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Abstract

Problems of matching have long been studied in the operations research liter-
ature (assignment problem, secretary problem, stable marriage problem). All
of these consider a centralized mechanism whereby a single decision maker
chooses a complete matching which optimizes some criterion. This paper an-
alyzes a more realistic scenario in which members of the two groups (buyers-
sellers, employers-workers, males-females) randomly meet each other in pairs
(interviews, dates) over time and form couples if there is mutual agreement
to do so. We assume members of each group have common preferences over
members of the other group. Generalizing an earlier model of Alpern and
Reyniers (2005), we assume that one group (called males) is r times larger
than the other, r � 1: Thus all females, but only 1=r of the males, end up
matched. Unmatched males have negative utility �c: We analyze equilbria
of this matching game, depending on the parameters r and c: In a region
of (r; c) space with multiple equilibria, we compare these, and analyze their
�e¢ ciency�in several respects. This analysis should prove useful for designers
of matching mechanisms when information about individuals is not available
centrally but only statistical properties of the groups are known.



1 Introduction

The problem of pairwise matching of individuals from distinct sets (or sexes)
X and Y occurs in many guises: buyers and sellers, employers and employees,
medical schools and interns, males and females. We shall use the terminology
of the last case, calling the larger group X the males. We assume that
individuals of each group have common preferences over whom they would
like to be matched with in the other group.
The so-called �stable marriage�problem proposed by Gale and Shapley

(1962) seeks a matching among equal sized �nite sets X and Y such that
for any two matched pairs (x1; y1) and (x2; y2) ; in neither unmatched couple
(x1; y2) or (x2; y1) would each member prefer (with an arbitrary preference
relation) their new partner to the one in the original matching. To analyze
such questions one must look at complete matchings without considering how
they might arise in practice. This �centralized�problem has received much
study (see Roth and Sotomayor (1990).
More recently, the processes by which complete matchings may arise over

time have been analyzed as dynamic games played by the individuals in the
two groups. The utilities of these players are often modeled (and will be so
here) as �common preferences�by all members of one sex over individuals of
the other. For this reason we can give each individual a �type�(called x for
males, y for females) such that when a couple (x; y) is formed, the male x
gets utility y; and the female y gets utility x: We can normalize these types
to the unit interval [0; 1] by identifying an individual�s utility with relative
rank of their partner within his or her group. A male who is unmated at the
end of the n�th (�nal) period gets a utility �c; where c is a known parameter
representing the cost of failure to mate. In the �mutual choice�, or �two-
sided�, models we shall extend in this paper, individuals are randomly paired
in each period (that is, the smaller group of females is randomly paired with
an equally large randomly chosen set of males - the remaining males are not
paired in that period). Then if each member of a matched pair chooses to
accept the other rather than go into the next period unmated, they form
a couple and are permanently mated. In the �nal period, players always
accept. We call this game �n (r; c) ; where r � 1 (the �sex ratio�) is the initial
number of males divided by the initial number of females. This game has
been analyzed by Alpern and Reyniers (2005) in the symmetric case r = 1:
Johnstone (1997) considered a similar dynamic game model and Kalick and
Hamilton (1986) simulated a social psychology version.
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A strategy for a player in �n (r; c) is a rule specifying which potential
matches to accept in each period, by determining the least acceptable mate.
A strategy pro�le is called an equilibrium if prospective mates are accepted
if and only if their type (utility) exceeds the expected utility of the chooser
of going into the next period unmated - this is essentially a subgame perfect
Nash equilibrium. In the symmetric case (r = 1) studied by Alpern and
Reyniers (2005), only a single equilibrium was found. In this generalization
to r � 1; we �nd a region of (r; c) space having multiple equilibria. For
example, when n = 2 we �nd three equilibria: a choosy equilibrium, where
both groups have high acceptance standards; an easy equilibrium, where both
groups have low but positive acceptance standards; and a one-sided (female
choice) equilibrium, where males accept anyone. Much of the paper is devoted
to analyzing and comparing these in terms of dynamical stability and marital
stability (a randomized version of Gale�s stability condition based on that of
Eriksson and Strimling (2004) and Eriksson and Häggström (2007)). For
n = 2 (and numerically, for higher n) we �nd that choosiness at equilibrium
goes in the same direction for males and females; equilibria with choosy
males have choosy females). We �nd that the choosy and one-sided equilibria
are dynamically stable (attracting �xed points of a dynamical system); but
the easy equilibrium is dynamically unstable. The equilibrium where both
sexes are choosy has the highest marital stability; the equilibrium where only
females choose has the lowest. We note that the existence of an equilibrium
follows from a simple application of Brouwer�s Fixed Point Theorem in the
same way as established for r = 1 by Alpern and Reyniers (2005). As shown
there, equilibria are fully determined by a pair of nonincreasing n� 1 tuples
of threshold values (u1; u2; : : : ; un�1) and (v1; v2; : : : ; vn�1) ; where ui is the
lowest type female that a top male (x = 1) will accept in period i (similarly
for vi for female choice). At equilibrium, a pairing (x; y) in period i will
mutually accept and form a couple if and only if x � vi and y � ui: The vi
will always be positive. If all the ui are 0; we call it a �one-sided�(or female
choice) equilibrium; otherwise we call it a �two-sided� (or mutual choice)
equilibrium.
From the point of view of a single player, a sort of �secretary problem�

