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Abstract

Given a 3-colourable graph G and two proper vertex 3-colourings α and β of G, consider
the following question : is it possible to transform α into β by recolouring vertices of G

one at a time, making sure that all intermediate colourings are proper 3-colourings?
We prove that this question is answerable in polynomial time. We do so by char-

acterising the instances G,α, β where the transformation is possible; the proof of this
characterisation is via an algorithm that either finds a sequence of recolourings between α

and β, or exhibits a structure which proves that no such sequence exists. In the case that
a sequence of recolourings does exist, the algorithm uses O(|V (G)|2) recolouring steps
and in many cases returns a shortest sequence of recolourings. We also exhibit a class of
instances G,α, β that require Ω(|V (G)|2) recolouring steps.

1 Introduction

In this paper graphs are finite and do not contain loops or multiple edges unless stated
otherwise. We refer the reader to [5] for standard terminology and notation not defined here.
A k-colouring of a graph G = (V (G), E(G)) is a function α : V (G) → {1, 2, . . . k} such that
α(u) 6= α(v) for any edge uv. Throughout this paper we will assume that k is large enough
to guarantee the existence of k-colourings ( i.e., k is at least the chromatic number of G ).

For a positive integer k and a graph G, we define the k-colour graph of G, denoted Ck(G),
as the graph that has the k-colourings of G as its node set, with two k-colourings α and β
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joined by an edge in Ck(G) if they differ in colour on just one vertex of G. In this case, we shall
also say that we can recolour G from α to β ( and if v is the unique vertex on which α and β

differ, then we also say that we can recolour v ). Note that a path in Ck(G) can be described
by either a sequence of colourings ( the vertices of the path ) or a sequence of recolourings.
In addition, other graph-theoretical notions such as distance and adjacency can now be used
for colourings.

The connectedness of the k-colour graph is an issue of interest when trying to obtain
efficient algorithms for almost uniform sampling of k-colourings. In particular, Ck(G) needs
to be connected for the single-site Glauber dynamics of G ( a Markov chain defined on the
k-colour graph of G ) to be rapidly mixing. For details, see, for example, [6, 7], and references
therein. In this setting, research on the connectedness of colour graphs has concentrated on
cases where k is at least the maximum degree, or on cases where G is a highly symmetric
graph such as an integer grid.

Properties of the colour graph, and questions regarding the existence of a path between
two colourings, also find application in the study of radio channel reassignment. Given that
a channel assignment problem can often be modelled as a graph colouring problem, the task
of reassigning channels in a network, while avoiding interference and ensuring no connections
are lost, can initially be thought of as a graph recolouring problem. See [1] for a discussion
of these ideas in the context of cellular phone networks.

In recent work, the present authors have sought to develop a more general theory of the
connectedness of colour graphs. In [3], a number of initial observations on properties of colour
graphs are made and it is shown that if G has chromatic number k ∈ {2, 3}, then Ck(G) is not
connected, but that for k ≥ 4, there are k-chromatic graphs for which Ck(G) is not connected
and k-chromatic graphs for which Ck(G) is connected. In [4], a characterisation of bipartite
graphs whose 3-colour graph is connected is given and the problem of recognising these graphs
is shown to be coNP-complete; while a polynomial algorithm is given for the restriction of the
problem to planar graphs. In this paper, we consider the related problem of deciding whether
two 3-colourings of a graph G belong to the same component of C3(G). Formally, we have
the following decision problem.

3-Colour Path

Instance : A connected graph G together with two 3-colourings of G, α and β.
Question : Is there a path between α and β in C3(G)?

We assume our 3-Colour Path instance graphs G to be connected as it is clear that the
problem can be solved component-wise for disconnected graphs : there is a path between
3-colourings α and β of a disconnected graph G, if and only if for every connected compo-
nent H of G there is a path between the colourings induced by α and β on H.

Our main result is the following.

Theorem 1
The decision problem 3-Colour Path is in the complexity class P.
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We will prove Theorem 1 by describing a polynomial time algorithm that decides 3-Colour

Path. The algorithm stems from the proof of a characterisation of instances G,α, β where α

and β belong to the same component of C3(G). We will describe and prove this characterisa-
tion in Section 3. First, in Section 2, we shall examine what can forbid the existence of a path
in C3(G) between 3-colourings α and β of a graph G. The proof of the characterisation of
connected pairs of 3-colourings is via an algorithm that, given G,α, β, either finds a sequence
of recolourings between α and β, or exhibits a structure ( described in Section 2 ) which proves
that no such sequence exists. Thus this algorithm also decides 3-Colour Path.

We will see that in the case that α and β belong to the same component of C3(G), our
algorithm will exhibit a path of length O(|V (G)|2) between them. This proves the following.

