[Mt(A)]| ≤ |A|e−(1−β)t/n andVar(Mt(A)) ≤ cn for some constant
c > 0.

(iii) For any subset A of vertices and allσ ∈ Ω,

Eσ [|Mt(A)|] ≤ ne−(1−β)t/n +O(
√

n). (2.28)

Proof. Let 1 denote the configuration of all plus spins, and let (XT
t , X̃t) be

the monotone coupling withXT
0 = 1 and such that̃X0 has distributionµ.

(Note that thenX̃t has distributionµ for all t ≥ 0, by stationarity.) From
Lemma2.2, becauseEµ[S̃t] = 0, we have

E1

[
ST

t

]
≤ E1,µ

[
|ST

t − S̃t|
]
+ Eµ

[
S̃t

]
≤ 2e−t(1−β)/n.

By symmetry,E1

[
XT

t (i)
]
≤ 2e−(1−β)t/n for all i. By monotonicity, for anyσ,

Eσ[Xt(i)] ≤ E1[X
T
t (i)] ≤ 2e−(1−β)t/n.

Because the chain (−St) started from−σ has the same distribution as the
chain (St) started fromσ,

−2e(1−β)t/n ≤ Eσ[Xt(i)].
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For part (ii), the bound on the expectation follows from (i). As for the
variance, since the spins are positively correlated,

Var

∑
i∈A

Xt(i)

 ≤ Var

 n∑
i=1

Xt(i)

 ≤ n2 Var(St) ≤ cn, (2.29)

where the last inequality follows from Proposition2.7.
For part (iii), let (Xt, X̃t) be the monotone coupling withX0 = σ and the

distribution ofX̃0 equal toµ. From the triangle inequality,

Eσ[|Mt(A)|] ≤ Eσ,µ
[
|M̃t(A) − Mt(A)|

]
+ Eµ

[
|M̃t(A)|

]
.

By the Cauchy-Schwartz inequality and since|M̃t(A)−Mt(A)| ≤ dist(Xt, X̃t),

Eσ[|Mt(A)|] ≤ Eσ,µ
[
dist(Xt, X̃t)

]
+

√
Eµ

[
M̃t(A)2

]
.

Applying Proposition2.1shows that

Eσ[|Mt(A)|] ≤ nρt +

√
Eµ

[
M̃t(A)2

]
. (2.30)

Since the variables{X̃t(i)}ni=1 are positively correlated underµ,

Eµ
[
M̃t(A)2

]
≤

n2

4
Eµ

[
S̃2

t

]
=

n2

4
Varµ(S̃t) = O(n), (2.31)

where the last equality follows from Proposition2.7. Using (2.31) in (2.30)
shows that

Eσ [|Mt(A)|] ≤ ne−(1−β)t/n +O(
√

n). (2.32)
�

2.6. Coupling of chains with the same magnetization.The following
lemma holds at all temperatures, though we will only be using it forβ ≥ 1.
It shows that once the magnetizations of two copies of the Glauber dy-
namics agree, the two copies can be coupled in such a way that the entire
configurations agree after at most anotherO(n logn) steps. Note that this
simple coupling is not fast enough to show cutoff (where we need that once
the magnetizations agree, only ordern steps are required to fully couple).
A more sophisticated coupling for this purpose is given in Section3.

For any coupling (Xt, X̃t), we will let τ denote the coupling time:

τ := min{t ≥ 0 : Xt = X̃t}.

Lemma 2.9. Letσ, σ̃ ∈ Ω be such that S(σ) = S(σ̃). There exists a cou-
pling (Xt, X̃t) of the Glauber dynamics with initial states X0 = σ andX̃0 = σ̃
such that

lim sup
n→∞

Pσ,σ̃(τ > c0(β)n logn) = 0,

for some constant c0(β) large enough.
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Proof. To update the configurationXt at timet, proceed as follows: Pick a
site I ∈ {1,2, . . . ,n} uniformly at random, and generate a random spinS
according to

S =

+1 with probabilityp+(St − Xt(I )/n),

−1 with probabilityp−(St − Xt(I )/n).

Set

Xt+1(i) =

Xt(i) i , I ,

S i = I .

As for updatingX̃t, if Xt(I ) = X̃t(I ), then let

X̃t+1(i) =

X̃t(i) i , I ,

S i = I .

If Xt(I ) , X̃t(I ), then we pick a vertex̃I uniformly at random from the set

{i : X̃t(i) , Xt(i), andX̃t(i) = Xt(I )},

and set

X̃t+1(i) =

X̃t(i) i , Ĩ ,

S i = Ĩ .

Let Dt =
∑n

i=1 |Xt(i) − X̃t(i)|/2 be the number of differing coordinates be-
tweenX̃t andXt.

There exists a constantc1 = c1(β) > 0 such thatp+(s) ∧ p−(s) ≥ c1

uniformly over alls ∈ {−1, . . . ,1} and alln. If Xt(I ) = X̃t(I ), thenDt+1−Dt =

0 while if Xt(I ) , X̃t(I ), thenDt+1 − Dt = −2. It follows that

E[Dt+1 − Dt | Xt, X̃t] ≤ −
2c1Dt

n
,

soYt = Dt(1− 2c1/n)−t is a non-negative supermartingale, whence

E[Dt] ≤ E[D0]

(
1−

2c1

n

)t

≤ ne−2c1t/n.

Taking t = c0n logn for a sufficiently large constantc0 = c0(β), we can
make the right hand side less than 1/n, say. Markov’s inequality yields

Pσ
(
τ > c0n logn

)
≤ Pσ

(
Dc0n logn ≥ 1

)
≤ Eσ[Dc0n logn] ≤

1
n
.

�
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3. C   G    

In this section we prove Theorem1. As always, (Xt) will denote the
Glauber dynamics, andSt = S(Xt) = n−1 ∑n

i=1 Xt(i) is the normalized mag-
netization chain. Recall the definitions

tn = [2(1− β)]−1n logn,

ρ = 1− (1− β)/n,

τ0 = min{t ≥ 0 : |St| ≤ 1/n}.

3.1. Upper bound. For convenience, we restate the upper bound part of
Theorem1:

Theorem 3.1. If β < 1, then

lim
γ→∞

lim sup
n→∞

dn

([
2(1− β)

]−1 n logn+ γn
)
= 0. (3.1)

Our strategy is to first construct a coupling of the dynamics so that the
magnetizations agree with high probability aftertn +O(n) steps.

Lemma 3.2. Letσ and σ̃ be any two configurations. There is a coupling
(Xt, X̃t) of the Glauber dynamics with X0 = σ andX̃0 = σ̃ such that, if

τmag := min{t ≥ 0 : St = S̃t}, (3.2)

then for some constant c> 0 not depending onσ, σ̃ or n,

Pσ,σ̃(τmag> tn + γn) ≤
c
√
γ
. (3.3)

Proof. Assume without loss of generality thatS(σ) > S(σ̃). Let (Xt, X̃t)
be the monotone coupling of Section2.2. Define∆t := (n/2)|St − S̃t|. By
Lemma2.2, for somec1 > 0,

Eσ,σ̃
[
∆tn

]
≤ c1
√

n. (3.4)

Defineτ1 := min{t ≥ tn : |∆t| ≤ 1}. For tn ≤ t < τ1, allow (Xt) and (X̃t) to
run independently.

SinceSt ≥ S̃t for t ≤ τ1, from Lemma2.3, the process (St − S̃t)tn≤t<τ1 has
non-positive drift. Moreover, since (Xt)tn≤t<τ1 and (X̃t)tn≤t<τ1 are independent
given Xtn, X̃tn, for t > tn the conditional probability thatSt − S̃t is non-
zero is bounded away from zero uniformly. Thus there is a random walk
(Wt)t≥tn defined on the same probability space as (Xt, X̃t) and satisfying: the
incrementsWt+1−Wt are mean-zero and bounded,n(St−S̃t) ≤Wt on [tn, τ1),
andn(Stn − S̃tn) =Wtn.
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By Lemma2.4,

Pσ,σ̃(τ1 > tn + γn | Xtn, X̃tn) ≤ Pσ,σ̃(Wtn+1 > 0, . . . ,Wtn+γn > 0 | Xtn, X̃tn)

≤
n|Stn − S̃tn|
√
γn

.

