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Abstract

The study of balls-into-bins games or occupancy problems has a long history since these processes can
be used to translate realistic problems into mathematical ones in a natural way. In general, the goal of
a balls-into-bins game is to allocate a set of independent objects (tasks, jobs, balls) to a set of resources
(servers, bins, urns) and, thereby, to minimize the maximum load.

In this paper we show two results. First, we analyse the maximum load for the chains-into-bins

problem where we have n bins and the balls are connected in n/` chains of length `. In this process, the
balls of one chain have to be allocated to ` consecutive bins. We allow each chain d i.u.r. bin choices.
The chain is allocated using the rule that the maximum load of any bin receiving a ball of that chain
is minimized. We show that, for d ≥ 2, the maximum load is (ln ln(n/`))/ ln d + O(1) with probability
1 − O(1/ ln ln(n/`)). This shows that the maximum load is decreasing with increasing chain length.
Secondly, we analyse for which number of random choices d and which number of balls m < n, the
maximum load of an off-line assignment can be upper bounded by one. This holds, for example, for
m < 0.97677 · n and d = 4.
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1 Introduction

The study of balls-into-bins games or occupancy problems has a long history. These models are commonly
used to derive results in probability theory. Furthermore, balls-into-bins games can be used as a means of
translating realistic problems into mathematical ones in a natural way. In general, the goal of a balls-into-
bins game is to allocate a set of independent objects (tasks, jobs, balls) to a set of resources (servers, bins,
urns). It is assumed that the balls are independent and do not know anything about the other balls. Each
ball is allowed to choose independently and uniformly at random (i.u.r.) a subset of the bins in order to
be allocated into one of the bins. The performance of these processes is usually analyzed in terms of the
maximum load of any bin.

One extreme approach for such a balls-into-bins game is to allow each ball to communicate with every
bin. Thus, it is possible to query the load of every bin and to place the ball into the bin that is least
loaded. This allocation process always yields an optimum allocation of the balls. However, the time and
number of communications needed to allocate the balls is extremely large. The opposite approach is to allow
every ball to communicate with one bin only. In this case, every ball is thrown into one of the bins, chosen
independently and uniformly at random. For the case of m balls and n bins it is well known that a bin exists

which receives Θ
(
m/n +

√
2(m log n)/n

)
balls, with high probability (w.h.p.).1

An alternative approach which lies between these two, is to allow every ball to select one of d ≥ 2 i.u.r.
chosen bins. The GREEDY[d] process studied by Azar et al. [1], chooses d i.u.r. bins per ball, and the ball is
allocated into the least loaded among the chosen bins. For this process, the maximum number of balls found
in any bin, i.e., the maximum load, decreases to m/n+ln lnn+O(1) (see [1], [2]). Thus, even a small amount
of additional random choice can decrease the maximum load drastically. This phenomenon is often referred
to as the “power of two random choices” (see [11]). It is also well known that each additional constant factor
beyond two choices per ball decreases the maximum load by only an additional constant factor (see [17]).

In this paper we show two results. First, we analyse the maximum load for the chains-into-bins problem,
where balls are connected to n/` chains of length `. In this process, the balls of one chain have to be allocated
to consecutive bins. We allow each chain d i.u.r. bin choices. The chain is allocated using the rule that the
maximum load of any bin receiving a ball of that chain is minimized. We show that, for d ≥ 2, the maximum
load is ln ln(n/`)/ lnd + O(1), with probability 1 − O(1/ ln ln(n/`)). Secondly, we study off-line allocation
of m balls into n bins with d choices per ball. In particular, we analyse for which values of d and m, the
maximum load of an off-line assignment, using d ≥ 2 bins chosen i.u.r. without replacement, can be upper
bounded by one. This holds, for example, for m < 0.97677 · n and d = 4, and extends the work of Sanders
et al. [13].