Theorem 2
Let G be a 3-colourable graph with n vertices. Then the diameter of any component of C3(G)
is O(n2).

In Section 4 we turn our attention to what else can be said about the distance between a given
pair of 3-colourings. We will prove that for many instances our algorithm returns a shortest
path between the given 3-colourings. We will also construct a class of instances G,α, β such
that α and β are connected and at distance Ω(|V (G)2|) in C3(G).

The computational complexity of the more general problem k-Colour Path, defined
analogously to 3-Colour Path but for k-colourings instead of 3-colourings, is very differ-
ent. In [2] it is proved that for fixed k ≥ 4 this problem is PSPACE-complete and that in
this case, and in contrast with Theorem 2, the distance between two k-colourings can be
superpolynomial in the size of the graph.

Finally, the decision problem 2-Colour Path is more or less trivial : two 2-colourings
α, β of a bipartite graph G are connected, if and only if α and β are the same on each non-
trivial component of G. And recolouring α to β can only involve changing the colours on
isolated vertices, and hence requires at most O(|V (G)|) steps.

2 Obstructions to paths between 3-colourings

In this section we examine what can stop us from being able to find a sequence of recolourings
between a pair of 3-colourings α, β of a graph G. Informally, we call a structure in G,α, β

forbidding the existence of a path between α and β in C3(G) an obstruction.
For the remainder of this section we assume we are dealing with some fixed graph G.
The first and most obvious obstruction is given by what we call fixed vertices. For a

3-colouring α, we define a vertex v as fixed if there is no sequence of recolourings from α

which will allow us to recolour v. In other words, a vertex v is fixed if for every colouring β in
the same component of C3(G) as α we have β(v) = α(v). For example, if a cycle with 0 mod 3
vertices is coloured 1-2-3-1-2-3-· · · -1-2-3, then every vertex on the cycle is fixed ( as none can
be the first to be recoloured ). We call such a cycle a fixed cycle ( as a subgraph of G, and
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with respect to the 3-colouring α ). Similarly, a path coloured · · · 3-1-2-3-1-2-3-1-· · · , both
whose endvertices lie on fixed cycles, cannot be recoloured and is called a fixed path.

Given a graph G with 3-colouring α, we denote the set of fixed vertices of G by Fα. In
the next section, we shall prove the following.

Proposition 3
Let α be a 3-colouring of G. Then every v ∈ Fα belongs to a fixed cycle or to a fixed path.

The next lemma, which illustrates how fixed vertices may act as an obstruction, follows
immediately from the definitions.

Lemma 4
Let α and β be two 3-colourings of G. If α and β belong to the same component of C3(G),
then we must have Fα = Fβ, and α(v) = β(v) for each v ∈ Fα.

We proceed to describe two further obstructions that will forbid the existence of a path
between a given pair of 3-colourings. For this, we need a few more definitions.

To orient a cycle or a path means to orient each edge of the cycle or path to obtain a
directed cycle or a directed path. If C is a cycle, then

−→
C denotes C with one of the two

possible orientations. Similarly,
−→
P denotes one of the two possible orientations of a path P .

For a 3-colouring α of G, the weight of an edge e = uv oriented from u to v is

w(−→uv, α) =

{
+1, if α(u)α(v) ∈ {12, 23, 31};
−1, if α(u)α(v) ∈ {21, 32, 13}.

The weight W (
−→
C , α) of an oriented cycle is the sum of the weights of its oriented edges; the

same holds for the weight W (
−→
P , α) of an oriented path. The following lemma and its proof

are from [3, 4].

Lemma 5
Let α and β be 3-colourings of G, and let C be a cycle in G. If α and β are in the same
component of C3(G), then we must have W (

−→
C ,α) = W (

−→
C , β).

Proof Let α and α′ be 3-colourings of G that are adjacent in C3(G), and suppose the two
3-colourings differ on vertex v. If v is not on C, then we certainly have W (

−→
C ,α) = W (

−→
C ,α′).

If v is a vertex of C, then all its neighbours must have the same colour in α, otherwise
we would not be able to recolour v. If we denote the in-neighbour of v on

−→
C by vi and its

out-neighbour by vo, then this means that w(−→viv, α) and w(−→vvo, α) have opposite sign, hence
w(−→viv, α) + w(−→vvo, α) = 0. Recolouring vertex v will change the signs of the weights of the
oriented edges −→viv and −→vvo, but they will remain opposite. Therefore w(−→viv, α′)+w(−→vvo, α

′) =
0, and it follows that W (

−→
C ,α) = W (

−→
C ,α′).

From the above we immediately obtain that the weight of an oriented cycle is constant
on all 3-colourings in the same component of C3(G).