Taking expectation above, (3.4) shows that

Pσ,σ̃(τ1 > tn + γn) ≤ O
(
γ−1/2

)
.

The number of plus spins inXτ1 is either one more than, or the same as, the
number of plus spins iñXτ1. Match each plus spin iñXτ1 with a plus spin in
Xτ1, and match the remaining spins arbitrarily. From timeτ1 onwards, run
a modified version of the monotone coupling, where matched vertices are
updated together in the two chains. Define dist′ as the number of disagree-
ments between matched vertices. The conclusion of Lemma2.2now holds
for this modified monotone coupling, with the distance dist′ replacing dist
in (2.9). Thus,

Pσ,σ̃(τmag> τ1 + γ
′n | Xτ1, X̃τ1) ≤ Pσ,σ̃(∆τ1+γ′n > 1 | Xτ1, X̃τ1)

≤ Eσ,σ̃[∆τ1+γ′n | Xτ1, X̃τ1]

≤

(
1−

1− β
n

)γ′n
≤ e−(1−β)γ′ .

We conclude that

Pσ,σ̃(τmag≤ tn + γn+ γ
′n) ≥ 1−O

(
γ−1/2

)
.

�

3.2. Good starting states.To show the cut-off upper bound, we will start
by running the Glauber dynamics for an initial burn-in period. This will en-
sure that the chain is with high probability in a ‘nice’ configuration required
for the coupling argument in Section3.3. The following lemma is required:

Lemma 3.3. For any a subsetΩ0 ⊂ Ω,

d(t0 + t) = max
σ∈Ω
‖Pσ(Xt0+t ∈ ·) − π‖TV

≤ max
σ0∈Ω0

‖Pσ0(Xt ∈ ·) − π‖TV +max
σ∈Ω

Pσ(Xt0 < Ω0). (3.5)
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Proof. For A ⊂ Ω, we can bound|Pσ(Xt0+t ∈ A) − π(A)| above by∣∣∣∣∣∣ ∑
σ0∈Ω0

[
Pσ(Xt0+t ∈ A | Xt0 = σ0) − π(A)

]
Pσ(Xt0 = σ0)

+
[
Pσ(Xt0+t ∈ A | Xt0 < Ω0) − π(A)

]
Pσ(Xt0 < Ω0)

∣∣∣∣∣∣.
Using the triangle inequality, the preceding displayed quantity is bounded
above by∑

σ0∈Ω0

|Pσ(Xt0+t ∈ A | Xt0 = σ0) − π(A)|Pσ(Xt0 = σ0) + Pσ(Xt0 < Ω0).

Taking a maximum over subsetsA shows that

‖Pσ(Xt0+t ∈ ·) − π‖TV

≤
∑
σ0∈Ω0

‖Pσ(Xt0+t ∈ · | Xt0 = σ0) − π‖TVPσ(Xt0 = σ0) + Pσ(Xt0 < Ω0).

By the Markov property,Pσ(Xt0+t ∈ · | Xt0 = σ0) = Pσ0(Xt ∈ ·), and
bounding the average above by the maximum term yields

‖Pσ(Xt0+t ∈ ·) − π‖TV ≤ max
σ0∈Ω0

‖Pσ0(Xt ∈ ·) − π‖TV + Pσ(Xt0 < Ω0).

Taking a maximum overσ ∈ Ω establishes (3.5). �

In the proof of Theorem3.1, we apply Lemma3.3with

Ω0 = {σ ∈ Ω : |S(σ)| ≤ 1/2}.

For a configurationσ0 ∈ Ω define

ū0 := |{i : σ0(i) = 1}|, v̄0 := |{i : σ0(i) = −1}|,

the number of positive and negative spins, respectively, inσ0. Also, define
Λ0 := {(u, v) : n/4 ≤ u, v ≤ 3n/4}. Note that

σ0 ∈ Ω0 if and only if (ū0, v̄0) ∈ Λ0. (3.6)

By Lemma2.8, there is a constantθ0 > 0 such that|Eσ[Sθ0n]| ≤ 1/4,
whence, forn large enough,

Pσ(Xθ0n < Ω0) = Pσ(|Sθ0n| > 1/2)

≤ Pσ
(∣∣∣Sθ0n − Eσ[Sθ0n]

∣∣∣ > 1/4
)

≤ 16 Varσ(Sθ0n) = O(n−1). (3.7)

The last equality follows from Proposition2.7.
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3.3. Two-coordinate chain. Fix a configurationσ0 ∈ Ω0. For σ ∈ Ω,
define

Uσ0(σ) := |{i ∈ {0,1, . . . ,n} : σ(i) = σ0(i) = 1}|

Vσ0(σ) := |{i ∈ {0,1, . . . ,n} : σ(i) = σ0(i) = −1}|.

In what follows, we shall usually omit the subscript, writing simplyU(σ)
for Uσ0(σ) andV(σ) for Vσ0(σ).

For a copy of the Glauber dynamics (Xt), the process (Ut,Vt)t≥0 defined
by

Ut = U(Xt), and Vt = V(Xt) (3.8)

is a Markov chain on{0,1, . . . ,u0} × {0,1, . . . , v0} (with transition proba-
bilities depending on the designated configurationσ0). We will refer to
the chain (Ut,Vt) as thetwo-coordinate chain, and its stationary measure
will be denoted byπ2. Note also that (Ut,Vt) determines the magnetization
chain, as we can write

St =
2(Ut − Vt)

n
−

ū0 − v̄0

n
. (3.9)

It turns out that, by symmetry, the distance of the law ofXt toµ equals the
distance of the law of (Ut,Vt) to π2, as established in the following lemma:

Lemma 3.4. If (Xt) is the Glauber dynamics started fromσ0 and(Ut,Vt) is
the chain defined by(3.8) started from(ū0, v̄0), then

‖Pσ0(Xt ∈ ·) − µ‖TV = ‖P(ū0,v̄0)((Ut,Vt) ∈ ·) − π2‖TV . (3.10)

Proof. Let
Ω(u, v) := {σ ∈ Ω : (U(σ),V(σ)) = (u, v)}.

Since bothµ(· | Ω(u, v)) and

Pσ0(Xt ∈ · | (Ut,Vt) = (u, v))

are uniform overΩ(u, v), it follows that

Pσ0(Xt = η) − µ(η)

=
∑
u,v

1{η ∈ Ω(u, v)}
|Ω(u, v)|

[
Pσ0((Ut,Vt) = (u, v)) − µ(Ω(u, v))

]
.

Applying the triangle inequality, summing overη, and changing the order
of summations shows that

‖Pσ0(Xt ∈ ·) − µ‖TV ≤ ‖P(ū0,v̄0)((Ut,Vt) ∈ ·) − π2‖TV .

The reverse inequality holds since (Ut,Vt) is a function of (Xt). �

Identity (3.10) implies that it suffices to bound from above the distance
to stationarity of the two-coordinate chain.
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1 2 3 · · · · · · · · · n
σ0 + + + + + + - - - - - - -

u0 v0

Xt + + + - - - + + + + - - -
A(Xt) B(Xt) C(Xt) D(Xt)

X̃t + + + + - - + + + - - - -
A(X̃t) B(X̃t) C(X̃t) D(X̃t)

F 1. The vertices inXt andX̃t are partitioned into four categories.

Lemma 3.5. Suppose two configurationσ and σ̃ satisfy S(σ) = S(σ̃) and
R0 = U(σ̃) − U(σ) > 0. Define

Ξ1 := {σ : min{U(σ), ū0 − U(σ), V(σ), v̄0 − V(σ)} ≥ n/16}. (3.11)

There exists a Markovian coupling(Xt, X̃t) of the Glauber dynamics with
starting states X0 = σ andX̃0 = σ̃ such that the following hold:

(i) S(Xt) = S(X̃t) for all t ≥ 0.
(ii) If Rt := U(X̃t) − U(Xt) and R0 ≥ 0, then Rt ≥ 0 and for all t and

Eσ,σ̃
[
Rt+1 − Rt | Xt, X̃t

]
≤ 0. (3.12)

(iii) There exists a constant c not depending on n so that on the event{Xt ∈

Ξ1, X̃t ∈ Ξ1},

Pσ,σ̃(Rt+1 − Rt , 0 | Xt, X̃t) ≥ c. (3.13)

Proof. Given the coupling (Xt, X̃t), we defineŨt := U(X̃t) andṼt := V(X̃t),
and note that̃Ut = Ut + Rt andṼt = Vt + Rt.