2 Known Results

Azar et al. [1] introduced Greedy[d] to allocate n balls into n bins. Greedy[d] chooses d bins i.u.r. for each
ball and allocates the ball into a bin with the minimum load. They show that after placing n balls, the
maximum load is Θ((ln ln(n))/ ln(d) + 1), w.h.p. Compared to single-choice games, this is an exponential
decrease in the maximum load. We note that, for the case where m < n/e, their results can be extended to
show a maximum load of at most (ln lnn − ln ln(n/m))/ ln d + O(1), w.h.p.

Vöcking [17] introduced the Always-Go-Left protocol, yielding a maximum load of (ln lnn)/d + O(1),
w.h.p. The Always-Go-Left protocol clusters the bins into d clusters of n/d consecutive bins each. Every
ball now chooses i.u.r. one bin from every cluster is allocated into a bin with the minimum load. If several of
the chosen bins have the same minimum load, it is allocated into the “leftmost” bin. In [9], Kenthapadi and
Panigrahy suggest an alternative protocol yielding the same maximum load. They cluster the bins into 2n/d
clusters of d/2 consecutive bins each. Every ball now randomly chooses 2 of these clusters and it is allocated
into the cluster with the smallest total load. In the chosen cluster, the ball is then allocated into the bin
with minimum load again. The authors also argue in that paper that clustering is essential to reduce the

1A sequence of events An occurs with high probability if limn→∞ P (An) = 1.
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load to (ln lnn)/d + O(1). In [2], the authors analyse Greedy[d] for m � n. They show that the maximum
load is m/n + ln ln(n), w.h.p. Finally, Mitzenmacher et al. [12] show that a similar performance gain occurs
if the process is allowed to memorise a constant number of bins with small load.

In [15], Sanders and Vöcking consider the random arc allocation problem, which is closely related to the
chains-into-bins problem. In their model, they allocate arcs of an arbitrary length to a cycle. Every arc
is assigned an i.u.r. position on the cycle. The chains-into-bins problem with d = 1 can be regarded as a
special discrete case of their problem, where the cycle represents the n bins and the arcs represent the chains
(in [15], different arc lengths are allowed). Translated into the chains-into-bins setting, the authors show the
following result. If m = n/` chains of length ` are allocated to n bins (m → ∞) then the maximum load is
at most (ln(n/`))/(ln ln(n/`)), w.h.p. Note that their result is asymptotically the same as that for allocating
n/` balls into n/` bins, provided that n/` → ∞. In [7], the author shows that the expected maximum load
is smaller if we allocate n/2 chains of length 2 with one random choice per chain, compared to n balls into
n bins with d = 2.

Sanders et al. [13] consider an off-line version of the balls-into-bins problem where the balls still have d
random choices, but the final allocation is computed by a centralized algorithm once the choices available to
each ball are known. In [13], Sanders et al. show that it is possible to achieve a maximum load of dm/ne+1,
w.h.p., using a centralised flow algorithm. The authors also argue that there exists values of m for which
this allocation is tight. In [14], Sanders further studies the values of m for which an optimal maximum load
of dm/ne is possible. To give some examples, let us define k = m/n. Then, Sanders shows that for dke ≤ 1
and k/dke ≤ 0.49 the load is w.h.p. at most 1. For dke ≤ 2 and k/dke ≤ 0.83 the load is at most 2, and for
dke ≤ 8 and k/dke ≤ 0.98, the load is at most 8. Analysis similar to ours also appear in [8, 5].

3 Our Results

In this paper we consider two different balls-into-bins problems. The first problem is the chains-into-bins
problem where we allocate m chains of length ` into n bins. We assume m = dn/`e, so that the total bin
occupancy is (about) n. The more general case of sparse but arbitrary m is considered in the full version of
this paper. Assume the balls are allocated uniformly at random (i.u.r.) to bins wrapped cyclically around
1, ..., n. If chain i is allocated to bin bi then the chain occupies bins bi, bi+1, ..., bi+`−1 where the counting
is modulo n. Thus the load in bin bi is the number of chains crossing the bin, i.e., the number of chains
allocated to bins in bi−`+1, ..., bi−1, bi. We consider the case where every chain randomly chooses d bins
bi1 , . . . , bid

. For a random choice bij
, we compute the maximum load of bins bij

, bij+1, ..., bij+`−1. The chain
is now allocated to a bin bij

such that the maximum load is minimized. In this paper we show that, for
d ≥ 2, the maximum load for this algorithm is (ln ln(n/`))/ lnd+O(1), with probability 1−O(1/ ln ln(n/`)).
This shows that the maximum load decreases with increasing chain length. Note that, if ` is fixed, our result
is asymptotically the same as that for allocating n/` balls into n/` bins with d random choices.