The following lemma can be proved in the same way.
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Lemma 6
Let α and β be 3-colourings of G with Fα = Fβ 6= ∅ and α(v) = β(v) for all v ∈ Fα.
Suppose G contains a path P with endvertices u and v, where u, v ∈ Fα. If α and β are in
the same component of C3(G), we must have W (

−→
P , α) = W (

−→
P , β).

Lemmas 4, 5 and 6 give necessary conditions for two 3-colourings α and β to belong to the
same component of C3(G). From Lemmas 4 and 5 we have, respectively :

(C1) Fα = Fβ, and α(v) = β(v) for each v ∈ Fα; and

(C2) for every cycle C in G we have W (
−→
C , α) = W (

−→
C , β).

If for two 3-colourings α and β of G we take condition (C1) to be satisfied ( so they have the
same fixed vertices, coloured alike ), Lemma 6 gives a third necessary condition for α and β

to belong to the same component of C3(G) :

(C3) for every path P between fixed vertices we have W (
−→
P , α) = W (

−→
P , β).

Bearing in mind that we are only considering condition (C3) if condition (C1) is already
satisfied, let us observe that neither conditions (C1) and (C2) taken together, nor condi-
tions (C1) and (C3) taken together, are sufficient to guarantee the existence of a path between
3-colourings α and β.

To see that conditions (C1) and (C2) are not sufficient, consider the graph and two
3-colourings shown in Figure 1. It is easy to check that (C1) and (C2) are satisfied ( note
that only vertices on the 3-cycles are fixed ), but the two colourings are not connected : fix an
orientation of the path between the two 3-cycles, and observe that the weight of this oriented
path is +3 in one colouring and −3 in the other.
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Figure 1: Two 3-colourings of a graph G not connected in C3(G).

To see that conditions (C1) and (C3) are not sufficient, consider two 3-colourings α and β

of a 5-cycle that differ only in that the colours 1 and 2 are swapped : (C1) and (C3) are
satisfied ( since Fα = Fβ = ∅ ), but there is no path between the two colourings as the 5-cycle
has different weights in the two colourings.

We prove in the next section that if all three conditions are satisfied by a pair of colour-
ings α and β of a graph G, then these colourings are in the same component of C3(G).

3 A characterisation of connected pairs of 3-colourings

In this section we prove the following characterisation of connected pairs of 3-colourings. Its
proof will yield a polynomial time algorithm for 3-Colour Path, proving Theorem 1. We
will also prove Theorem 2 in the process.
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Theorem 7
Two 3-colourings α and β of a graph G belong to the same component of C3(G), if and only
if

(C1) we have Fα = Fβ, and for each v ∈ Fα, α(v) = β(v);

(C2) for every cycle C in G we have W (
−→
C , α) = W (

−→
C , β); and

(C3) for every path P between fixed vertices we have W (
−→
P , α) = W (

−→
P , β).

The necessity of the three conditions has already been established. We prove that they are
sufficient by outlining an algorithm whose input is a graph G and two 3-colourings α and β

of G, and whose output is either a path in C3(G) from α to β, or an obstruction that shows
that (C1), (C2) or (C3) is not satisfied, and hence no such path exists.

The first step of the algorithm is to find Fα and Fβ. We claim that the following procedure
finds the fixed vertices of a graph G with 3-colouring α.

• Let S1, S2, S3 initially be the three colour classes induced by α.

• For i ∈ {1, 2, 3}, and for each vertex v ∈ Si : if v has no neighbours in one or both of the
other two sets, then let Si = Si \ {v}.

• Repeat the previous step until no further changes are possible. Return S = S1 ∪ S2 ∪ S3.

Claim 8
The above procedure returns S = Fα.

Before proving the claim, let us give some more definitions. Fix a vertex v of G and set
L+

0 = L−0 = {v}. For i = 1, 2, . . ., let a vertex u belong to L+
i if u has a neighbour w ∈ L+

i−1

and α(u) ≡ α(w) + 1 (mod 3). ( So, for example, if v is coloured 3, then L+
1 contains all its

neighbours coloured 1, L+
2 contains all vertices coloured 2 that have a neighbour in L+

1 , and
so on. ) For j = 1, 2, . . ., let a vertex u belong to L−j if u has a neighbour w ∈ L−j−1 and
α(u) ≡ α(w) − 1 (mod 3). We call these sets the levels of v, and the sets are called positive
or negative according to their superscript.

Observe that v lies on a fixed cycle, if and only if there is a vertex u ∈ L+
i ∩L−j , for some

i, j > 0. Similarly, v lies on a fixed path with end vertices u and w ( each on a fixed cycle ),
if and only if u ∈ L+

i′ ∩ L+
i for some i′ > i > 0 and w ∈ L−j′ ∩ L−j for some j′ > j > 0.