(see Ferguson (1989)) is being played out over time, in that he is being pre-
sented with a random succession of secretaries. As in the original secretary
problem, he may not go back and accept someone he has rejected. How-
ever there are many di¤erences: The distribution in each period depends on
previous choices of other players; a secretary may reject him; the objective
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is expected rank. The closest version of the secretary problem is that of
Eriksson, Sjöstrand, J. and Strimling (2007).
In contrast to two-sided search models such as the well known one of

McNamara and Collins (1990), our model is not steady-state. Each period
is di¤erent: the sex ratio increases and the distribution of types changes
according to the strategies employed. The cohorts are initially uniformly
distributed but not in any future period. At all equilibria, individuals become
less choosy over time, as suggested in the Pennebaker et al (1979) social
science analysis of the country and western song �Don�t the girls get prettier
at closing time�. A good analysis of the e¤ects of changing and uncertain
distributions of male quality on female choice has been given in by Collins,
McNamara and Ramsey (2006).
Two-sided matching models have been used in various aspects of eco-

nomic theory, principally by Burdett and Coles (1997,1999), Bloch and Ry-
der (2000), Eeckhout (2000) and Eriksson and Häggström (2007). In biology
and psychology, they have been used to describe and analyze mating behav-
iour in animals (Alpern and Reyniers (1999), Alpern, Katrantzi and Reyniers
(2005), Bergstrom and Real (2000)), and in humans (Kalick and Hamilton
(1986)). Connections with two-sided spatial matching (�rendezvous search�)
will be discussed in the Conclusions section.
Some notes on terminology. As our model involves two matching processes,

the random pairing of unmated individuals at the start of each period and
the permanent coupling of pairs who accept each other, we distinguish these
by calling the former process matching and the latter mating. Some results
are obtained numerically, and these will be denoted as Propositions, covering
the region 1 � r � 2:5 , 0 � c � 2:5:
The paper is organized as follows. Section 2 gives a complete treatment

of the two period problem. We �nd formulae for the three equilibria: e1

(one-sided), e2 (easy), e3 (choosy). We determine the regions of (r; c) space
where they exist (Theorem 1). We show that male and female choosiness
vary in the same way at equilibria (Monotonicity Lemma 4). We show that
only e1 and e3 are dynamically stable (Proposition 5); We show that e1 is the
most maritally stable whereas e1 is the least (Proposition 6). In Section 3 we
use both analytical and numerical methods to establish that these properties
of equilibria for n = 2 periods tend to hold for models with n > 2 periods.
We wish to thank an anonymous referee of Alpern and Reyniers (2005)

for suggesting that an extension of that paper with a nontrivial sex ratio
might yield new phenomenae �which it has.
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2 The Two Period Game �2 (r; c)

We begin with populations of females and males, with types (quality) uni-
formly distributed on [0; 1] : The females have unit density (and unit popula-
tion), while the males have density (and population) r (the sex ratio) which
is at least 1: Let u and v be the male and female �rst period cuto¤ strategies;
females accept a male x i¤ x �> v while males accept female y i¤ y � u:
A matched male-female pair which types (x; y) will be mated by mutual ac-
ceptance if both x � u and y � v and with random matching the number of
such couples will be

k = (1� u) (1� v) : (1)

as shown in the unshaded regions of both the female and male populations
of Figure 1. In the left square, females are located according to their type
(horizontal y axis) and the type of the male they are matched with (vertical
x axis). Those in the left rectangle are rejected by their partner and those in
the bottom right rectangle reject their partner. The rectangle on the right
similarly plots all males, with the additional lower rectangle of unmatched
males.

0                  u                  1

Females Y
0                            v        1

Males  X

y

x

unmatchedunmatched

rejected

reject

rejected

reject

1­u
1­v

1­v

1­u

Mated: k = (1­u) (1­v)

1

v

x

0

1

0

u
y

(type, type of match)

k

k

r­1

Figure 1. Couple formation
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The mean value �x of the r� k males x that enter the �nal period unmated
(those not in upper right unshaded rectangle) is calculated by dividing them
into those with x < v (of average type v=2) and those with x � v (of average
type (1 + v) =2): The �rst group of males have population (area) rv; while
the second have population (1� v) (r � 1 + u) : Hence

�x = � (u; v) =
[rv] (v=2) + [(1� v) (r � 1 + u)] (1 + v) =2

r � k
: (2)

The value (expected payo¤) of any female who enters the �nal period un-
mated is simply the mean type of the second period male population, that
is, �x: So in period 1 she should accept a male x i¤ x � �x: Hence the female
equilibrium condition (f.e.c.) is simply

v = � (u; v) : (3)

For v in the range of �; we can solve uniquely for u; giving the f.e.c. (3) as

u = f (v) =
�r � 2v + 2rv + v2 + 1

�2v + v2 + 1
: (4)

To calculate the corresponding male equilibrium equation (m.e.c.) we �rst
need to obtain the mean female type �y in the �nal period. By symmetry
when r = 1; we obtain this by interchanging u and v in (2):

�y =
u (u=2) + (1� u) (v) (1 + u) =2

1� (1� u) (1� v)
: (5)