To discuss our results, let us compare the maximum load we get to the maximum that a process that
clusters the bins achieves. In the latter process we cluster the bins in n/` clusters of ` consecutive bins.
Each chain now i.u.r. chooses d clusters, and it is allocated into every bin of the cluster with minimum
load. (Note, in this process all bins of the same cluster have the same load.) The maximum load of this
process is nothing else than the maximum load of the greedy process for n/` balls and n/` bins, which is
Θ((log log(n/`))/ log d + 1) (see [1]) with a probability of 1 − 1/(n/`). The results of Vöcking [17] and also
Kenthapadi and Panigrahy [9] suggest that clustering tends to be quite helpful for balls-into-bins games
such that the authors believe that the maximum load Θ((ln ln(n/`))/ lnd + 1) is tight. Note that only our
probability bound is weaker than what one might expect. For a discussion of our probability guarantee, we
refer the reader to the beginning of Section 4.

We also revisit the balanced allocation problem on the off-line setting introduced by Sanders et al. [13].
Let λ(d) = λ(d, m, n) denote the best (minimal) maximum load per bin for the offline allocation of m balls
into n bins, with d i.u.r. choices per ball (choices without replacement). The following results hold w.h.p.:

• For m < n/2, λ(2) = 1;
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• For m < 0.816 · n, λ(3) = 1;

• For m < 0.97677 · n, λ(4) = 1.

We will also show (Theorem 4) that for m > n, d = 2 is optimal in the sense that with increasing d, the
probability that no optimal assignment (with load dm/ne) can be found increases.

4 A Chains-into-Bins Game

The case considered here is m = dn/`e chains of length `. To keep things simple, we assume ` divides n
and suppress all further rounding. Assume m = n/` chains are allocated i.u.r. to bins wrapped cyclically
round 1, ..., n. The chains contain ` balls each. The first ball of a chain is called header in the following,
the remaining balls comprise the tail. If chain j (meaning the header of chain j) is allocated to bin bi,
then the balls of the chain occupy bins bi, bi+1, ..., bi+`−1, where counting is modulo n. In the following the
load in bin b is the total number of balls allocated to the bin, i.e., the number of chains allocated to bins
bi−`+1, ..., bi−1, b. We define the h-load of a bin as the number of headers allocated to the bin.

We consider the case where every chain randomly chooses d bins bi1 , . . . , bid
. For random choice bij

it
computes the maximum load of bins bij

, bij+1, ..., bij+`−1. The chain is now allocated to bij
such that the

maximum load in any affected bin is minimized. This allocation process is called GREEDY[d] for chains.
We show the following result.

Theorem 1 Let m = n/` chains length ` be allocated to n bins, with d ≥ 2 i.u.r. bin choices per ball. Let
ξ(d) = ξ(d, m, n, `) be an upper bound on the maximum load of any bin, obtained by GREEDY[d] for chains.
Then,

ξ(d) =
ln ln(n/`)

ln d
+ O(1)

with probability 1 − O(1/ ln ln(n/`)).

Note the following extension of [1] to the case where m � n.

Theorem 2 (ABKU99) Provided that m < n/e and d ≥ 2, the maximum load achieved by GREEDY[d]
is at most

L(d) =
ln lnn − ln ln(n/m)

ln d
+ O(1)

with high probability.

For any ` the approximation ratio ξ(d)/L(d) is

ξ(d)

L(d)
= 1 +

log log ` + log
(
1 − log `

log n

)

log log n − log log `
≤ 1 +

log log `

log log n
log `

.