Proof of Claim 8 ( and Proposition 3) Suppose the procedure described above is run
on G,α, and has terminated. Note that a vertex that lies on a fixed cycle or path is certainly
in S. We shall show that for each vertex v ∈ V (G) :

• either v lies on a fixed cycle or path ( so is both fixed and in S ),

• or v is neither fixed nor in S.

This will prove that S = Fα, and also Proposition 3.
Fix a vertex v of G and consider the levels of v. We have observed that if there is a vertex

that is in L+
i , for some i > 0, and also in L−j , for some j > 0, then v lies on a fixed cycle.
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Also, if there is a vertex that belongs to L+
i and L+

i′ , for some i′ > i > 0, and another vertex
that belongs to L−j and L−j′ , for some j′ > j > 0, then v lies on a fixed path.

If neither of these two properties hold, then either the positive or negative levels ( or both )
are disjoint and thus only finitely many of them are nonempty. We show that this means
we can recolour v, and hence v is not fixed. So assume that L+

t = ∅ or L−t = ∅ for some
t > 0. Without loss of generality, let us assume L+

t = ∅. Thus each vertex u ∈ L+
t−1 can

be recoloured with α(u) + 1 (mod 3). Then each vertex w ∈ L+
t−2 can be recoloured with

α(w) + 1 (mod 3), and so on, until v is recoloured. The fact that v can be recoloured implies
it is not in S : every vertex in S has a pair of differently coloured neighbours so no vertex
in S can be the first to be recoloured. 2

Claim 8 allows us to find Fα and Fβ. If Fα 6= Fβ, or if there is a vertex v ∈ Fα such that
α(v) 6= β(v), then there is no path from α to β. The algorithm outputs Fα, Fβ and, if
necessary, v.

Henceforth we assume that condition (C1) is satisfied, so Fα = Fβ and for all v ∈ Fα,
α(v) = β(v).

If Fα 6= ∅, we construct, from G, a new graph Gf by identifying, for i = 1, 2, 3, all vertices
in Si and denoting the newly created vertex by fi. In other words :

V (Gf ) = (V (G) \ Fα) ∪ {f1, f2, f3}, and

E(Gf ) = {uv ∈ E(G) | u, v ∈ V (G) \ Fα }
∪

⋃

i=1,2,3

{uv ∈ E(G) | u ∈ V (G) \ Fα, v ∈ Si } ∪ {f1f2, f1f3, f2f3}.

If G has no fixed vertices with respect to α, then we set Gf = G.
It is convenient to assume that all edges are retained so that G and Gf have the same

edge set. Since S1, S2, S3 are independent sets ( they are subsets of the colour classes of the
colouring α ), this means Gf is a graph with possibly multiple edges, but no loops. Moreover,
it is easy to observe that if Fα 6= ∅,

• f1, f2 and f3 are the only fixed vertices of Gf , and

• f1, f2 and f3 induce a ( fixed ) 3-cycle in Gf .

Let αf and βf be the colourings induced on Gf by α and β. Note that if α and β belong
to the same component of C3(G), this component is isomorphic to the component of C3(Gf )
that contains αf and βf . Hence we have the following.

Claim 9
There is a path from α to β in C3(G) if and only if there is a path from αf to βf in C3(Gf ).

To prove Theorem 7, we shall prove the following claim.

Claim 10
Two 3-colourings αf and βf of a graph Gf belong to the same component of C3(Gf ), if and
only if

(C2 ′) for every cycle C in Gf we have W (
−→
C ,αf ) = W (

−→
C , βf ).
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Let us first establish that the claim implies the theorem, recalling that we are assuming
condition (C1). Let

−→
C be an oriented cycle in G. In Gf , the oriented edges of

−→
C form a

set of edge-disjoint oriented cycles. ( Here we use the convention that all edges from G are
retained in Gf . ) Since these cycles contain the same edges as

−→
C , similarly oriented, it is easy

to see that the sum of the weights of these cycles is equal to W (
−→
C , α). Thus if Gf , αf , βf

satisfy (C2′), then G,α, β satisfy (C2).
Now, let

−→
P be an oriented path between fixed vertices in G. If the endvertices of P

have the same colour, then the oriented edges of
−→
P again form a set of edge-disjoint oriented

cycles in Gf , and (C2′) implies that W (
−→
P , α) = W (

−→
P , β). If the endvertices of P have a

different colour, then we can suppose, without loss of generality, that the endvertices of P are
coloured 1 and 2 and that

−→
P is oriented from the endvertex coloured 1 towards the endvertex

coloured 2. That means that the union of the oriented edges of
−→
P and the edge

−−→
f2f1 forms

a set of oriented cycles in Gf . Since we have w(
−−→
f2f1, α

f ) = w(
−−→
f2f1, β

f ), (C2′) again implies
that W (

−→
P , α) = W (

−→
P , β). We have shown that if Gf , αf , βf satisfy (C2′), then G,α, β

satisfy (C3).
Conversely, if there is a cycle C in Gf such that W (

−→
C , αf ) 6= W (

−→
C , βf ), then this same

cycle can be found in G or, if C intersects {f1, f2, f3}, then there is a path between fixed
vertices in G that has different weights under α and β. This shows that if Gf , αf , βf do not
satisfy (C2′), then one of (C2) or (C3) fails for G,α, β.