Unlike the simpler case for females, a male entering the �nal period will not
obtain an expected payo¤ of �y - he will only get this if he is lucky enough to
be matched. Otherwise he will have the cost c (utility �c): The probability
p of a male being matched in the second period is the inverse sex ratio

p =
1� k

r � k
: (6)

Hence a male entering the �nal period has an expected payo¤, which we will
call ~�y; given by

~�y = p �y + (1� p) (�c) ; or (7)

~�y =  (u; v) � �2c� 2u+ 2cr + 2ru+ u2

�2u+ u2 + 1
(8)
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The justi�cation for the notation ~�y is that we may add to the �nal period
female population a number r� 1 of imaginary females with type �c; and in
this case ~�y would indeed be the mean of such a population. Hence the male
equilibrium equation (m.e.c.) is

u = ( (u; v))+ ; where (a)+ = max (a; 0) ; (9)

since a cuto¤ value of 0 is equivalent to a negative one. Solving the m.e.c.
(9) for v as a function of u; for u in the range of  +; gives

v = g (u) � u2 + (2r � 2)u+ 2c (r � 1)
(u� 1)2

(10)

De�nition: A pair (u; v) ; 0 � u; v � 1; satisfying (3) and (9) is called
an equilibrium of the game �2 (c; r) : If u = 0; the equilibrium (u; v) is called
a female-choice equilibrium (f.e.c.) (or, one-sided choice equilibrium) and if
u > 0 it is called a mutual-choice equilibrium (m.e.c.) (or two-sided equi-
librium). Let E1 denote the set of all one-sided equilibria, E2 the two-sided
ones, and E = E1 [ E2 the set of all equilibria.
Note that at any equilibrium we have v > 0; since the mean of the �nal

period males is always positive.

2.1 Equilibrium Theorem

In the symmetric case r = 1 studied in Alpern and Reyniers (2005) (where c
is irrelevant, as all males end up mated), the unique equilibrium was shown

to be the mutual-choice equilibrium u = v =
3�

p
5

2
� 0:381 97: For general

r and c the situation is more complicated, though indeed for r su¢ ciently
close to 1 (depending on c) there is still a unique equilibrium which is of
mutual-choice type. More generally, we show in Theorem 1 that equilibrium
behavior partitions c; r space by two curves: r = rF (c) ; called the �F�curve;
and r = rM (c) ; called the �M�curve. Female choice equilibria exist only on
or above the F curve, while mutual choice equilibria exist only on or below
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the (higher) M curve. These curves are de�ned as

r = rF (c) =
(c+ 1=2)2

c (c+ 1)
and (11)

r = rM (c) =

8<: 27 (1 + c)�
p
27 (�5� 10c+ 27c2)
32

; c � 1
rF (c) ; c < 1

(12)

For c � 1; we have rM (c) � rF (c) with equality only at c = 1 (where they
are both 9=8; and tangent to each other). Figure 2 shows how the two curves
F (r = rF (c)) and M (r = rM (c)) divide c; r space into three open regions
de�ned by

I = f(r; c) : r > rM (c) and c � 1; or r > rF (c) and c > 1g ; (13)
II = f(r; c) : r < rF (c) g ; and (14)

III = ff(r; c) : rF (c) < r < rM (c) and c < 1 gg : (15)

32.521.510.50

1.15

1.125

1.1

1.075

1.05

1.025

1
c

r
I

II
III

(1, 9/8)

F
M

M=F

female choice eq. only

mutual choice eq. only both

Figure 2. Illustration of Theorem 1

We use this numbering of the regions because: region I has a one-sided
(female-choice) equilibrium, region II has a two-sided (mutual-choice) equi-
librium, and region III has three equilibria (one female-choice and two mutual
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choice). The following is our main result for the two period games, and will
be proved in the next section.

Theorem 1 Consider the two period game �2 (r; c) ; for r � 1 and c � 0;
and let the regions I; II; and III be de�ned as in (13-15).

1. If (r; c) 2 I; then there is a unique equilibrium and it is a female-choice
equilibrium

2. If (r; c) 2 II; then there is a unique equilibrium and it is a mutual-
choice equilibrium

3. If (r; c) 2 III; then there are three equilibria: one of them is a female-
choice equilibrium, and the other two are mutual-choice equilibria.

Figure 3 illustrates equilibria in regions I, II, III, given as the intersec-
tion of the female equilibrium condition (3) drawn in red (thin) and the male
equilibrium condition (9) drawn in green (thick).

0.20.150.10.050
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0.275

0.25

0.225
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0.175

u

v

u

v

0.50.3750.250.1250
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0.25

0.125

0

u

v

u

v

0.50.3750.250.1250

0.5

0.375

0.25

0.125

0

u

v

u

v

fce

mce

fce
mce

mce

I II III

Figure 3. Male (green) and female (red) equilibrium conditions

2.2 Proof of Theorem 1

In Figure 3 we illustrated Theorem 1 by exhibiting the equilibria E symmet-
rically with respect to male and female strategies u and v, as the intersection
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of the male and female equilibrium conditions. However to prove Theorem 1,
we now take an asymmetric approach in which we determine only the male
cuto¤ strategies u which form half of an equilibrium pair (u; v) : Of course if
we know u; then v is uniquely determined by the female equilibrium condi-
tion (3). So for the time being we forget about v and concentrate only on
u:
To establish Theorem 1, we show that the set E = E1(one sided, f.c.e.�s)