For any configurationσ, we divide the vertices into four sets:

A(σ) = {i ∈ {1,2, . . .n} : σ0(i) = +1, σ(i) = +1},

B(σ) = {i ∈ {1,2, . . .n} : σ0(i) = +1, σ(i) = −1},

C(σ) = {i ∈ {1,2, . . .n} : σ0(i) = −1, σ(i) = +1},

D(σ) = {i ∈ {1,2, . . .n} : σ0(i) = −1, σ(i) = −1}, (3.14)

and so

|A(σ)| = U(σ), |B(σ)| = ū0 − U(σ), |C(σ)| = v̄0 − V(σ), |D(σ)| = V(σ).

See Figure1 for a schematic representation of this partition forXt andX̃t.
Our coupling is as follows: To updateXt, select a uniformly randomI ∈

{1,2 . . . ,n}, and generate a random spinS for I according to the distribution

S =

+1 with probabilityp+(St − Xt(I )/n),

−1 with probabilityp−(St − Xt(I )/n).
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Set

Xt+1(i) =

Xt(i) i , I ,

S i = I .

For X̃t, we select̃I uniformly at random from{i : X̃t(i) = Xt(I )}, and let

X̃t+1(i) =

X̃t(i) i , Ĩ ,

S i = Ĩ .

The differenceRt+1 −Rt is determined by the values ofI , Ĩ andS according
to the following table:

I Ĩ S Rt+1 − Rt

I ∈ B(Xt) Ĩ ∈ D(X̃t) +1 −1
I ∈ C(Xt) Ĩ ∈ A(X̃t) −1 −1
I ∈ A(Xt) Ĩ ∈ C(X̃t) −1 +1
I ∈ D(Xt) Ĩ ∈ B(X̃t) +1 +1
all other combinations 0

It follows that

Pσ,σ̃(Rt+1 − Rt = −1 | Xt, X̃t) = a(Ut,Vt,Rt),

Pσ,σ̃(Rt+1 − Rt = +1 | Xt, X̃t) = b(Ut,Vt,Rt),

where (using the identities̃Ut = Ut + Rt andṼt = Vt + Rt)

a(Ut,Vt,Rt) =
( v̄0 − Vt

n

) ( Ut + Rt

v̄0 + Ut − Vt

)
p−(St − 1/n)

+

( ū0 − Ut

n

) ( Vt + Rt

ū0 − Ut + Vt

)
p+(St + 1/n),

b(Ut,Vt,Rt) =
(Ut

n

) ( v̄0 − Vt − Rt

v̄0 + Ut − Vt

)
p−(St − 1/n)

+

(Vt

n

) ( ū0 − Ut − Rt

ū0 − Ut + Vt

)
p+(St + 1/n).

We obtain

Eσ,σ̃
[
Rt+1 − Rt | Xt, X̃t

]
= b(Ut,Vt,Rt) − a(Ut,Vt,Rt)

=
−Rt

n
[
p−(St − 1/n) + p+(St + 1/n)

]
,

so, in particular,
Eσ,σ̃[Rt+1 − Rt | Xt, X̃t] ≤ 0. (3.15)

Furthermore, on the event{Xt ∈ Ξ1, X̃t ∈ Ξ1},

Pσ,σ̃(Rt+1 − Rt , 0 | Xt, X̃t) ≥ b(Ut,Vt,Rt) ≥ c
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for some constantc > 0, uniformly inn, since the functionsp+ andp− are
uniformly bounded away from 0 and 1. �

Proof of Theorem3.1. Applying Lemma3.3 with t0 = θ0n, together with
the bound (3.7), shows that

dn(θ0n+ t) ≤ max
σ0∈Ω0

‖Pσ0(Xt ∈ ·) − µ‖TV +O(n−1). (3.16)

Hence, using Lemma3.4and (3.6),

dn(θ0n+ t) ≤ max
(ū0,v̄0)∈Λ0

‖P(ū0,v̄0)((Ut,Vt) ∈ ·) − π2‖TV +O(n−1), (3.17)

recalling thatΛ0 = {(u, v) : n/4 ≤ u, v ≤ 3n/4}.
We will call a pair of chains (Ut,Vt)t≥0 and (Ũt, Ṽt)t≥0 a coupling of the

two-coordinate chainwith initial values (ū0, v̄0) and (ũ, ṽ) if
• The two chains are defined on a common probability space,
• Each of (Ut,Vt) and (Ũt, Ṽt) has the same transition probabilities as

(U(Xt),V(Xt)), where (Xt) is the Glauber dynamics,
• (U0,V0) = (ū0, v̄0) and (Ũ, Ṽ) = (ũ, ṽ).

We will always consider couplings which have (¯u0, v̄0) ∈ Λ0, but (ũ, ṽ) will
not be so constrained.

For a given coupling of the two-coordinate chain as above, we let

τc := min{t ≥ 0 : (Ut,Vt) = (Ũt, Ṽt)}.

For a coupling with initial states (¯u0, v̄0) and (ũ, ṽ),

‖Pū0,v̄0 ((Ut,Vt) ∈ ·) − Pũ,ṽ

(
(Ũ, Ṽt) ∈ ·

)
‖TV ≤ P(ū0,v̄0),(ũ,ṽ)(τc > t). (3.18)

(See, for example,Lindvall (2002, Equation 2.8).) A simple calculation
shows that

max
(ū0,v̄0)∈Λ0

‖Pū0,v̄0((Ut,Vt) ∈ ·) − π2‖TV

≤ max
(ū0,v̄0)∈Λ0,

(ũ,ṽ)

‖Pū0,v̄0((Ut,Vt) ∈ ·) − Pũ,ṽ((Ũt, Ṽt) ∈ ·)‖TV . (3.19)

We say thatf (n, t) is a uniform coupling boundif for any initial states
(ū0, v̄0) ∈ Λ0 and (ũ, ṽ), there is a coupling of the two-coordinate chain
with

P(ū0,v̄0),(ũ,ṽ)(τc > t) ≤ f (n, t).

If f (n, t) is a uniform coupling bound, then combining (3.18) with (3.19)
shows that

max
(ū0,v̄0)∈Λ0

‖Pū0,v̄0((Ut,Vt) ∈ ·) − π2‖TV ≤ f (n, t),

and by (3.17),
dn(θ0n+ t) ≤ f (n, t) +O(n−1).
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Recall thattn = [2(1 − β)]−1(n logn). For anyγ > 0, let tn(γ) := tn + γn.
The theorem will be proved if we can establish a uniform coupling bound
f (n, t) such that

lim
γ→∞

lim sup
n→∞

f (n, tn(γ)) = 0.

Fix (ū0, v̄0) ∈ Λ0 and arbitrary (˜u, ṽ). Let σ0 be any configuration with
(U(σ0),V(σ0)) = (ū0, v̄0), and letσ̃ be any configuration with (U(σ̃),V(σ̃)) =
(ũ, ṽ). We will construct, in two phases, a coupling (Xt, X̃t) of the full
Glauber dynamics with initial statesX0 = σ0 and X̃0 = σ̃. Given such a
coupling, the projections

(Ut,Vt) := (U(Xt),V(Xt)), and (Ũt, Ṽt) := (U(X̃t),V(X̃t))

are a coupling of the two-coordinate chains, started from (¯u0, v̄0) and (ũ, ṽ).
The magnetization coupling phase, lasting from time 0 to timetn(γ) will

ensure thatStn(γ) = S̃tn(γ) with high probability, and that

Eσ0,σ̃

[
|Ũtn(γ) − Utn(γ)|

]
= O(

√
n).