Proof of Claim 10 To prove the claim we describe an algorithm that either finds a path
from αf to βf in C3(Gf ), or finds a cycle C in Gf such that W (

−→
C , αf ) 6= W (

−→
C , βf ). The

algorithm attempts to find a sequence of recolourings that transforms αf into βf . It maintains
a set F ⊆ V (Gf ) such that the subgraph induced by F is connected and for each v ∈ F , the
current colouring of v is βf (v). Initially we let F be the set of fixed vertices of Gf ( so F = ∅
or F = {f1, f2, f3} ) and try to increase the size of F one vertex at a time.

We show how to extend F if F 6= V (Gf ). If F 6= ∅, then choose a v /∈ F such that v is
adjacent to a vertex u ∈ F . ( This is possible by the assumption that G ( and thus Gf ) is
connected. ) If F = ∅, then we choose an arbitrary vertex v, and u does not exist. Suppose
the current colouring is α′. If α′(v) = βf (v), we can extend F to include v immediately.
Otherwise, let us assume that α′(v) = 2 and βf (v) = 3. Note that this means that α′(u) = 1
( if u exists ), since α′(u) = βf (u) and u is adjacent to v.

Now we attempt to find the positive levels of v. This is easily done algorithmically :
L+

1 (v) contains those neighbours of v coloured 3; L+
2 (v) contains neighbours of vertices in L1

coloured 1, and so on. We stop if either

(L1) we reach a level L+
i that is empty, or

(L2) we find a level that contains a vertex w ∈ F .

Note that one of (L1) or (L2) must occur. This is because any vertex not in F belongs to at
most one level ( if a vertex belongs to two levels it is fixed, and all fixed vertices are in F ).
Hence we eventually reach either a level that contains a vertex w ∈ F , or an empty level. If F

is empty, then, of course, (L1) must occur.

8



If (L1) occurs, then we can recolour each vertex z in L+
j , j = i − 1, i − 2, . . . , 0, with

α′(z) + 1 (mod 3), starting with the highest level and working down. Thus, ultimately, v is
recoloured 3 and we can now add v to F . If there are still vertices not in F , we repeat the
procedure.

Suppose (L2) occurs. Then there is a path P from u to w coloured 1-2-3-1-2-3-· · · -α′(w).
Moreover, no internal vertex of P is in F . As u and w are in F , and F induces a connected
subgraph, we can extend P to a cycle C using a path Q = w · · ·u in F . We claim that
W (
−→
C , α′) 6= W (

−→
C , βf ), and hence the cycle C is an obstruction that shows that α′ and βf

do not belong to the same component of C3(G). Because αf and α′ belong to the same
component of C3(G), this cycle is also an obstruction showing that αf and βf do not belong
to the same component of C3(G).

To see that W (
−→
C , α′) 6= W (

−→
C , βf ), choose the orientation

−→
C so that the edge uv is

oriented from u to v. The weight of
−→
C is the sum of the weights of

−→
P and

−→
Q ( taking

−→
P

and
−→
Q to have the same orientation as

−→
C ). Let W (

−→
Q, α′) = k. As vertices in F are coloured

alike in α′ and βf , W (
−→
Q, βf ) = k. Let p be the number of edges in P . Then W (

−→
P , α′) = p,

since each edge has weight +1. But W (
−→
Q, βf ) < p, since w(−→uv, βf ) = −1. Thus we find

W (
−→
C , βf ) < k + p = W (

−→
C ,α′).

All the above was done under the assumption that α′(v) = 2 and βf (v) = 3. In the cases
α′(v) = 3, βf (v) = 1 and α′(v) = 1, βf (v) = 2 we do exactly the same, again using the
positive levels L+

i (v). In the other three cases, we follow the same steps, but now using the
negative levels L−i (v) of v. This completes the proof of the claim. 2

This completes the proof of Theorem 7.

Note that if α and β are in the same component of C3(G) and G has n vertices, the algorithm
in the proof of Claim 10 will use at most 1

2 n (n + 1) recolouring steps : each time a vertex
is added to F , we may have to recolour all vertices not in F at most once. This proves
Theorem 2.