[ E2 (two-sided, mce�s) of equilibria is determined by the intersections of a
certain cubic polynomial q (u) with the disjoint union

d = L1 [ L2; (16)

where L1 is the negative y�axis f(y; 0) ;�1 < y � 0g and L2 is the open
interval f(u; 0) : 0 < u < 1g : Intersections with L1 give fce�s and those with
L2 give mce�s. This is illustrated in Figure 4 for the three regions discussed in
Theorem 1: For region I; q intersects only L1; for region II, q only intersects
L2; for region III, q intersects L1 and then intersects L2 twice, once before
and once after the relative maximum of q: Figure 4 should be compared with
the earlier Figure 3, noting that the earlier one indicated both coordinates (u
and v) of each equilibrium, while this �gure indicates only the u coordinate.

0.10.050

0

­0.01

­0.02 I: r = 1.055, c = 2

q(u)
L1

L2

0.10.050

0

­0.01

­0.02 I: r = 1.055, c = 2

q(u)
L1

L2

0.250.1250

0.025

0

­0.025

q(u)

L1

0.150.1250.10.0750.050.0250

0.015

0.01

0.005

0

­0.005

q(u)

III: r=1.045, c=2
L1

0.150.1250.10.0750.050.0250

0.015

0.01

0.005

0

­0.005

q(u)

III: r=1.045, c=2
L1

L2
L2

u

u u

II: r=1.03, c=2

Figure 4: Intersection of q with L1 [ L2; regions I,II,III

The following result establishes that the intersections shown in Figure 4 are
indeed equilibria.

Lemma 2 Fix any parameters r � 1 and c � 0: Then
(u; g (u)) 2 E if and only if (u; q (u)) 2 d: (17)

Furthermore

(u; g (u)) 2 Ei if and only if (u; q (u)) 2 Li: (18)
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Proof. Recall that v = g (u) (10) is a form of the male equilibrium equation.
In this analysis u is always in [0; 1] : If we combine the two (female and male)
equilibrium conditions in the form of (4) and (10), we can obtain all mutual-
choice equilibria by seeking solutions u 2 (0; 1) to the �xed point equation

u = f (g (u)) ; or equivalently, solving (19)

h (u) = f (g (u))� u = 0: (20)

We can factor the rational function h (u) in the form

h (u) =
(1� u) q (u)

(1 + 2c� 2cr � 2ru)2
; where q = q (u) is the cubic (21)

q = ru3�3ru2+
�
5r + 4cr � 4r2 � 4cr2

�
u�4c2r2�4cr2+8c2r+8cr+r�4c2�4c�1

For u > 0; q (u) is 0 if and only if h (u) is 0; which is equivalent to (18) for i =
2: The condition f (g (0)) < 0 is equivalent to (0; g (0)) being a female-choice
equilibrium, because (0; g (0)) always satis�es the male equilibrium condition
(10) and (f (g (0)) ; g (0)) satis�es the female equilibrium condition (4). But
a negative cuto¤ strategy f (g (0)) for the males is strategically equivalent
to u = 0 (as there as no females of negative type y): Hence (0; g (0)) is an
equilibrium. But the condition f (g (0)) < 0 is equivalent to f (g (0))�0 < 0;
or q (0) < 0: Thus (18) holds for i = 1 as well, and hence the main condition
(17) also holds.
Lemma 2 reduces the proof of Theorem 1 to the determination of the

intersections of the cubic curve q (u) with the set d; for di¤erent values of
the parameters r and c: The analysis of the cubic q is given in the following
lemma. For Theorem 1 we will need information about the location � of the
relative maximum and its height q (�) :

Lemma 3 (analysis of cubic q) The cubic q (u) increases from �1 to it�s
relative maximum q (�) at �; then decreases until its relative minimum at �;
from which point it increases to in�nity. The numbers � and � (the two
solutions of the quadratic equation q0 (u) = 0) are given by

� = 1�
p
2=3
p
D < 1; and � = 1 +

p
2=3
p
D > 1; where (22)

D � 2r � 1 + 2c (r � 1) > 1: (23)
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For all parameter values, we have q (1) < 0; but the values of q (0) and q (�)
and � depend on the parameters r and c in that

sign (q (0)) = sign (rF (c)� r) ; (24)

if r < rM (c) ; c � 1; then q (�) > 0 (25)

if r > rM (c) ; c � 1; then either q (�) < 0 or � < 0 (26)

sign (�) = sign (r3 (c)� r) ; where r3 (c) =
4c+ 5

4c+ 4
: (27)

We can now use our two lemmas to give a simple proof of Theorem 1
which involves breaking up region I into two regions Ia (with c � 1) and Ib
(with c > 1); as shown below in Figure 5.

32.521.510.50

1.25

1.2

1.15

1.1

1.05

1

r3

Ia

Ib

Ib

Figure 5: Partition of I into Ia and Ib

Proof of Theorem 1: The portions of the Theorem concerning female
choice equilibria follow immediately from (18) for i = 1 and (24). That
is, there is a female-choice equilibrium if q (0) � 0; which is equivalent to
r < rF (c) : So we need to consider only mutual-choice equilibria. Recall that
u corresponds to a mutual-choice equilibrium if 0 < u < 1 and q (u) = 0:We
have shown in the previous lemma that q (1) is always negative. We know
that q is decreasing from � to � > 1: We now prove the cases in turn.
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1a If (c; r) 2 Ia; then r � rF (c) and r � r3 (c) : It follows from (24) that
q (0) � 0 and from (27) that � � 0. Consequently q is decreasing
between 0 and 1; and can have no root in that open interval. Hence
there is no mutual-choice equilibrium.