During the two-coordinate coupling phase, from timetn(γ) to timetn(2γ),
with high probability the chains (Ut) and (Ũt) coalesce. To facilitate coales-
cence, we must ensure that throughout the second phase with high probabil-
ity Xt ∈ Ξ1 andX̃t ∈ Ξ1, whereΞ1 is as defined in (3.11). Also, the coupling
will ensureSt = S̃t for all t ∈ [tn(γ), tn(2γ)].

(i) Magnetization coupling.Recall thatτmag, defined in (3.2), is the first
time the normalized magnetizations agree. LetH1 := {τmag ≤ tn(γ)} be the
event that the magnetizations couple by timetn(γ). By Lemma3.2, there
exists a constantc not depending onσ0 or σ̃ such that

Pσ0,σ̃

(
Hc

1

)
≤ cγ−1/2.

(ii) Two-coordinate chain coupling phase.Assume thatŨtn > Utn; if this
is not the case, just reverse the roles ofXt and X̃t in what follows. On the
eventH1, for t ≥ tn(γ), use the coupling constructed in Lemma3.5. On the
eventHc

1, we let the two chains run independently fort ≥ tn(γ).
The outline of the remainder of the proof is as follows: By (3.12), the drift

of the differenceŨt−Ut is non-positive, so it can be dominated by a process
with independent and unbiased increments with values in{−1,0,1}, until
Ũt −Ut hits zero. Provided that the increments ofŨt −Ut are non-zero with
probability bounded away from 0 uniformly inn, the dominated process
can be taken to be an unbiased random walk. We will establish that at time
tn(γ), the beginning of the second coupling phase, the expected difference
Eσ0,σ̃[Ũtn(γ) − Utn(γ)] is order

√
n. Thus by comparison with random walk,

the two-coordinate process will couple inO(n) more steps.
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We begin by showing that, ifH2(t) := {Xt ∈ Ξ1, X̃t ∈ Ξ1}, then

Pσ0,σ̃

 ⋃
tn(γ)≤t≤tn(2γ)

H2(t)
c

 = O(n−1). (3.20)

(Note that the bound above depends onγ. This does not pose a problem,
because the limit inn is taken before the limit inγ in (3.1).)

Recall the definition ofMt(A) in (2.27). We introduce the following def-
initions:

A0 := {i : σ0(i) = 1},

B? :=
⋃

t∈[tn+γn, tn+2γn]

{|Mt(A0)| ≥ n/32} ,

Y :=
∑

t∈[tn+γn, tn+2γn]

1{|Mt(A0)| > n/64}.

(Note that|A0| = ū0.) SinceMt(A0) has increments in{−1,0,1}, if |Mt0(A0)| >
n/32, then|Mt(A0)| > n/64 for all t in any interval of lengthn/64 containing
t0. Consequently,B? ⊂ {Y > n/64} and

Pσ0,σ̃(B
?) ≤ Pσ0,σ̃(Y > n/64) ≤

c0Eσ0,σ̃[Y]

n
.

By Lemma2.8(ii), Pσ0,σ̃(|Mt(A0)| > n/64)= O(n−1) for t ≥ tn, soEσ,σ̃[Y] =
O(1) and

Pσ0,σ̃(B
?) = O(n−1).

Making analogous definitions and deductions for the chain (X̃t) shows that

Pσ0,σ̃(B̃
?) = O(n−1).

If Ut ≤ n/16, thenū0−Ut ≥ 3n/16, since we are assuming that ¯u0 ≥ n/4.
Consequently, ifUt ≤ n/16, then

|Mt(A0)| = |Ut − (ū0 − Ut)| ≥ (ū0 − Ut) − Ut ≥
n
8
.

Similarly, ū0 − Ut ≥ n/16 implies that|Mt(A0)| ≥ 1/8. An analogous ar-
gument applied toVt andv̄0 − Vt shows that if eitherVt or v̄0 − Vt does not
exceedn/16, then|Mt(A0)| ≥ n/8, since|Vt − (v̄0 − Vt)| = |v̄0| ≥ n/4. Fi-
nally, the same implications are obtained for the chains (X̃t), (Ũt) and (Ṽt).
To summarize,

H2(t)
c ⊂ {|Mt(A0)| ≥ n/16} ∪ {|M̃t(A0)| ≥ n/16}.

Thus,

Pσ0,σ̃

 ⋃
tn(γ)≤t≤tn(2γ)

H2(t)
c

 ≤ Pσ0,σ̃(B
?) + Pσ0,σ̃(B̃

?) = O(n−1).
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Recall thatRt = |Ũt − Ut|, and letH2 :=
⋂

tn(γ)≤t≤tn(2γ) H2(t). On the event
H2, the processRt can be dominated by a nearest-neighbor random walk,
with delay, until the first time when (Rt) visits 0. Then by Lemma2.4, on
H1,

Pσ0,σ̃

(
{τc > tn(2γ)} ∩ H2

∣∣∣ Xtn(γ), X̃tn(γ)

)
≤

c1|Rtn(γ)|
√

nγ
.

Taking expectation gives

Pσ0,σ̃ ({τc > tn(2γ)} ∩ H2 ∩ H1) ≤
c1Eσ0,σ̃[|Rtn(γ)|]

√
nγ

. (3.21)

Observe that

Ut = Mt(A0) + ū0/2, and Ũt = M̃t(A0) + ū0/2,

whence

|Ut − Ũt| = |Mt(A0) − M̃t(A0)| ≤ |Mt(A0)| + |M̃t(A0)|.

Taking expectation shows that

Eσ0,σ̃[|Rt|] ≤ Eσ0[|Mt(A0)|] + Eσ̃[|Mt(A0)|].

Applying Lemma2.8(iii) shows thatEσ0,σ̃[|Rtn(γ)|] = O(
√

n) .
Using this estimate in (3.21), we conclude that

Pσ0,σ̃ (τc > tn(2γ)) ≤ Pσ0,σ̃ ({τc > tn(2γ)} ∩ H2 ∩ H1)

+ Pσ0,σ̃(H
c
2) + Pσ0,σ̃(H

c
1)

≤
c2
√
γ
+O(n−1).

This gives the uniform coupling bound required. �

3.4. Lower bound. Recalltn = [2(1− β)−1]n logn, andρ = 1− (1− β)/n.
Let us first restate the lower bound part of Theorem1.

Theorem 3.6. If β < 1, then

lim
γ→∞

lim inf
n→∞

dn (tn − γn) = 1.

Proof. It is enough to produce a suitable lower bound on the distance of the
distribution ofSt from its stationary distribution, since the chain (St) is a
projection of the chain (Xt).

Sinceθn(s) = O(n−2), expanding tanh[β(s+ n−1)] aroundβs in fn(s) and
using equation (2.13) shows that, fors≥ 0,

Es0[St+1 | St = s] ≥ ρs−
s3

2n
−O(n−2). (3.22)
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By Remark2, if |St| > n−1,

Es0

[
|St+1|

∣∣∣ St

]
≥ ρ|St| −

|St|
3

2n
−O(n−2). (3.23)

This also clearly holds for|St| = 0 or |St| = n−1. (In the latter case,|St+1| ≥

1/n.)
Take the initial stateS0 to bes0 = s0(β); we will specify the value ofs0

later. DefineZt := |St|ρ
−t, whenceZ0 = S0 = s0. Sinceρ−1 ≤ 2 for largen,

from (3.23) it follows that

Es0[Zt+1 | Zt] ≥ Zt −
ρ−t[|St|

3 +O(1/n)]
n

,

for n large enough. Since 0≤ |St| ≤ 1,

Es0[Zt − Zt+1 | Zt] ≤
ρ−t[|St|

3 +O(1/n)]
n

≤
ρ−t[|St|

2 +O(1/n)]
n

. (3.24)

Applying Lemma2.8(iii) with A = {1,2, . . . ,n}, we find that

Es0[|St|] ≤ |s0|ρ
t + c1n

−1/2. (3.25)

Here and below, the constantsci depend only onβ.
Using the variance bound Var(St) ≤ c2n−1 (c.f. Proposition2.7) together

with the inequality (3.25) shows that

Es0

[
S2

t

]
=

(
Es0[St]

)2
+ Var(St) ≤ s2

0ρ
2t + 2c1n

−1/2|s0|ρ
t + c3n

−1 . (3.26)

Taking expectations in (3.24) and using (3.26) yields

Es0[Zt − Zt+1] ≤
1
n

[
s2

0ρ
t + 2c1n

−1/2|s0| + c3ρ
−t/n

]
+O(n−2).