The worst case approximation ratio is O(log log n), which is still better than ξ(1)/L(d) = Ω(log(n/`)). We
remark that once ` = Ω(n/ log log n), then m = n/` and ξ(1) are upper bounds which improve on ξ(d) for
d ≥ 2.

4.1 Analysis of GREEDY[d] for Chains

In this section, we prove Theorem 1. Recall that in this problem, the bins are arranged cyclically in the
order 1, 2, ..., n. Each chain consists of ` balls. When a chain is allocated to bin v, the chain covers bins
v, v + 1, v + `− 1; that is, each ball of the chain occupies one of these bins. We use the following definitions:

• η(v) = η(v, t) is the h-load of bin v (number of headings allocated to v) at (the end of) step t =
0, 1, ..., n/`.
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• For given A ⊆ [n], define λ(A, t) =
∑

v∈A η(v, t) as the total h-load of the bins of A.

• Let R(v) = {v − ` + 1, ..., v − 1, v}.

• Let λ(v) = λ(v, t) = λ(R(v), t) be the load of v. Thus, λ(v, t) is the derived load of bin v at step t,
arising from chain headers allocated to the ` bins of R(v).

• Let Q(i, t) = {v : λ(v, t) ≥ i} give the labels of bins whose derived load is ≥ i at (the end of) step t.

• Let S(i, t) = ∪v∈Q(i,t)R(v). Thus S(i, t) gives the labels of those bins whose occupancy by a chain
header could contribute to bins with derived load ≥ i.

• Let θ≥i(t) = |S(i, t)|.

Note that even if some bins of R(v) do not contribute in a given instance, we include them in S(i, t)
anyway. For example, suppose at step t bin v contains i ball headers and bins v − ` + 1, ..., v − 1 are
empty, and bins v + 1, ...v + ` − 1 do not contain chain headers. Then, {v, v + 1, ...v + ` − 1} ⊆ Q(i, t)
and {v − ` + 1, ..., v, v + 1, ...v + ` − 1} ⊆ S(i, t). Our proof method follows that of [1] and, in particular,
Theorem 3.2 of that paper. For consistency, we have preserved their proof structure and notation as far as
possible, and in some places reproduced their arguments verbatim. We begin by stating a lemma given in [1]
(Lemma 3.1).

Lemma 1 (ABKU99) Let X1, X2, ..., Xn be a sequence of random variables with values in an arbitrary do-
main, and let Y1, Y2, ..., Yn be a sequence of binary random variables with the property that Yi = Yi(X1, ..., Xi).
If

Pr(Yi = 1 | X1, ..., Xi−1) ≤ p,

then

Pr

(
n∑

i=1

Yi ≥ k

)
≤ Pr(B(n, p) ≥ k),

where B(n, p) denotes a binomially distributed random variable with parameters n and p.

Let ht be the height of ball t, i.e., the maximum derived load resulting from the chosen placement of ball
t. Greedy[d] allocates the ball to the bin which minimizes the maximum load. Hence,

ht = min
j=1,...,d

max {λ(vj + r), r = 0, ..., ` − 1} ,

where v1, ..., vd are the u.a.r. bin choices offered at step t.
The components Cj , j = 1, ..., s, of S(i, t) consist of subsets of consecutive bins contained in S(i, t). These

components are of length at least ` as the component containing v also contains R(v). If we consider a
component C, then the length c of this component can be written as

c = q` + r 0 ≤ r ≤ ` − 1,

and, thus, C contains at least iq chain headers. For any component

λ(C) ≥ iq =
iqc

q` + r
=

ic

` + r/q
≥

ic

2` − 1
.

Thus,

λ(S(i, t)) ≥
i

2` − 1

∑

j=1,...,s

|Cj | =
iθ

2` − 1
=

i|S(i, t)|

2` − 1
. (1)
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We define

βi =





n i = 1, ..., 21
n
4e i = 22

n2e
(

βi−1

n

)d

i > 22.

For j = i + 22, i ≥ 1 we have

βj+1 = n2e

(
βj

n

)d

= n
(2e)1+d+···+di

(4e)di+1
.