1b If (c; r) 2 Ib; r > rM (c) and hence also r > rF (c) : The latter condition
ensures by (24) that q (0) is negative. Since r > rM (c) we have by
(26) that q (�) < 0 or � � 0: If � � 0; then as in the previous part,
q is decreasing between 0 and 1: If � > 0; q will increase until �; but
q (�) < 0; so q has no root less than �: From � to 1 it is decreasing
and the result follows.

2 If (c; r) 2 II; we have r < rF (c) and so by (24) we have q (0) > 0:
Since q (1) < 0 for all parameters, the Intermediate Value Theorem
guarantees at least one root of q between 0 and 1; hence at least one
mutual choice equilibrium. If q had two roots between 0 and 1; then
it would have a relative minimum between them. But q (u) has only
one relative minimum, at � > 1: Hence in this case there is exactly one
mutual-choice equilibrium.

3 If (c; r) 2 III; then r > rF (c) ; r < r2 (c) ; and hence r < r3 (c) : So by
(24) we have q (0) < 0, by (25) we have q (�) > 0 and by (27) we have
� > 0: Hence by the Intermediate Value Theorem, q has a root between
0 and � and another root between � and 1:We have already explained
above why q cannot have more than two roots between 0 and 1: Hence
there are two mutual-choice equilibria.

2.3 Analysis of Equilibria

In Theorem 1 we determined the number and type of equilibria, as a dis-
crete function (regions I, II, III) of the parameter values r and c: Here we
obtain explicit formulae for these equilibria and analyze how they depend
continuously on the parameters r and c: Our �rst observation is that when
comparing equilibria, the level of choosiness (acceptance level) goes in the
same direction for both males and females, the monotonicity lemma. In other
word, one of the equilibria is choosier than the other (for both sexes). To
see this, recall that any equilibrium pair (u; v) satis�es the female equilib-
rium equation (4) u = f (v) ; so f 0 (v) = 2vr= (1� v)3 > 0 implies that u is
increasing in v; giving the following.
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Lemma 4 (Monotonicity) Given any two equilibria (u; v) and (u0; v0) ; we
have u 6= u0 and

(u0 � u) (v0 � v) > 0 (28)

As an application of this lemma, the three potential equilibria can be
ordered in terms of choosiness as ei = (�ui; �vi) ; i = 1; 2; 3; where for i < j
we have both �ui < �uj and �vi < �vj: We name these (where the latter two are
mutual choice equilibria) as:

e1; the female choice equilibrium, which exists on and above the F curve,

e2; the easy equilibrium, which exists between the M and F curves, and

e3; the choosy equilibrium, which exists on and below the M curve.

For the female choice equilibrium e1; we have obviously �u1 = 0; and can
obtain �v1 directly from the female equilibrium condition (4) 0 = f (v) ; or
0 = �r � 2v + 2rv + v2 + 1, with unique positive solution

�v1 = 1� r +
p
r2 � r:

For the mutual choice equilibria ei = (�ui; �vi) , i = 2; 3; we obtain the the
formula for �ui by explicitly solving the cubic equation q (u) = 0 for u = �ui,
getting the corresponding �vi from the formula �vi = g (�ui) (10).

�u2 = 2
p

 cos

�
t+ 2�

3

�
+ 1; �u3 = 2

p

 cos(

t+ 4�

3
) + 1; where (29)

t = arccos
�
(2� a1 � a0) =2

p

3
�
; 
 =(3� a1) =3;

a1 = 5� 4c(r � 1)� 4r; a0=
�
�1 + 4c(r � 1) + 4c2(r � 1)

�
(1� r)=r

To see what the equilibria look like in u; v space, for a 4 � 5 grid of c; r
parameters taken to cover points in all three regions I, II, and III (see Figure
6), we draw the equilibria in a similarly arranged array of boxes in Figure 7.
In each box (with r and c �xed), we plot any female choice equilibria with a
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red triangle and any mutual choice equilibria with blue diamonds.
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Figure 6. The 20 grid points for equilibrium analysis
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Figure 7: Equilibria at the 20 c; r grid points

We have drawn the M line in blue and the F line in red. Note that the
grid points were chosen so that the former goes through the upper left box
and the latter goes through the lower right box. For that reason we have
drawn the lines as splitting around these boxes. Observe that in all cases in
Figure 7, a line between two equilibria is always upwards sloping, as follows
from the Monotonicity Lemma. Note that as we go up (increasing r) the
column of boxes corresponding to c = 1:32; we start with one mutual choice
equilibrium (which is the choosy one e3); then get all three, and �nally get
only the female choice equilibrium e1: A better way of seeing these transitions
is to consider the bifurcation diagram drawn in Figure 8 with the sex ratio
r increasing to the right, and the male and female acceptance levels drawn
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in the vertical axis. The lower (black) curves describe the male equilibrium
acceptance levels u; while the top (red) lines describe the female levels v: In
region III, the equilibrium values for each sex appear, from top to bottom,
in the order e3; e2; e1:

C=1.32

r

u,v

II III I

v

u

F M

Figure 8: Bifurcation in r of equilibria for c = 1:32

2.4 Dynamical Stability of Equilibria

The equilibria ei are solutions to both the male and female equilibrium con-
ditions (9,3), or equivalently are �xed points of the mapping T given by

T (u; v) =
�
 + (u; v) ; � (u; v)

�
: (30)

In this section we determine the dynamical stability of the equilibria ei as
�xed points of the mapping T: That is, a �xed point is stable if iterations of T
applied to nearby points converge back to it. To do this, we must determine

16



the matrix norm

N j (u; v) =

�������
�������
0B@ @ +

@u

@ +

@v
@�

@u

@�

@v

1CA
j�������
������� : (31)

A �xed point (u; v) will be dyamically stable if for some j; N j (u; v) < 1:
Since we found the formulae for the equilibria ei (r; c) in the previous sec-
tion, we can evaluate the Jacobian matrix at these u; v values. We �nd
that N2 (e1 (r; c)) < 1 where e1 exists (on and above the F curve) and
N2 (e3 (r; c)) < 1 where e3 exists (on and below the M curve). Furthermore
N (e3 (r; c)) < 1 below the F curve and N1 (e1 (r; c)) above the M curve. On
the other hand both eigenvalues of the Jacobian of

�
 +; �

�
at the easy equi-

librium e2 have absolute values larger than 1. Summarizing these numerical
results, we have the following.

Proposition 5 Let e1; e2 and e3 be the female, easy and choosy equilibria.
The equilibria e1 and e3 are dynamically stable and the equilibrium e2 is
unstable.

2.5 Marital Stability � of Equilibria

Suppose we look at the distribution of couples over the (x; y) square that
arises at the end of the play of our game, or indeed that arises in any way.
We ignore in this analysis the unmated males. For the moment, suppose
that agent preferences are arbitrary. We say that a pair of couples (x1; y1) and
(x2; y2) is unstable if a male from one couple and a female from the other both
prefer each other to their current partner. In our common preference model,
where type equals utility to the opposite sex, this means that the better
(higher type) male and the better female belong to distinct couples, or that
(x2 � x1) (y2 � y1) < 0: If a pair of couples is not unstable, we say it is stable.
We de�ne the Stability � of a given distribution to be the probability that a
randomly and independently chosen pair of couples is stable. This de�nition
is similar in spirit to that proposed by K. Eriksson and P. Strimling in (2004).
In our two period game, every strategy pair (u; v) (not only equilibrium pairs)
leads to a couple distribution that is uniform (with some constant density)
on each of the four subrectangles rectangles Rk of the unit square in x; y
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space determined by the lines x = v and y = u drawn in Figure 9.

x

y

v

u

R1                  R2

R3                   R4

0 10

1

Figure 9. Couple
distribution on the type

square.

Let �k denote the probability that a couple belongs to Rk: Note that �1 +
�2 + �3 + �4 = 1 and that �1 + �2 = 1 � u, while �1 + �3 depends on r:
De�ne a symmetric 4�4 matrix S so that si;j is the probability that a pair of
couples is stable, given that the couples belong to Ri and Rj: It is easy to see
that two couples belonging to R1 and R4 form an unstable pair, while a pair
belonging to R3 and R2 form a stable pair. Otherwise, the couples belong to
two rectangles whose union is a rectangle R; and which are each preserved
under a symmetry transformation � of R: Observe that � transposes pairs of
such couples in such a way that if one is stable then the other is unstable.
Hence for all these cases, sij = 1=2: For example, Figure 10 illustrates how
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� (y) = u� y transposes stable with unstable couple pairs R3 and R4:

x

y

v

u
R3                             R4

0 10

Figure 10: s3;4 = 1=2

Thus

S =

0BB@
1=2 1=2 1=2 1
1=2 1=2 0 1=2
1=2 0 1=2 1=2
1 1=2 1=2 1=2

1CCA :

So if the the distribution over the rectangles is � = � (u; v) = (�1; �2; �3; �4) ;
the stability � is given by

� = � (u; v) = �S� =
1 + 2�1�4 � 2�2�3

2
: (32)

Note that at any female choice equilibrium we have u = 0; hence �3 = �4 = 0;
so by (32) we have � = 1=2: More generally, we calculated � at the three
equilibria in III, observing that

Proposition 6 For any r and c, in region III, the choosy equilibrium e3 is
the most stable one and the female choice equilibrium e1 is the most unstable
one. That is,

0:5 = �(e1(r; c)) � �(e2(r; c)) � �(e3(r; c)):

Furthermore, �(e2(r; c)) � 0:54 and �(e3(r; c)) < 0:59:

Figure 11 plots the marital stability � of the three equilibria as a function
of r, for �xed c = 1:32. The red line is � (e1), the black line � (e2) and the
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green line � (e3).

r
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e1
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e3

e2

e1

Figure 11. Marital Stability � of the ei:

3 n-Period Model, n > 2:

In the previous section, we were able to obtain a complete analytical descrip-
tion of the equilibria for the two period model, with explicit formulae. Due
to the complexities involved, this will no longer be possible for models with
n > 2 periods. However, we are still able to obtain some analytical solutions
for the continuous (uniform distribution) model and fairly complete numeri-
cal solutions for models where both sexes come in m discrete types. We have
extensive results for n = 3 and very partial results for n = 4:

3.1 Female-Choice Equilibrium for n = 3

This section presents our only analytical result for n > 2; the determination
of the unique female choice equilibrium for n = 3: We assume that any
male accepts any female in any period. For females, we denote by v1 and
v2; v2 < v1; the lowest male type that a top female (y = 1) will accept in
periods 1 and 2: Let pi = 1=ri be the inverse sex ratio, the ratio of females
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to males at the beginning of period i: This is the probability that a male
entering period i will be matched in that period. Let qi = 1 � pi be the
complementary probability of not being matched in period i; so that

q1 = 1� 1=r; q2 = 1� v1= (v1 + r � 1) :

There are three type-classes of male: High, H = [v1; 1] ; with initial prob-
ability PH = 1� v1 and mean �H = (1 + v1) =2; Medium, M = [v2; v1] with
initial probability PM = v1�v2 and mean �M = (v1 + v2) =2; Low L = [0; v2]
with initial probability PL = v2 and mean �L = v2=2: The probabilities that
males of these types reach the �nal period unmated are given by

�PL = 1; �PM = q2; �PH = q1q2:

The expected payo¤ e3 to a female entering the �nal period is simply the
mean type of the �nal period male distribution, and hence given by

e3 =
PLs3 (L)�L + PMs3 (M)�M + PHs3 (H)�H

PLs3 (L) + PMs3 (M) + PHs3 (H)
: (33)

Thus

e3 =
r2 � v21 � 2r + v21r + v1v

2
2r + 1

2v1r � 4r � 2v1 + 2v1v2r + 2r2 + 2
: (34)

The expected utility e2 for a female entering period 2 unmated is calcu-
lated as follows: If she meets a Low male, she goes into �nal period and gets
e3; if she meets a Middle male she accepts and gets on average (v1 + v2) =2;
if she meets a High male, she accepts and gets on average (1 + v1) =2: Hence
her expected payo¤ is given by

e2 =
v2r

�
e3 + ((v1 � v2) r=�)

�
v1 + v2
2

�
+
(1� v1) (r � 1)

�

�
1 + v1
2

�
; (35)

where � = r� (1� v1) is the male population in period 2. Hence the female
equilibrium condition is given by the two equations,

v2 = e3 and v1 = e2 (36)

The solution v1 (r) and v2 (r) to the female equilibrium equations is drawn
(usingMathematica) in the following �gure. Of course, these will be equilibria
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only if c is su¢ ciently large so that males will always accept, that is, if the
male equilibrium equations are also satis�ed.
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321.5
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321.5

Figure 12. Female Choice Equilibrium, n = 3:

To determine when v1; v2 forms an equilibrium with males always accept-
ing (u1 = u2 = 0) we must �nd when a male of type 1 will accept a female of
type 0 in period 1. Clearly he will do this only if his expected payo¤w2; if he
goes into period 2 unmated, is not positive. A type 1 male will be accepted
if matched, and will on average be matched with a type 1/2 female. If he is
not matched in either period, he gets �c: Thus

w2 = w2 (r; c) = (p2)
1

2
+ (q2 p3)

1

2
+ (q2 q3) (�c) : (37)

Solving the equation 0 = w2 (r; c) for r as a function of c gives the line (which
we again call the F line) above which we have one female choice equilibrium
and below which we have none. This line is drawn as F = F 3 (again using
Mathematica) in Figure 13, alongside the F and M lines of the two period

22



model of Figure 2.

r(c)

c

F

M

F3

r(c)

c

F

M

F3

Figure 13. The F line for n = 3:

3.2 Discrete Type Model for n = 3

Although it was possible in the previous section to obtain the female choice
equilibrium for n = 3 and the uniform distribution by analytical means, the
mutual choice equilibria cannot be obtained in this way. For this reason we
now turn to the game �n;m (r; c) in which both sexes are initially distributed
with equal amounts of types 0; 1; 2; : : : ;m� 1: To align our results with the
continuous model where types belong to the interval [0; 1] ; the cost to a male
of not mating will be given as c m: For n = 3 and small m we can obtain
all the equilibria by a modi�ed exhaustive search technique developed by
Katrantzi. Figure 14 charts, for m = 8; the qualitative aspects of this search,
for r and c in the grid. Here, F represents just a female choice equilibrium,
M just a male choice equilibrium, and B the presence of both types. The �F�
line is drawn in red, the �M�line in blue, and the portion M=F is drawn in
black. One can easily detect the same qualitative partitioning of c; r space
into the regions I, II, and III of Figure 14. Note that, compared with the two
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period problem, region III (B�s) is smaller and the �M�line is lower.

c=0.6 c=0.8 c=1 c=1.2 c=1.4
r=1.8 F F F F F
r=1.7 F F F F F
r=1.6 M F F F F
r=1.5 M B F F F
r=1.4 M B B F F
r=1.3 M M M F F
r=1.2 M M M M M
r=1.1 M M M M M
r=1 M M M M M