Let t? = tn − αn/(1 − β). Adding the incrementsEs0[Zt] − Es0[Zt+1] for
t = 0, . . . , t? − 1, the above inequality gives that

s0 − Es0[Zt?] ≤
s2

0

n(1− ρ)
+

2c1|s0|t?

n3/2
+ c3

ρ−t?

n2(1− ρ)
+O(t?n−2).

Sinceρ−t? ≤ n1/2, we deduce that

s0 − Es0[Zt?] ≤
s2

0

1− β
+

2c2 log(n)
n1/2

+ c4n
−1/2. (3.27)

If s0 < (1− β)/3 andn is large enough, then the right-hand side of (3.27) is
less thans0/2. Thus

Es0[|St? |] ≥
s0ρ

t?

2
≥ B :=

s0eα

2n1/2
.
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By Proposition2.7, max{Vars0(St),Varµ(S)} ≤ c5/n. Thus

B/2 ≤ Es0[St?] −
s0eα

4c5

√
Vars0(St?),

B/2 ≥ Eµ[S] +
s0eα

4c5

√
Varµ(S).

Let πS be the stationary distribution of (St), and letA := [−B/2, B/2]. Then

‖Ps0(St? ∈ ·) − πS‖TV ≥ πS(A) − Ps0(|St? | ∈ A) ≥ 1− 32c2
5e
−2α/s2

0,

where the last inequality follows from application of Chebyshev’s inequal-
ity. The right-hand side clearly tends to 1 asα→ ∞. �

4. C C

In this section, we analyze the mixing time of the Glauber dynamics in
the critical caseβ = 1, proving Theorem2. We consider the upper and
lower bounds separately.

4.1. Upper bound.

Theorem 4.1. If β = 1, then tmix = O(n3/2).

Recall the definition ofτ0 in (2.19): τ0 := min{t ≥ 0 : |St| ≤ 1/n}.

Proof. We show that we can couple Glauber dynamics so that the magneti-
zations agree in ordern3/2 steps, and then appeal to Lemma2.9to show the
configurations can be made to agree in another ordern logn steps.

Step 1:Our first goal is to prove that limc→∞ Pσ(τ0 > cn3/2) = 0, uniformly
in n.

Recall the inequality (2.17): For |St| > n−1,

Eσ
[
|St+1|

∣∣∣ St

]
≤

(
1−

1
n

)
|St| +

1
n

tanh(|St|).

Multiply both sides above by1{τ0 > t} and use the fact that tanh(0)= 0 to
find that

Eσ
[
|St+1|1{τ0 > t}

∣∣∣ St

]
≤

(
1−

1
n

)
|St|1{τ0 > t} +

1
n

tanh(|St|1{τ0 > t}).

Since1{τ0 > t + 1} ≤ 1{τ0 > t},

Eσ
[
|St+1|1{τ0 > t + 1}

∣∣∣ St

]
≤

(
1−

1
n

)
|St|1{τ0 > t} +

1
n

tanh(|St|1{τ0 > t}).
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Defineξ+t := Eσ[|St|1{τ0 > t}]. Take expectation above and apply Jensen’s
inequality to the concave function tanh restricted to the non-negative axis,
to see that

ξ+t+1 ≤

(
1−

1
n

)
ξ+t +

1
n

tanh(ξ+t ). (4.1)

Thus, there exists a constantcε > 0 such that, ifξ+t ≥ ε, then

ξ+t+1 − ξ
+
t ≤ −

cε
n
.

We conclude that there exists a timet? = t?(n) = O(n) such thatξ+t ≤ 1/4
for all t ≥ t?.

Expand tanh(x) in a Taylor series and use (4.1) to obtain

ξ+t+1 ≤ ξ
+
t −

(ξ+t )3

4n
+O(n−2),

for t ≥ t?.
This shows that, forn sufficiently large,ξ+t is decreasing fort ≥ t?. We

will assume from now on thatn is large enough for this to hold. Given a
decreasing sequence of numbers

1/4 ≥ b1 > b2 > · · · > 0,

let ui := min{t ≥ t? : ξ+t ≤ bi}. Sinceξ+t is decreasing,bi+1 < ξ
+
t ≤ bi for all

timesui ≤ t < ui+1. Let bi = (1/4)2−i. For t ∈ (ui ,ui+1],

ξ+t+1 ≤ ξ
+
t −

b3
i

32n
+O(n−2).

It follows that

ui+1 − ui ≤
16n

b2
i

[
1+O(b−3

i n−1)
]

Let i0 = min{i : bi ≤ nα−1}, whereα is a parameter to be chosen below.
If α > 2/3, thenbi ≥ n−1/3+δ for i < i0, for someδ > 0. In particular,
b−3

i ≤ n1−δ andO(b−3
i n−1) = o(n) for i < i0. Thus forn large enough, for

0 ≤ i < i0,

ui+1 − ui ≤
32n

b2
i

.

Summing the above,

ui0 − u0 ≤

i0−1∑
i=0

32n

b2
i

≤
c0n

b2
i0−1

= O(n3−2α),

so

ui0 ≤ O(n3−2α) +O(n),
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where the second inequality follows sinceu0 = t? = O(n). To summarize,
provided 1 ≥ α > 2/3, there is a constantc1 such thatξ+t ≤ nα−1 for
t ≥ c1n3−2α. In particular, lettingrn = c1n3−2α, there is a constantc2 > 0
such that

Eσ
[
|S+rn
|1{τ0 > rn}

]
≤ c2n

α−1. (4.2)

By the Markov property and Lemma2.5, for some constantc3,

Pσ(τ0 > rn + γn
2α | Xrn) ≤

c3n|Srn|
√
γnα
.

Multiplying both sides by1{τ0 > rn}, taking expectation, and then using
(4.2) shows that

Pσ(τ0 > rn + γn
2α) = O(γ−1/2).

Choosingα = 3/4 > 2/3, we see that

Pσ(τ0 > (c1 + γ)n
3/2) = O(γ−1/2).

Step 2: Construction of coupling. We now describe how to build a Markov-
ian coupling (Xt, X̃t) of the Glauber dynamics such that the following holds:
There are constantsc1 > 0 andb < 1 such that, ifτmag is as defined in (3.2),
then foranytwo configurationsσ andσ̃,

Pσ,σ̃(τmag> c1n
3/2) ≤ b. (4.3)

This is sufficient, since we only desire to provetmix = O(n3/2).
Fix two configurationsσ andσ̃, and suppose without loss of generality

that |S(σ)| > |S(σ̃)|. Define the stopping timeτabs to be the first time the
two chains cross over one another, i.e.

τabs := min{t ≥ 0 : |St| ≤ |S̃t|},

and letG1 := {|Sτabs+1| = |S̃τabs+1|} be the event that the two chains meet one
step afterτabs. There is a constantc4 > 0, not depending onn, such that
Pσ,σ̃ (G1) ≥ c4.

OnGc
1, couple the two chains independently. OnG1, we divide into two

cases:

Case Sτabs+1 = S̃τabs+1. If this situation occurs, then couple such that the
magnetizations continue to agree. To do so, if a siteI is selected to update
Xt with a spinS, then pick a site iñXt at random from those with the same
spin asXt(I ), and update this site also with spinS.

Case Sτabs+1 = −S̃τabs+1. In this case, we use thereflection coupling: Sup-
pose stateI is selected to updateXt, and the spin used to update isS. Then
pick a site inX̃t at random from those with spin−Xt(I ), and update with
spin−S. In this case, the process (St) and (S̃t) will be reflections of one
another fort ≥ τabs.
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If n is even, in either situation the magnetizations agree at timeτ0, so
τmag ≤ τ0. For evenn, run the chains together afterτ0. If n is odd, at time
τ0 run the chains independently of one another for a single step.