It follows that

n

(4e)di
≤ βj = n

(2e)1+d+···+di−1

(4e)di
= n

(2e)
di

−1

d−1

(4e)di
≤

n

2di
. (2)

Let m = n/`. Define Ei(t, βi) = {θ≥i(t) ≤ βi} and let Ei = Ei(m, βi) be the event that the number of
bins contributing to derived loads ≥ i is bounded by βi throughout the process. From (1), we have that

iθ≥i

2` − 1
≤ λ(S(i, t)) ≤

n

`
,

and thus E22 holds with certainty.
Since the d bin choices for a chain are independent we have

Pr (ht ≥ i + 1 | θ≥i(t − 1)) =

(
θ≥i(t − 1)

n

)d

.

Let Yt = Y (i + 1, t) be given by

Yt = 1 ⇐⇒ {ht ≥ i + 1, θ≥i(t − 1) ≤ βi} .

Let Xj denote the bin choices available to the j-th chain. Then,

Pr(Yt = 1 | X1, ..., Xt−1) ≤

(
βi

n

)d

= pi,

We apply Lemma 1 to conclude that

Pr(

m∑

t=1

Yt ≥ k) ≤ Pr(B(m, pi) ≥ k). (3)

Each Yt = 1 event adds at most an extra component of size 2` − 1 to S(i + 1, t) so that

θ≥i+1(m) ≤ (2` − 1)
∑

Yt. (4)

Let k = empi, then, provided that
∑

Yt ≤ k, we have

θ≥i+1(m) ≤ 2`k = 2`empi = n2e

(
βi

n

)d

= βi+1.

From (3) and (4), we have

Pr(θ≥i+1(m) ≥ (2` − 1)k | Ei) ≤ Pr(
∑

Yt ≥ k | Ei) ≤
Pr(B(m, pi) ≥ k)

Pr(Ei)
.

Let ω satisfy

ln ln ln(n/`) ≤ lnω = o

((n

`

)(d−1)/d
)

. (5)
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Provided that mpi ≥ 2 lnω, we have

Pr(B(m, pi) ≥ empi) ≤ e−mpi =
1

ω2

by the Chernoff Inequality. Since

Pr(¬Ei+1) ≤ Pr(¬Ei+1 | Ei)Pr(Ei) + Pr(¬Ei),

and assuming inductively that Pr(¬Ei) ≤ i/ω2, we have

Pr(¬Ei+1) ≤
i + 1

ω2
.

As in [1], choose i∗ as the smallest i such that pi+1 =
(

βi

n

)d

≤ 2 ln ω
m and, thus, from (2),

i∗ =
ln ln(m/2 lnω)

ln d
+ O(1).

We have that

Pr(θ≥i∗+1(m) ≥ (2`) 6 lnω | Ei∗) ≤ Pr(
∑

Yt ≥ 6 lnω | Ei∗)

≤
Pr(B(m, (2 lnω)/m) ≥ 6 lnω)

Pr(Ei∗)

≤
1

ω2Pr(Ei∗)
,

and, thus,
Pr(θ≥i∗+1(m) ≥ (2`)6 lnω) ≤ (i∗ + 1)/ω2. (6)

Finally, for derived loads of height i∗ + 2,

Pr(
∑

Yt ≥ 1 | θ≥i∗+1(m) ≤ (2`)6 lnω) ≤
m
(

(2`)6 ln ω
n

)d

Pr(θ≥i∗+1 ≤ (2`)6 lnω)
= o(1).

Using (5) and (6), the probability of a derived load of height i∗ + 2 is bounded by

i∗ + 1

ω2
+ o(1) ≤ O

(
1

ln ln(n/`)

)
.

5 Off-line Allocation for m ≤ n

In this section we consider off-line allocation of balls into bins. The final allocation of balls into bins is
computed by a centralized algorithm once the choices available to each ball are known. The off-line algorithm
has to use the random bin choices of the balls. If ball b has chosen bin b1, . . . bd, the off-line algorithm has
to allocate b into one of these bins.