Note also that the procedure which finds the fixed vertices of a given 3-colouring, the con-
struction of Gf from G, and the algorithm in the proof of Claim 10 can clearly be performed
in polynomial time. This proves Theorem 1.

Using Theorem 7, it is in fact possible to give an alternative proof of Theorem 1. We describe
a modification of the algorithm that proves Theorem 7 which, given a graph G together
with two 3-colourings α and β as input, decides whether or not α and β belong to the same
component of C3(G) by simply checking conditions (C1), (C2) and (C3).

As before, we first check whether condition (C1) is satisfied. We proceed by assum-
ing it ( else the algorithm terminates ), and then transform the instance G,α, β into the
instance Gf , αf , βf . We have already observed that these operations can be performed in
polynomial time.

Having seen that condition (C2′) is equivalent to conditions (C2) and (C3), we now claim
that condition (C2′) can be verified in polynomial time. (Note that this is not immediately
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obvious since the graph Gf may contain an exponential number of cycles. ) In order to prove
this claim, we need to recall some definitions.

Let H be a connected graph with n vertices and m edges. It is well-known that ( the
edge sets of ) the cycles of H form a vector space over the field F2 = {0, 1}, where addition is
symmetric difference. This vector space is known as the cycle space of H. Given any spanning
tree T of H, adding any of the m−n+1 edges e ∈ E(H)\E(T ) to T yields a unique cycle Ce

of H. These m−n+1 cycles are called the fundamental cycles of T , and they form a basis of
the cycle space of H known as a cycle basis. In fact, it is easy to prove that for every cycle C,

C =
∑

e∈E(C)\E(T )

Ce,

where addition is as in the vector space (F2)m. We refer the reader to [5, Section 1.9] for
further details.

Lemma 11
Let H be a connected graph with n vertices and m edges. Let α be a 3-colouring of H, T a
spanning tree of H, and {Ce | e ∈ E(H)\E(T ) } the set of fundamental cycles of T . Then for
any cycle C in H, W (

−→
C ,α) is determined by the values of W (

−→
Ce, α), for all e ∈ E(H)\E(T ).

Proof Let C be any cycle in H, and write C =
∑

e∈E(C)\E(T )

Ce, with addition as in the

vector space (F2)m. Choose an orientation
−→
C for C. For each e ∈ E(C) \ E(T ), orient the

fundamental cycle Ce so that e has the same orientation in
−→
C and in

−→
Ce. We claim that

W (
−→
C ,α) =

∑

e∈E(C)\E(T )

W (
−→
Ce, α), (1)

where now addition is the normal addition of integers. We prove (1) by counting edge-weight
contributions to both sides of the equation.

Let e = uv be an edge of C, with orientation −→uv on
−→
C . Clearly, w(−→uv, α) is counted exactly

once on the left-hand side ( LHS ) of (1). To count the contributions that e makes to the right-
hand side (RHS ) of (1), we distinguish two cases, according to whether or not e is an edge
of T . If e /∈ E(T ), then the definition of Ce and the choice of the orientation

−→
Ce immediately

gives that e contributes exactly the weight w(−→uv, α) to the RHS. If e = uv ∈ E(T ), we claim
that it appears oriented as −→uv exactly one more time than it appears oriented as ←−uv in the
cycle expansion of

−→
C . Note that uv is a cut-edge of T and, as such, its removal splits T into

two subtrees Tu and Tv, with u ∈ V (Tu) and v ∈ V (Tv). We also have V (Tu)∪V (Tv) = V (H).
Let f ∈ E(C)\E(T ) with uv ∈ E(Cf ). Then, in fact, we can take f = xy with x ∈ V (Tu) and
y ∈ V (Tv). If f has the orientation −→xy in

−→
C , then it has the same orientation in

−→
Cf , and hence

the edge uv has the orientation ←−uv in Cf . The reverse is the case if f has the orientation ←−xy

in
−→
C . Going along the oriented edges of the cycle

−→
C , we have the same number of edges −→xy

with x ∈ V (Tu) and y ∈ V (Tv), as we have edges between V (Tu) and V (Tv) going in the
other direction. But since uv is one of the edges of the first count, we get exactly one more
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edge xy 6= uv of
−→
C with x ∈ V (Tu) and y ∈ V (Tv) oriented as←−xy than oriented the other way

round. That means that in the sum on the RHS of (1) we have exactly one more contribution
of the form w(−→uv, α) than of the form w(←−uv, α).