Figure 14. Regions I, II, III for n = 3; m = 8

To obtain a more quantitative analysis of the equilibria, as functions of r and
c; we describe in Figure 15 the equilibria corresponding to a grid of r and
c values. This is analogous to Figure 7 for n = 2; except that for n = 2 an
equilibrium could be represented by a single point (u; v) ; whereas for n = 3
we represent each equilibrium by a line segment between the lower male
equilibrium values (u1; u2) and the higher female values (v1; v2). The grid
lines correspond to u; v 2 f0; 1; 2; 3; 4g : Female choice equilibria, which have
lower point (u1; u2) = (0; 0) ; are drawn in red. Note that most of the mutual
choice equilibria start at the bottom (u2 = 0), so in these the males are only
choosy in the �rst period. In fact, only in the two boxes corresponding to
r = 1:1 and c = :6 and .8 is there a mutual choice equilibrium where the
males are choosy in both periods.
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c=1.2c=1c=0.8c=0.6
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r=1.3

r=1.1

c=1.2c=1c=0.8c=0.6

r=1.2

r=1.4

r=1.5

r=1.3

Figure 15. Equilibria for discrete
uniform distribution, m = 8:

The red line between the boxes is the F line and the blue line is the M
line.

3.3 Equilibria for n = 4

When there are n = 4 periods, it is not possible to do an exhaustive search
for all equilibria, even for small numbers of types. So we adopt the iterative
methods employed by Alpern and Reyniers (1999) in which an analog of the
T mapping of (30) is iterated to �nd attracting �xed points. Of course in
this case T acts on 6-dimensional space,

T ((u1; u2; u3) ; (v1; v2; v3)) = ((w2; w3; w4) ; (e2; e3; e4)) ;

where wj (resp. ej) is the expected payo¤ for a male (resp. female) entering
period j unmated, given the strategies ui; vi: For each pair of r and c; we
start the iteration at a number of di¤erent points, and note the �xed points
(all orbits of T appear to converge). In the cases where only one type of
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equilibrium is observed (female or mutual choice), we indicate this by an F
or M; if both appear we write down a B. Of course any F or M might become
a B if we added the right additional starting point.

Figure 16. Equilibria for n = 4; m = 8

The pattern is similar for the case n = 3 shown in Figure 14, except for
the M between an F and a B at the top of column c = :08: Possibly the M is
really a B.

4 Conclusions

This paper generalized the earlier matching model of Alpern and Reyniers
(2005) by considering unequal sized groups to be matched. Calling the larger
group �males�, and letting r � 1 denote the �sex ratio�of males to females,
we observed that a fraction 1=r of the males will end the game unmated.
We set the utility of this eventuality to an unmated male as a cost (negative
utility) c � 0:We then analyzed the equilibria of the resulting n-period game
�n (r; c) :We analytically determined the equilibria in terms of the parameters
r and c for n = 2:We found two regions with unique equilibria (one-sided and
two-sided) and a more interesting region with three simultaneous equilibria:
a choosy equilibrium (both groups with high acceptance standards), an easy
equilibrium (both groups have low standards) and a one-side equilibrium
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(males accept anyone). It is an interesting question as to which equilibrium
one would expect to �nd in practice. If the process is one that is repeated each
season (hiring season, mating season), one might expect that the equilibrium
is determined in an evolutionary manner, in which case we would expect
either the choosy or one-sided equilibria, which are dynamically stable (and
the choosy one has a larger basin of attraction). If equilibria are chosen by
society to be stable with respect to deviations after the couple formation (e.g.
divorce), then we would also expect to see the choosy equilibrium, because
it has the highest marital stability index �. Our preliminary investigations
(to be carried further in a subsequent article) indicate that di¤erent quality
individuals (bands of types) fare unequally in the three equilibria, and so
we might expect that the power of these groups (expressed through their
numbers or otherwise) might be a determinant of the equilibrium that occurs.
In this paper we have taken the usual route of not explicitly modeling

the process that pairs unmated individuals at the start of each period. Pre-
sumably, in order to be matched, the pairs must come into spatial contiguity
by some process. A good candidate for this process, assuming individuals
want to be matched, is what is known in the literature as rendezvous search,
which temporally optimizes the search for a partner. Originally posed by the
�rst author in 1976, this problem has been extensively studied (mostly, but
not exclusively, for two searchers). See, for example, Alpern and Gal (2003),
Alpern (2002),Gal (1999), and Howard (1999).. With more work in this area
for multiple searchers, we might have to modify our assumption of random
pairing in each period. For example in the housing market some real estate
agents may cater mostly for expensive houses and rich buyers (a rendezvous
focal point), giving some degree of assortative matching even before choice
is taken into account. Similarly, in the biological setting, Cronin (1991) has
suggested that assortative pairing may arise due to non-random arrival times
at the breeding ground, another non-choice factor.
Another aspect of our model that might be varied is the assumption, as

in the secretary problem, that one cannot �go back� to someone you have
met but rejected in a previous period. It is well known that in practice
this behavior sometimes is seen (e.g. housing and dating markets). This
would present an interesting problem of modelling. We are also planning to
consider other initial distribution of type (x and y) �initial results in this
direction are qualitatively quite similar when we adopt a truncated normal
distribution. Of course the uniform distribution that we consider here has a
specially nice interpretation in that utility of a mate is equated with mate�s
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relative position in their group.
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