Let λ(d) be the maximum load resulting from the allocation of m balls into n bins with d random
choices each. Then, [13], together with a simple majorisation result similar to the one in [1], shows that
for d ≥ 2, dm/ne ≤ λ(2) ≤ dm/ne + 1. Our main focus (Section 5.1) here is to find values of d such that
λ(d) = λ(d, m, n) = dm/ne. In particular, there are values of d such that, when m ≤ n, the maximum load
is 1. Curiously, we will also show that, once m > n, d = 2 is best (and also cheapest) although values of
λ(d, m, n) = dm/ne may still be obtained in certain ranges (see [14]).

The choice of bins available to each ball can be modelled by a hyper-edge of size d on the vertex set [n].
Thus the sets of d choices available to the m balls is equivalent to a d-uniform hypergraph G = (V (G), E(G)),
with n vertices and m edges. In the following we define c = dm/n. The optimal allocation and value of λ(d)
can be found by a reduction to bipartite matching as explained below. We also give a simpler algorithm (for
suitably small values of m) based on stripping leaves of the corresponding hypergraph.
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Bipartite Matching Algorithm. Let F be a bipartite graph with bipartition (X, Y ), where X = E(G),
Y = V (G). The edges of F are defined as follows: If x ∈ E(G) is an edge of G and y ∈ V (G) is a vertex of
x, then there is an edge (x, y) in F . Apply a bipartite matching algorithm to F . If there is X-saturating
matching, then the maximum loading of any bin is 1. If not, then remove an X-maximal matching M ,
deleting the vertices M from X , and repeat the process. If L repeats were made, the maximum loading of
any bin is λ(d) = L. This approach is optimal in the off-line context.

Halls condition for the existence of an X-saturating matching is that |A| ≤ |N(A)| for all A ⊆ X and
N(A) ⊆ Y . Thus the maximum load λ(d) can be found directly on the hypergraph G by

λ(d) = max
S⊆[n],S 6=∅

d|E[S]|/|S|e,

where E[S] are the edges induced by vertex set S.
This approach is similar to the one used in [13], which uses a reduction of the problem (in the case d = 2)

to network flow problem, a standard method for solving bipartite matching. In the notation of that paper,
the authors define

L∗
max = max

∆⊆D
d|L∆|/∆e,

where D is the number of disks (bins), and L∆ are the edges induced by ∆. This also explains the ‘saw-tooth’
graph in Figure 1 of [14]. For certain values of c = 2m/n (i.e., N/D, D = n, N = m), the edge–vertex ratio
of the graph increases to the next integer, and the average maximum load jumps up by 1.

5.1 Maximum Load

We assume that each ball chooses d bins without replacement. Allowing d bins selected i.u.r. with replacement
may increase the maximum load in some cases by one. In particular, when d = 2 some vertices may have
loops which will definitely increase the maximum load for m < n/2 from 1 to 2. The probability that
some two balls make the same choice of bins is O(m/nd−1). Thus, for d ≥ 3 we obtain (w.h.p.) a simple
d-uniform hypergraph G = (V (G), E(G), chosen uniformly from Gn,m,d, the space of all simple hypergraphs
with |V (G)| = n vertices and |E(G)| = m edges. For d = 2, the situation is less clear, as parallel edges occur
with constant probability, hence, the result of [13] that shows dm/ne ≤ λ(2) ≤ dm/ne + 1. We prove the
following theorem.

Theorem 3 The following results hold w.h.p.

(i) For m < n/2, and d = 2 choices, λ(2) = 1.

(ii) For m < 0.816 · n and d = 3 choices, λ(3) = 1.

(iii) For m < 0.97677 · n and d = 4 choices, λ(4) = 1.

Proof For certain cases which we consider, the maximum load λ(d) can w.h.p. be deduced directly
from the structure of the hypergraph. Selecting a bin from the given choice of d corresponds to orienting the
edge towards that bin (vertex). The occupancy of a bin, is the in-degree of the vertex in the corresponding
orientation of the hypergraph G.