Now suppose that e = uv is not an edge of C. Clearly this edge makes no contribution
to the LHS of the equation. Again, to count the contributions of this edge to the RHS of
the expression, we distinguish the cases where e is an edge of T and where it is not. If
e = uv ∈ E(T ), we can argue as in the preceding paragraph, to see that this time, in the RHS
we have exactly the same times a contribution of the form w(−→uv, α) as of the form w(←−uv, α).
Hence the net contribution to the RHS is zero. Lastly, if e /∈ E(T ), it makes no contribution
either, since the fundamental cycle Ce to which it corresponds does not appear in the cycle
expansion of C.

This completes the proof of the lemma. 2

Lemma 11 gives an obvious algorithm to check if the ( reduced ) instance Gf , αf , βf satisfies
condition (C2′), running in polynomial time.

4 Shortest paths between 3-colourings

Once again, throughout this section we assume that G is some fixed connected graph. We
use the notation and terminology from the previous section.

We have seen that if α and β are 3-colourings of G that are in the same component
of C3(G), then they are at distance O(|V (G)|2). In this section we show that this bound on
the distance between 3-colourings is of the right order. More precisely, we prove that there
exists a class of instances G′, α, β such that α and β are connected and at distance Ω(|V (G′)|2)
in C3(G′).

Before doing so, we prove that in the case that α and β are connected and Fα 6= ∅ ( so
Fβ = Fα, and for all v ∈ Fα we have α(v) = β(v) ), the algorithm described in the previous
section finds a shortest path from α to β in C3(G).

Theorem 12
Let α and β be two 3-colourings of a connected graph G that are in the same component
of C3(G), and suppose that Fα 6= ∅. Then the algorithm described in Section 3 finds a
shortest path between α and β.

Proof Our algorithm in fact finds a path from αf to βf in Gf , but, as we observed ear-
lier, the relevant components of the two colour graphs are isomorphic. For a 3-colouring γ

of Gf , denote by Cγ the component of C3(Gf ) containing γ. Note that, by assumption of
connectedness, Cαf = Cβf .

Recall that Gf has exactly three fixed vertices f1, f2, f3 for the colourings αf and βf .
Let γ be any 3-colouring in Cβf . For any vertex v of Gf , let

−→
P be an oriented path from f1

to v. Then the height of v in γ is defined as

h(v, γ) = |W (
−→
P , γ)−W (

−→
P , βf )|.

11



We need to prove that this definition is independent of the choice of P . If there are two
oriented paths

−→
P1 and

−→
P2 from f1 to v, then, noting that their union is a set of oriented cycles

and applying Lemma 5, we have W (
−→
P1, γ)−W (

−→
P2, γ) = W (

−→
P1, β

f )−W (
−→
P2, β

f ). Rearranging
leads to |W (

−→
P1, γ)−W (

−→
P1, β

f )| = |W (
−→
P2, γ)−W (

−→
P2, β

f )|.
Now let γ and δ be adjacent 3-colourings in Cβf and let w be the unique vertex on which

they differ. Note that this means that all neighbours of w are coloured the same as one
another, and all these neighbours are coloured the same in both γ and δ. Let

−→
P be an

oriented path from f1 to some vertex v and let us consider how the height of v changes as γ

is recoloured to δ. If w is not on
−→
P , then clearly h(v, γ) = h(v, δ). We know w 6= f1, as f1

is fixed. If w is an internal vertex of
−→
P , then the sum of the weights of the two edges of

−→
P

incident with w is zero for both γ and δ, so again h(v, γ) = h(v, δ). If w = v, then the sign
of the weight of the edge of

−→
P incident with v changes as we recolour. So in this last case we

have |h(v, γ)− h(v, δ)| = 2.
Note that finding a path from αf to βf is equivalent to finding a sequence of recolourings

that reduces the height of every vertex v from h(v, αf ) to zero. In the previous paragraph we
saw that each time we recolour, only the height of the vertex being recoloured changes, and
it either increases or decreases by 2. So if we can find a sequence of recolourings that always
reduces the height of the vertex being recoloured, we will have found a shortest path. We
show that this is indeed what the algorithm of Claim 10 does.

Recall that the algorithm starts with a set F = {f1, f2, f3}, and then it repeatedly adds
vertices v to F , where v has a neighbour u ∈ F . To add v to F , the vertices in either all its
positive levels or all its negative levels are recoloured before v itself is recoloured. Assume that
we are in the case that to recolour v all positive levels need to be recoloured; the other case is
proved in the same way. Let y be a vertex that is about to be recoloured at some stage in this
process ( this can be v itself, or any of the vertices in the positive levels of v ). We must show
that its height will be reduced. Let γ and δ be the colourings before and after y is recoloured.
Let
−→
Q be an oriented path from u to y that contains one vertex from each nonnegative level

of v. So if there are k edges in
−→
Q , then W (

−→
Q, γ) = k. Thus W (

−→
Q, δ) = k − 2 since the edge

of
−→
Q incident with y has its weight changed from 1 to −1 when y is recoloured. Let

−→
R be

an oriented path from f1 to u containing only vertices in F , and let
−→
P be the union of

−→
R

and
−→
Q .