By Step 1 of the proof, there exists a constantsc? andc6 > 0 such that,
for all σ,

Pσ(τ0 + 1 ≤ c?n
3/2) ≥ c6. (4.4)

Let G2 = {τ0 + 1 ≤ c?n3/2}.
Let G3 be the event that the two chains couple at timeτ0+1. There exists

somec5 > 0 not depending onn such thatPσ(G3 | G1 ∩G2) ≥ c5. (If n is
even, this probability is one.)

Then
Pσ(G1 ∩G2 ∩G3) ≤ Pσ(τc ≤ c?n

3/2).

The probability on the left is uniformly bounded away from zero, complet-
ing the proof. �

4.2. Lower bound.

Theorem 4.2. Supposeβ = 1. There is a constant C1 > 0 such that tmix ≥

C1n3/2.

Proof. It will suffice to prove a lower bound on the mixing time of the mag-
netization chain (St).

As usual,S denotes the normalized magnetization in equilibrium. The
sequencen1/4S converges to a non-trivial limit law asn → ∞. (This is
proved in Simon and Griffiths (1973); see alsoEllis (1985, Theorem V.9.5).)
TakeA > 0 such that

µ
(
|S| ≤ An−1/4

)
≥ 3/4. (4.5)

Takes0 = 2An−1/4. Let (S̃t) be a chain with the same transition probabil-
ities as (St), except ats0. At s0, theS̃-chain remains ats0 with probability
equal to the probability that theS-chain either moves up or remains in place
at s0. The two chains can be coupled so thatS̃t ≤ St when both are started
from s0. In particular, for alls, the inequalityPs0(St ≤ s) ≤ Ps0(S̃t ≤ s)
holds.

Let Zt = S̃0 − S̃t∧τ, whereτ := min{t ≥ 0 : S̃t ≤ An−1/4}. Note that (Zt)
is non-negative.

We will now show that ifFt is the sigma-algebra generated byZ1, . . . ,Zt,
then there is a constantcA so that

Es0[Z
2
t+1 − Z2

t | Ft] ≤
cA

n2
. (4.6)

The equation (4.6) is clearly satisfied whenZt = 0. On the event̃St = s,
whereAn−1/4 < s < s0, the conditional distribution of̃St+1 is the same as
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the conditional distribution ofSt+1 givenSt = s. Thus

Es0[S̃t+1 | S̃t = s] = Es0[St+1 | St = s] ≥ s− c0
s3

n
, (4.7)

for a constantc0. The inequality is obtained by expanding tanh in (2.13).
From (4.7), it follows that

Es0[Zt+1 | Ft] ≤ Zt +
c0

n
S̃3

t . (4.8)

We decompose the conditional second moment ofZt+1 as

Es0[Z
2
t+1 | Ft] = Var(Zt+1 | Ft) +

(
Es0[Zt+1 | Ft]

)2 . (4.9)

Since|Zt+1 − Zt| ≤ 2/n,

Var(Zt+1 | Ft) = Var(Zt+1 − Zt + Zt | Ft) = Var(Zt+1 − Zt | Ft) ≤
4
n2
. (4.10)

By (4.8), for t < τ, there is a constantc1 (depending onA) so that

E2
s0

[Zt+1 | Ft] ≤ Z2
t + 2

c0

n
ZtS̃

3
t +

c2
0S̃

6
t

n2
≤ Z2

t + c1n
−2. (4.11)

Using the bounds (4.10) and (4.11) in (4.9) establishes (4.6). We conclude
that

Es0[Z
2
t ] ≤ cAn−2t. (4.12)

Note that

Es0[Z
2
t ] ≥ Es0[Z

2
t 1{τ ≤ t}] ≥

A2

n1/2
Ps0(τ ≤ t),

which together with (4.12) shows that

Ps0(τ ≤ t) ≤
cAt

A2n3/2
.

Takingt = (A2/4cA)n3/2 above shows that

Ps0(St ≤ An−1/4) ≤
1
4
.

This, together with the bound (4.5), proves thatd(c3n3/2) ≥ 1/2, where
c3 = A2/4cA. That is,tmix ≥ c3n3/2. �

5. T D  L T

We now consider the caseβ > 1. As stated in the introduction, the mixing
time for the full Glauber dynamics is exponential inn. This is proved via
an upper bound on the Cheeger constant, defined as

Φ := min
A : µ(A)≤1/2

∑
x∈A,y<A µ(x)P(x, y)

µ(A)
,



30 DAVID A. LEVIN, MALWINA J. LUCZAK, AND YUVAL PERES

whereP is the transition matrix for the Glauber dynamics. By takingA =
{σ : µ(σ) ≥ 0} and estimating

[∑
x∈A,x<A µ(x)P(x, y)

]
/µ(A), whenβ > 1

there are positive constantsc1 andc2 such thatΦ ≤ c1e−c2n. The spectral
gap ofP is bounded below byc3/Φ (see, for example,Sinclair (1993).) The
mixing time, in turn, is bounded below by the spectral gap (see, for example,
Aldous and Fill (in progress).) The details of this standard argument can
be found in the forthcoming bookLevin et al. (2007). That the Glauber
dynamics is slow mixing forβ > 1 was understood as far back asGriffiths
et al. (1966), although they lacked the tool of the Cheeger inequality to
make a complete proof.

Here we study the Glauber dynamics confined to the configurations where
the magnetization is non-negative, and show that the restricted Glauber dy-
namics has a mixing time of ordern logn.

We remind the reader of the exact mechanism for restricting the dynam-
ics. The usual dynamics are run from a state with non-negative magnetiza-
tion. If a move to a stateη is proposed, andη has negative magnetization,
then the chain moves to−η instead.

To establish anO(n logn) upper bound on the mixing time, we need to
estimate the hitting times of the normalized magnetization chain.

Lemma 5.1. Let β > 1. Let s? denote the unique positive solution to
tanh(βs) = s, and forα > 0 define

τ? = τ?(α) := inf {t ≥ 0 : S+t ≤ s? + αn−1/2}. (5.1)

There exists a constant c> 0, depending onα andβ, such that

lim
n→∞

Pσ(τ? > cnlogn) = 0.

Proof. Let γ? := β cosh−2(βs?). First, we show that

Eσ[S+t+1 − s? | S+t = s] ≤

[
1−

(1− γ?)
n

]
(s− s?). (5.2)

By Remark3 and (2.17), for S+t > 1/n

Eσ
[
S+t+1 − S+t

∣∣∣ S+t ] ≤ 1
n

[
tanh(βS+t ) − S+t

]
.

Sinceβ > 1, it follows thatγ? = β cosh−2(βs?) < 1. By the mean-value
theorem, fory > 0,

tanh[β(s? + y)] − tanh(βs?) =
β

cosh2(s̄)
y,

for somes̄ ∈ [s?, s? + y]. Since cosh(x) is increasing forx ≥ 0, the right-
hand side is bounded above byγ?y. Thus, fory ≥ 0,

tanh[β(s? + y)] ≤ s? + γ?y. (5.3)
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Hence,

Eσ[S+t+1 − S+t | S
+
t = s] ≤ −(s− s?)

(1− γ?)
n
,

from which (5.2) follows.
By (5.2),

Yt :=

[
1−

(1− γ?)
n

]−t

(S+t − s?)

defines a non-negative supermartingale fort < τ?. By optional stopping,

1 ≥ Eσ[Yτ?∧t] ≥ Eσ
[
(1− (1− γ?)/n)−t∧τ?(S+τ?∧t − s?)

]
≥ c1n

−1/2[1 − (1− γ?)/n]−tPσ(τ? > t).

HencePσ(τ? > t) ≤ c1n−1/2[1 − (1− γ)/n]t, and the lemma is proved. �

Proposition 5.2. Letβ > 1. For c3 > 0, if

τ? = τ?(c3) := min{t ≥ 0 : S+t ≥ s? + c3n
−1/2},

then
E0[τ?] = O(n logn). (5.4)

Proposition5.2 is proved in Section5.2. Meanwhile, we state and prove
Theorem5.3below, which establishes the upper bound.

Theorem 5.3.Letβ > 1. There is a constant c(β) so that tmix(n) ≤ c(β)n logn
for the Glauber dynamics restricted toΩ+.