If an edge of G is incident with a vertex of degree 1 (a leaf edge), we can orient the edge towards this vertex,
as part of any optimal off-line allocation. After all leaf edges have been recursively removed, the remaining
graph will either be empty (in which case λ(d) = 1) or contain a non-empty subgraph C2 = (V (C), E(C)) of
minimum degree 2 (the 2-core). Subsequent recursive removal of vertices of degree at most 2 either gives an
empty graph or a 3-core C3 and so on. Properties of cores of random hypergraphs are given in the Appendix.

Let C = C2 denote the 2-core, and suppose the edge density m/n has been chosen so that there is no 3-core
w.h.p. In order to make an optimal allocation to the vertices (bins) of C, we must orient the edges to minimize
the maximum in-degree. The average in-degree per vertex (occupancy per bin) is θ = |E(C)|/|V (C)| and
thus some vertex must have in-degree at least dθe. However, provided dθe = 1 we may still be able to make
an allocation λ(d) with maximum occupancy 1, depending on the (w.h.p.) structure of the hypergraph.
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Result (i). For random graphs (d = 2) and for m < n/2 the 2-core (if any) consists w.h.p. of O(log n)
vertices on isolated cycles of length at least 3 (see e.g., [4]). There may also be O(log n) parallel edges disjoint
w.h.p. from each other and the cycles above, which we include in the 2-core.

The 2-core is easily dealt with; and the following trivial algorithm finds an optimal allocation with
λ(2) = 1.

• Recursively direct all leaf edges (incident with vertices of degree 1) to the leaf node and remove leaf
edges until the graph is empty.

• Orient any remaining cycles so that each vertex on a cycle has in-degree 1.

When m > n/2, a 2-core C of order n emerges (see [4]) and |E(C)|/|V (C)| > 1. There is no orientation
of the 2-core which can achieve maximum occupancy 1.

Result (ii). If we allow d ≥ 3 choices then there is no 2-core below some critical value m∗(d), whereas
above m∗ there is a 2-core of order n. Thus the 2-core emerges suddenly around m∗. The threshold value
c∗ = dm∗/n for the emerging 2-core of d-uniform hypergraph is tabulated below. The value c̃ given in Row
3 of the table is the value of c for which θ = |E(C)|/|V (C)| = 1 (the last possible value of m for which
λ(d) = 1), and m̃ is the corresponding value of m.

d 2 3 4 5 6 7
m∗/n – 0.816 0.775 0.7 0.633 0.571
c∗ – 2.455 3.09 3.51 3.82 4.08
c̃ at θ = 1 1 2.755 3.91 4.964 5.985 6.994
m̃/n 0.5 0.9183 0.97677 0.9928 0.9975 0.9991

Thus for m ≤ 0.816n, a choice of d = 3 bins per ball gives maximum allocation λ(3) = 1. The algorithm
to find an optimal assignment is the leaf stripping described above.

Result (iii). Let C be the 2-core of a 4-uniform random hypergraph. Bohman and Kim [3] prove that
provided |E(C)|/|V (C)| < 1 then w.h.p. the ratio

λ(4) = max
S⊆C,S 6=∅

d |E(S)|
|V (S)|e

is maximized by the 2-core C itself (i.e., C contains no denser subgraph S). Thus, for d = 4 and m <
0.97677n, λ(4) = 1 w.h.p. (see the m̃/n row in the table above). The Bipartite Matching algorithm will give
the optimal allocation. �

We remark that by increasing the value of d an allocation of one ball per bin can probably be obtained
for any m < n (see the table above). However we do not prove this here, but rather return to this topic in
a later publication.

Provided that there is no 3-core, the stripping algorithm allows an occupancy of at most 2 balls per bin.
For there is always a vertex of degree at most 2 remaining during any recursive stripping. However, the
threshold value m3 for the emergence of a 3-core decreases with increasing d.

Theorem 4 For m > n, d = 2 gives the best guarantee for not having a 3-core in the sense that λ(2) ≤ 2
for m < 1.67.