Since the colourings βf , γ, δ agree on F , we have W (
−→
R, βf ) = W (

−→
R, γ) = W (

−→
R, δ). We

also know that w(−→uv, βf ) = −1, and since
−→
Q has k edges, this means

W (
−→
Q, βf ) ≤ k − 2 = W (

−→
Q, δ) < k = W (

−→
Q, γ).

From this we can derive

h(y, γ) = |W (
−→
P , γ)−W (

−→
P , βf )| = |W (

−→
Q, γ)−W (

−→
Q, βf )|

= W (
−→
Q, γ)−W (

−→
Q, βf ) = k −W (

−→
Q, βf )

and, similarly,
h(y, δ) = k − 2−W (

−→
Q, βf ).
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So indeed, every recolouring according to the lemma, reduces the height of the vertex
being recoloured, completing the proof of the theorem.

Next let us observe that if there are no fixed vertices, the algorithm may find a much longer
path. For example, consider two colourings of a path that differ only on an endvertex v and
its neighbour : α = 1-2-3-1-2-3-1-· · · -1-2-3 and β = 2-1-3-1-2-3-1-· · · -1-2-3. The algorithm
starts by setting F = ∅, and then chooses an arbitrary first vertex to start the recolouring.
If that first vertex is v, then the algorithm will start by recolouring every vertex on the path.
But clearly it is possible to get from α to β via only three recolourings. The reader should
check that this shortest number of recolourings would be obtained if the first choice of the
algorithm were any vertex other than v.

We believe that the algorithm from Section 3 will also be able to find a shortest path
between two 3-colourings without fixed vertices.

Conjecture 13
Let α and β be two 3-colourings of a connected graph G that are in the same component
of C3(G), and suppose that Fα = Fβ = ∅. For v ∈ V (G), let T (v) be the number of recolour-
ings required by the algorithm in Section 3 when the algorithm starts by adding v to F = ∅.
Then the length of the shortest path between α and β is equal to min

v∈V (G)
T (v).

We now proceed to the construction of a class of instances G,α, β where, for each G, α and β

are connected and at distance Ω(|V (G)|2) in C3(G). For N ∈ N, define the graph GN as the
graph consisting of a 3-cycle with an attached path of length N . More precisely, let

V (GN ) = {f1, f2, f3} ∪ {v1, v2, . . . , vN}, and

E(GN ) = {f1f2, f2f3, f1f3} ∪ {f3v1, v1v2, v2v3, . . . , vN−1vN}

Let αN be the 3-colouring of GN given by αN (fi) = i, for i = 1, 2, 3, and where the vertices
v1, v2, . . . , vN are coloured 1-2-3-1-2-3-· · · . Similarly, let βN be the 3-colouring of GN given by
βN (ti) = i, for i = 1, 2, 3, and where the vertices v1, v2, . . . , vN are coloured 2-1-3-2-1-3-· · · .

Theorem 14
Let N ∈ N and let GN , αN , βN be as described above. Then the 3-colourings αN and βN

of GN are connected and at distance 1
2 N (N + 1) = Ω(|V (GN )|2) in C3(GN ).

Proof It is clear that GN , αN and βN satisfy conditions (C1), (C2) and (C3). Therefore, by
Theorem 7, αN and βN are connected in C3(GN ).

As in the proof of Theorem 12, we consider heights of vertices. For any vertex v of GN ,
let
−→
P be an oriented path from f3 to v, noting that f3 ∈ FαN . Define the height of v in αN

as h(v, αN ) = |W (
−→
P , αN )−W (

−→
P , βN )|.

We have seen in the proof of Theorem 12 that finding a shortest path from αN to βN is
equivalent to finding a sequence of recolourings that reduces the height of every vertex to zero,
and that, with each recolouring, we reduce the height of the recoloured vertex by 2, while
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the height of all other vertices remains the same. This enables us to calculate the distance
between αN and βN : we just need to calculate the height of all vertices in αN .

First observe that h(fi, αN ) = 0, for i = 1, 2, 3. For i = 1, . . . , N , let
−→
Pi be the oriented

path from f3 to vi, and observe that W (
−→
Pi, αN ) = i while W (

−→
Pi, βN ) = −i. This means

h(vi, αN ) = |W (
−→
Pi, αN )−W (

−→
Pi, βN )| = 2 i. We find that the distance between αN and βN is

equal to 1
2

N∑
i=1

h(vi, αN ) =
N∑

i=1
i = 1

2 N (N + 1). Since GN has N + 3 vertices, we obtain that

this distance is indeed Ω(|V (GN )|2).
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