Proof. We show that there is a coupling (X+t , X̃
+
t ) of the restricted Glauber

dynamics started from statesσ and σ̃ such that, ifτmag is the first timet
with S+t = S̃+t , then

lim sup
n→∞

Pσ,σ̃(τmag> cnlogn)→ 0 asc→ ∞.

An application of Lemma2.9will then complete the proof.
By monotonicity, it is enough to consider the the starting positions 0 and

1. The “top” chain with starting position 1 we denote by (ST
t ), and the

“bottom” chain with starting position 0 we denote by (SB
t ). Let µ+ be the

stationary distribution of the restricted magnetization chain, and let (St) be
a stationary copy of the restricted magnetization chain, that is, started with
initial distributionµ+.

Initially, all the chains are independent of one another. Given constants
c1 ≤ c2, let

τ1 = min{t ≥ 0 : ST
t ≤ s? + c1n

−1/2},

τ2 = min{t ≥ 0 : SB
t ≥ s? + c2n

−1/2}.
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Suppose thatτ1 ≤ τ2. On the eventSτ1 ≥ s? + c1n−1/2, for t ≥ τ1 we couple
together monotonically theS-chain and theST-chain (that is, such thatSt ≥

ST
t for all t ≥ τ1), and continue to evolve theSB-chain independently ofSt

andST
t . On the eventSτ1 < s? + c1n−1/2, we continue to run all three chains

independently. Then at timeτ2, on the event thatSτ2 ≤ s? + c2n−1/2, couple
together all three chains monotonically (so thatST

t ≤ St ≤ SB
t for all t ≥ τ2).

If Sτ2 > s? + c2, just let the chains run independently. The caseτ2 < τ1 is
handled analogously.

Note that, since (St) is independent of (ST
t ) until after timeτ1, the random

variableSτ1 is independent ofτ1 and hence still stationary.
Let c3 > 0 be a constant, and define eventsH1,H2 by

H1 = {τ1 ≤ c3n logn} ∩ {Sτ1 ≥ s? + c1n
−1/2},

H2 = {τ2 ≤ c3n logn} ∩ {Sτ2 ≤ s? + c2n
−1/2.}.

Then
Pσ,σ̃(Hc

1) ≤ Pσ,σ̃(τ1 > c3n logn) + µ+(0, s? + c1n
−1/2), (5.5)

and
Pσ,σ̃(Hc

2) ≤ Pσ,σ̃(τ2 > c3n logn) + µ+(s? + c2n
−1/2,1). (5.6)

Now observe that on the eventH1∩H2 the chains (ST
t ) and (SB

t ) have crossed
over by the timec3n logn, and that by (5.5) and (5.6),

Pσ,σ̃(H1 ∩ H2) ≥ 1− Pσ,σ̃(τ1 > c3n logn) − Pσ,σ̃(τ2 > c3n logn) − µ+(I c),

whereI = (s? + c1n−1/2, s? + c2n−1/2).
Since, as a consequence of Theorem 2.4 of Ellis, Newman, and Rosen (1980),

the stationary magnetization satisfies a central limit theorem,µ+(I c) < 1
uniformly in n. Further,

lim
n→∞

Pσ,σ̃(τ1 > c3n logn) = 0 and lim
n→∞

Pσ,σ̃(τ2 > c3n logn) = 0,

by Lemma5.1and Proposition5.2, respectively. Hence the probability that
ST andSB will have crossed by the timec3n logn stays bounded away from
0 asn→ ∞.

Finally, observe that, whenever the two chains cross, they coalesce with
probability bounded away from 0 uniformly inn, which completes the
proof. �

5.1. Hitting times for birth-and-death chains. A birth-and-death chain
on {0,1, . . . ,N} is a Markov chain (Zt) onZ+ with transitionsZt+1 − Zt con-
tained in the set{−1,0,1}.

This section contains a few standard results concerning the hitting times
of birth-and-death chains. We shall use these in the proof of Proposition5.2
in the next section.
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Define

pk = P(Zt+1 − Zt = +1 | Zt = k) k = 0,1, . . . ,N − 1,

qk = P(Zt+1 − Zt = −1 | Zt = k) k = 1, . . . ,N,

rk = P(Zt+1 − Zt = 0 | Zt = k) k = 0, . . . ,N.

Clearly, pk + qk + rk = 1 for all k if we defineq0 = pN = 0. Usingπ to
denote the stationary distribution of the chain, we have

π(1) = Cp,q,r ,

π(k) = Cp,q,r

k∏
j=1

pj−1

qj
, k = 1, . . . ,N,

whereCp,q,r = [1 +
∑n

k=1 pj−1q−1
j ]−1 is a normalizing constant.

Now, let ` < N be a positive integer, and letZ(`)
t be a restriction ofZt

to the set{0, . . . , `}. In other words, when atk ∈ {0, . . . , ` − 1}, the chain
makes transitions fromk as the original chain, but when at`, it moves to
` − 1 with probabilityq` and stays at̀ with probability p` + r`. Let π(`) be
the stationary measure ofZ(`)

t . It is easy to verify that there is a constant
C`p,q,r such that

π(`)(k) = C`p,q,rπ(k) for k = 0,1, . . . , `.

In other words, under the stationary measure of the restricted chain, the
states 0,1, . . . , k each have the same relative weights as in the unrestricted
chain.

For k ∈ {0,1, . . . ,N} let

τk = inf {t ≥ 0 : Zt = k},

τ+k = inf {t > 0 : Zt = k}.

Then (see for instanceLevin et al. (2007)) for k = 0,1, . . . ,N − 1,

1
π(`)(`)

= E(`)
` [τ+` ] = 1+ q`E`−1(τ`). (5.7)

In the above,E j andE`j respectively denote the expectation operators corre-
sponding to the unrestricted and restricted chain starting inj. We shall now
apply identity (5.7) to the Glauber dynamics magnetization chain.

5.2. Hitting time for magnetization.

Proof of Proposition5.2. Here it is more convenient to work withMt =

nS(X+t )/2, which is a birth-and-death chain with values in{0, . . . ,n/2 −
1,n/2}. Note that, ifn is odd, this chain is not integer-valued, but this
causes no difficulties, as one can simply shift all states by -1/2.
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Let `? = bns?c. Let c > 0 be a constant. Also, throughout the cal-
culation, C will denote a generic positive constant whose value may be
adjusted between inequalities. In the notation of Section5.1, we have for
` ∈ {1, . . . , dns? + cn1/2e},

E`−1[τ`] ≤
1

q`π(`)(`)
.

The probability of moving left,q`, is bounded away from 0, uniformly in
` ∈ {1, . . . ,n/2}. Consequently, writing̀ = nx and j = ny, we obtain the
upper bound

E`−1[τ`] ≤ C

∑`
j=0

(
n

n/2+ny

)
exp

(
β2ny2

)
(

n
n/2+nx

)
exp

(
2βnx2

) .

Applying Stirling’s formula, the right-hand side is bounded above by

C

∑`
j=0(1+ y)−(1+2y)n/2(1− 2y)−(1−2y)n/2(1− 4y2)−1/2 exp

(
2βny2

)
(1+ 2x)−(1+2x)n/2(1− 2x)−(1−2x)n/2(1− 4x2)−1/2 exp

(
2βnx2

) ,
which can be rewritten as

C

∑`
j=0 exp

[
−n f(y)

]
(1− 4y2)−1/2

exp
[
−n f(x)

]
(1− 4x2)−1/2

= C
∑̀
j=0

exp
[
n( f (x) − f (y)

] (1− 4x2

1− 4y2

)1/2

,

where

f (z) =
1
2

(1+ 2z) log(1+ 2z) +
1
2

(1− 2z) log(1− 2z) − 2βz2.

Since`/n ≤ (`? +O(
√

n))/n < 1 uniformly inn, we can bound

sup
n

sup
0≤y≤s?=`?/n

(
1− 4x2

1− 4y2

)1/2

≤ C.

It follows that the behavior of each term in the sum is dominated by the
behavior of the exponential factor exp

[
n( f (x) − f (y))

]
, and so it is enough

to upper bound the expression∑̀
j=0

exp
[
n( f (x) − f (y))

]
.