Proof As before let c = dm/n. Using the results of the appendix we have:

d (choices per ball) 2 3 4 5 6
c at 3-core threshold 3.35 4.66 5.34 5.79 6.13
m3/n edge-vertex ratio 1.67 1.55 1.33 1.15 1.02

�
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The Leaf Stripping algorithm can easily be generalized to deal with k-cores. In that case, all balls directed
to a bin with a load of at most k are allocated to the respective bins. If there is no k + 1-core, an occupancy
of at most k is obtained this algorithm. The thresholds for the k-cores are given in the appendix (8). We
prove in the extended version of this paper that for a > 1, the value m(a, d) for which λ(d) ≤ a is maximized
at d = 2.

6 Conclusions and Open Problems

In this paper we analyse the maximum load for the chains-into-bins problem where balls are connected in
n/` chains of length `. We show that, for d ≥ 2, the maximum load is ln ln(n/`)/ lnd+O(1) with probability
1 − O(1/ ln ln(n/`)). This shows that the maximum load is going down with increasing chain length. We
also analyse for which number of random choices d and which number of balls m < n, the maximum load of
an off-line assignment can be upper bounded by one.

Surprisingly, there are many open questions in the area of balls-into-bins games. Only very few results are
known for weighted balls-into-bins games, where the balls come with weights and the load of a bin is the sum
of the weights of the balls allocated to it. Here, it is even not known if two or more random choices improve
the maximum load, compared to the simple process where every ball is allocated to a randomly chosen bin
(see [16]). Also, it would be interesting to get tight results for the maximum load and results specifying
“worst-case” weight distributions for the balls. Something in the flavor “given that the total weight of the
balls is fixed, it is better to allocate lots of small balls, compared to fewer bigger ones.” Another interesting
problem is to show results relating the maximum load to the order in which the balls are allocated. For
example, is it always better to allocate balls in the order of decreasing ball weight, compared to the order of
increasing ball weight?

For chains-into-bins problem, a nice open question is to prove Knuth’s [10] conjecture stating that breaking
chains into two parts only increases the maximum load. This question still open for a single choice and also
for several random choices per ball. See [7] for a first progress in this direction. Another question is if similar
results to the one we showed in this paper for GREEDY[d] applied to chains also holds for the Always-Go-Left
protocol from [17] applied on chains.
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A Properties of Random Hypergraphs

The cores in Gn,p,d hypergraphs can be found as follows (see e.g., [6]). The degree sequence is close to
Poisson. We use that terminology as shorthand, and speak of Poisson hypergraphs. Let dm = cn. Then,
the degree distribution of individual vertices (bins) is close to a Poisson distribution with parameter c. This
approximation is very good and enables us to estimate the vertices and edges in the cores of Gn,p,d up to
An + o(n), where An is the core size in the Poisson hypergraph.

For d ≥ 2 and k ≥ 2 (and with the exception of the case d = 2, k = 2) the threshold for the emergence
of the k-core (k ≥ 2) of Gn,p,d is determined by the smallest c for which a solution x̂ in [0, 1] of

x
1

d−1 = f(x) = (d − 1)xf ′(x) (7)

occurs. Here cn = dm and

f(x) = 1 − e−cx

(
1 + · · · +

(cx)k−2

(k − 2)!

)
.

Above this threshold, the largest solution x̂ in [0, 1] of

x
1

d−1 = f(x)

is used. The expected number of vertices in the k-core is νn where

ν = 1 − e−cx

(
1 + · · · +

(cx)k−1

(k − 1)!

)
,

and the expected number of edges in the k-core is ηn, where

η =
c

d
xd/(d−1).
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2-cores of Gn,p,d hypergraphs. Let f(x) = 1 − e−cx. Then, for d ≥ 3, the threshold for the emergence
of the 2-core of Gn,p,d is determined by the largest solution x̂ in [0, 1] to

x
1

d−1 = f(x) = (d − 1)cxe−cx. (8)

3-cores of Gn,p,d hypergraphs. For k = 3, f(x) = 1− e−cx(1 + cx) and the threshold for the emergence
of the 3-core is

x
1

d−1 = 1 − e−cx(1 + cx) = (d − 1)c2xe−cx.
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