We then need to look for stationary points off in the interval [0,1]; we have

f ′(z) = log(1+ 2z) − log(1− 2z) − 4βz

f ′′(z) =
1

1− 4z2
− 4β,
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so f ′(z) = 0 if and only if

1+ 2z
1− 2z

= e4βz, (5.8)

or, equivalently,
2z= tanh(2βz).

Whenβ < 1, the unique maximum off is at x = 0. Whenβ > 1, there is
a local maximum off at s = 0, and as mentioned earlier, there is a unique
0 < s? < 1 minimizing f . As before, we writè ∗ = bns?c.

By the above, whenx < s?,

E`−1[τ`] ≤ C
∑̀
j=0

exp
[
n( f (x) − f (y))

]
,

and f (x) ≤ f (y) for all y ≤ x.
Throughout the calculation below, we shall use the fact thatf ′(y) < 0 for

all y ∈ [0, s?), and that the second derivativef ′′(y) exists and is uniformly
bounded in that range, ass? < 1/2.

Supposex = O(n−1/2), i.e. ` = O(
√

n). Then

E`−1[τ`] ≤ C
∑̀
j=0

exp
[
2 f ′(x)(nx− ny) +O(n(x− y)2)

]
≤ C

∑̀
j=0

exp
[
( f ′(`/n)(` − j)

]
≤
√

n
[
1+O(n−1/2)

]
,

valid for 1 ≤ ` ≤ C1
√

n. The final bound is valid asf ′(`/n) < 0, and so
each term is bounded by a constant.

Similarly (takingC1 = 20) we have, for 20
√

n ≤ ` ≤ `?/2,

E`−1[τ`] ≤ C
∑̀
j=0

exp
[
f ′(c`,y)(` − j) +O(n(x− y)2)

]
≤ C

∑̀
j=0

exp
[
f ′(c`,y)(` − j)

]
,

wherec`,y is betweenx andy (we could takec`,y = x, for eachy, by the
uniform boundedness of the second derivative). There exists a constant
c1 > 0 such that, ifj ≥ `/2, then f ′(c`,y) ≤ −c1`/n. Then there exists a
constantc2 > 0 such that, forj ≤ `/2,

f ( j/n) − f (`/n) ≤ −c2.
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This in turn implies that the sum of remaining terms is negligible. More
precisely,

`/2∑
j=0

exp
[
n( f (`/n) − f ( j/n))

]
≤ nexp(−c2n).

It follows that

E`−1[τ`] ≤
∑̀

j=b`/2c

exp
[
−c1`n

−1(` − j)
]
+ nexp(−c2n)

≤
1

1− exp(−c1`/n)
+ nexp(−c2n)

≤
Cn
`
,

for some constantC > 0, uniformly inn.
Now suppose that̀?/2 ≤ ` ≤ `? − 20

√
n. Then, for some constant

c̃1 > 0, f ′(c`,y) ≤ −c̃1(`? − `)/n, as long asj = yn≥ `/2. Also, there exists
a constant ˜c2 > 0 such that, forj ≤ `/2,

f ( j/n) − f (`/n) ≤ −c̃2,

and so the contribution due to the terms withj ≤ `/2 is negligible.
Then a calculation similar to that for 20

√
n ≤ ` ≤ `∗/2 above implies that

there is a constantC > 0 such that

E`−1[τ`] ≤
Cn
`∗ − `

,

uniformly in n. Similarly, if `? −20
√

n ≤ ` ≤ dns∗ + c
√

ne, then we see that

E`−1[τ`] = O(
√

n).

Summing over̀ , we obtain an upper bound on the expected hitting time
of dns? + c

√
ne starting from 0, as follows:

E0[τ`?+c
√

n] =
`?+c

√
n∑

`=0

E`−1[τ`]

≤ C

√n×
√

n+
n∑
`=1

n
`
+

`?/2∑
`=`?−1

n
`? − `


≤ C(n+ n logn),

whereC is once again a generic constant, and was changed to 2C in the last
inequality. �

Related results on the magnetization chain can be found inOlivieri and
Vares (2005).
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5.3. Lower bound.

Theorem 5.4. Assume thatβ > 1. For the Glauber dynamics restricted to
configurations with non-negative magnetization, tmix(n) ≥ (1/4)n logn.

The Glauber dynamics restricted to configurations with non-negative mag-
netization will be denoted by (X+t ).

Proof. Recall again thats? is the unique positive solution to tanh(βs?) = s?.
Since we are proving a lower bound, it suffices to consider any specific

starting state; we takeX+0 to be the all plus configuration.
We let (X+t , X̃

+
t ) be the monotone coupling, whereX+0 is the all plus con-

figuration andX̃+0 has the stationary distributionµ+. We writeP1,µ+ andE1,µ+

for the probability measure and expectation operator on the space where
(X+t , X̃

+
t ) is defined.

LetB(σ) := {i : σ(i) = −1}, andB(σ) := |B(σ)|.
By the central limit theorem for the stationary magnetization, (c.f. Ellis,

Newman, and Rosen (1980)), for some 0< c1 < 1,

P1,µ+
(
B(X̃+0 ) ≤ c1n

)
= µ+({σ : B(σ) ≤ c1n}) = o(1).

Let Nt be the number of the sites inB(X̃+0 ) which have not been updated
by timet. By writing Nt as a sum of indicators,

E1,µ+
[
Nt

∣∣∣ B(X̃+0 )
]
= B(X̃+0 )[1 − n−1]t,

and so, for somec2 > 0,

E1,µ+
[
Nt?n

∣∣∣ B(X̃+0 )
]
≥ c2B(X̃+0 )n−1/4,

wheret?n = (1/4)n logn. Also, since these indicators are negatively corre-
lated, Var1,µ+(Nt) ≤ n for all t. Applying Chebyshev’s inequality shows that,
for somec3 > 0, on the event{B(X̃+0 ) > c1n},

P1,µ+
(
Nt?n ≤ c3n

3/4
∣∣∣ B(X̃+0 )

)
= o(1),

where theo(1) bound is uniform inB. We conclude that

P1,µ+
(
Nt?n ≤ c3n

3/4
)
≤ P1,µ+

(
B(X̃+0 ) ≤ c1n

)
+ P1,µ+

(
Nt?n ≤ c3n

3/4 andB(X̃+0 ) > c1n
)

= o(1).

Suppose now thatNt?n > c3n3/4. It follows that St?n ≥ S̃t?n + c4n−1/4 for
somec4 > 0. Thus, ifSt?n ≤ s? + c5n−1/4 for a small constantc5 > 0, then
S̃t?n ≤ s? + (c5 − c4)n−1/4. Therefore,

P1,µ+
(
St?n ≤ s? + c5n

−1/4
)
≤ o(1)+ P1,µ+

(
Nt?n > c3n

3/4 andSt?n ≤ s? + c5n
−1/4

)
≤ o(1)+ P1,µ+

(
S̃t?n ≤ s? + (c5 − c4)n

−1/4
)
.
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Again by the central limit theorem, the probability on the right-hand side
above tends to 0 asn→ ∞, provided we choosec5 < c4.

On the other hand, appealing one final time to the central limit theorem,

µ+({σ : S(σ) > s? + c5n
−1/4}) = o(1).

Consequently,

dn(t
?
n ) ≥ P1,µ+

(
St?n > s? + c5n

−1/4
)

− µ+({σ : S(σ) > s? + c5n
−1/4})

= 1− o(1),

and sotmix(n) ≥ (1/4)n logn for n large. �

6. C

We believe the results proven in this paper should be generic for Glauber
dynamics on transitive graphs.

To be concrete, consider thed-dimensional torus (Z/nZ)d. Let βc be the
critical temperature for uniqueness of Gibbs measures onZd.

We make the following conjectures:

(i) Forβ < βc, there is a cut-off.
(ii) Forβ = βc, the mixing time is polynomial inn. A stronger conjecture

is that there is a critical dimensiondc such that ford ≥ dc, the mixing
time tmix is O(|Vn|

3/2).
(iii) For β > βc, if the dynamics are suitably truncated, the mixing time

is polynomial inn. A stronger version is that again there is a critical
dimensiondc such that ford > dc, the mixing time isO(|Vn| log |Vn|).
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