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Abstract

Dye (1985) showed that the optimal disclosure policy, when a manager is randomly
endowed with perfect private information, is upper tailed, i.e. the manager only discloses
�rm value above an appropriate cuto¤ level. We interpret this strategically as an optimal
exercise by management of the embedded formal option to report value. Given any disclosure
cuto¤ level, we value the corresponding option using contingent claims analysis. It is shown
that the Dye disclosure cuto¤ value maximizes the formal option value. We �nd it to be
the minimum possible conditional valuation (conditioned by non-disclosure) which is thus
consistent with the intuition that investors should value conservatively. We show how the
Dye cuto¤ can be interpreted as a strike price in a �protective put�which o¤ers a shield
against risk of disclosure of low value. The strategic analysis is further extended by allowing
the probability level that the manager is informed to be a choice variable. We show that
the manager will never choose to be perfectly endowed with information, and is likely to be
more endowed than unendowed. We also present a simple worked example which shows how
the total value of the �rm changes once the Dye option is formally incorporated.

We gratefully acknowledge the comments of Sudipto Bhattacharya, Nick Bingham and
Bjorn Jorgensen.



1. Introduction

An early �nding in the disclosure literature, provided by Grossman and Hart (1980) and Grossman
(1981), has become known as the unravelling result. In a class of models, if rational agents
(managers of �rms) that hold private information choose to withhold disclosure to interested
outsiders such as investors, then those interested parties will follow what we term a �minimum
principle of valuation�: they discount the value of the �rm down to the lowest possible value
consistent with whatever discretionary disclosure is made. Once agents recognize this, they will
have an incentive to make full disclosure. The contribution of Dye (1985) was to provide a
rationale for why this full disclosure unravelling result might not occur. He showed that the
qualitative features of an optimal disclosure policy for management may take the form of a
policy dependent on a cuto¤ in which management disclose only if the information is su¢ ciently
good, otherwise they do not disclose. The new friction he introduces to explain movement away
from the unravelling scenario is that investors might not be able to distinguish agents holding
undisclosed information from agents not holding the undisclosed information. In such a setting
investors seeing non-disclosure have to temper their inferences concerning the likelihood of a
manager having observed bad news and choosing not to disclose (that is choosing to �sit on�
bad information) by the fact that non-disclosure may have arisen because instead management
were in fact uninformed. This provides us with one clear rationale for why management may
choose not to disclose information. Jung and Kwon (1988) developed the Dye result by presenting
comparative statics, for instance showing how the level of the cuto¤depends on q (the probability
that the manager is informed). Intuitively speaking, they explain how, if a manager is informed
with a higher probability q (closer to one), it is rational for the investor seeing non-disclosure to
assign a higher (conditional) probability that the manager was informed of a poor (below cuto¤)
realization, rather than that the disclosure arose from lack of information.
We interpret management�s choice of whether to disclose discovered value or not strategically,

as an optimal exercise of an embedded option to report value. Using contingent claims analysis,
we show that the Dye cuto¤ maximizes option value. We �nd it to be the minimum possible
conditional valuation (conditioned by non-disclosure), which is thus consistent with the intuition
that investors should value conservatively. Thus our �minimum principle of valuation�holds in
this new setting. We also show how the Dye cuto¤ can be interpreted as a strike price in a
�protective put�which o¤ers a shield to stock-holders against risk of disclosure of low value.
Further important insights result if the analysis is extended to allow q (or, equivalently, in

Dye�s notation: p; where q = 1� p) to be identi�ed explicitly as a choice variable that in�uences
what we call �total��rm value (de�ned in Section 2). Within this optimizing framework we are
able to provide a link between disclosure incentivization and �rm value maximization, which some
authors have commented is missing in the literature (see for instance Christensen and Feltham
(2003)).
We provide the linkage between disclosure and �rm value after noting that, by simple inspec-

tion of a payo¤ formula at the disclosure date (which we term the interim reporting date), one
can see immediately a structure isomorphic to a �nancial option contract. Indeed, as shall be
explored in more detail below, it aids intuition to recognize that the Dye disclosure option is
equivalent to the purchase of a protective put. When management choose p to maximize �rm
value, it is shown below that this involves choosing the optimal strike price for the Dye option.
That is, managers select an optimal disclosure cuto¤ value in two steps: maximizing over cuto¤s
given p; and then maximizing over p. An interesting feature of this formal analysis is that it is
never optimal for management to be completely informed (p = 0; q = 1), so optimal choice avoids
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low �rm value realizations always being exposed at an early date.
In order to relate our research to some other recent papers we now comment on their di¤ering

research agendas. One stream of research starting with Penno (1997) has developed new insights
under the assumption that rather than the manager perfectly observing �rm value with probability
q; instead the manager observes �rm value imperfectly �with superimposed noise. Thus in this
class of model the precision (noise level) of the signal that the manager observes becomes a
critical determinant of disclosure strategy. Here noise level is measured by the inverse variance of
a normally distributed noise " (i.e. precision � = 1=�2"). In the current work we are interested in
an optimal choice q̂ for q; given a distribution F of future �rm value, leading to the dependence
q = q̂(F ). Thus one way our model could be further extended would be to allow noisy observation
and derive the corresponding optimal q as a function also of the superimposed �noise level�.
Accordingly we should have q = q̂(F; �); opening perhaps the possibility of making an optimizing
choice over �: Note that this di¤ers from Penno�s existing approach, since he seeks to relate the
intensity of disclosure (for de�nition see Section 4) to the probability of noisy observation q when
q = q(�); i.e. q is regarded as function of the �noise level�; however, the functional forms q(�)
considered by Penno are exogenously imposed and so it remains unclear what connection these
results may have with an optimal selection problem for an endogenously available choice of q
given �: Further extensions of this noisy observation literature1 involve allowing multidimensional
signalling, as in Hughes and Pae (2004), or allowing repeated independent observation (sampling),
as in Pae (2005).
Another stream of research starts explicitly by studying disclosure in a dynamic setting. For

instance, Cosimano, Jorgensen and Ramanan (2002) and also Einhorn and Ziv (2005a) show
how multi-period considerations a¤ect disclosure strategy. In a related fashion Einhorn and Ziv
(2005b) also incorporate managerial ine¢ ciencies with inter-temporal observation and disclosure;
however, this class of models does not endogenize the choice of information structure (q) directly
in a �rm-value relevant setting, as we do here.
Our approach is to commence by revisiting the original Dye paradigm of uncertain acquisition

of perfect (i.e. non-noisy) observation of �rm value in order to create the simplest possible setting
to study other strategic features such as: behaviour incentivization at the disclosure moment,
interactions between disclosure and insider trading (which hints at a possible approach to such
matters as strategic manipulation of �esop�dates and of stock repurchasing), and principle-agent
type interactions between disclosure policy and managerial e¤ort provision.

The structure of the paper is as follows. Section 2 contains our main results. In it we begin
by describing the Dye model, focusing at �rst on the naturally occurring underlying call-like
structure; we then de�ne �total value�, after a discussion of the trading opportunities arising from
the manager�s inside information, and state our main theorems characterizing the Dye cuto¤,
including as corollary the identi�cation of the �protective put�; that is followed by a qualitative
discussion of additional value creation and of connections with risk-management. In Sections 3
and 4 we derive additional properties of the optimal cuto¤, generalizing and extending the results
given in Jung & Kwon (1988). For instance; Section 4 considers the �intensity of disclosure�
as a function of the information type, de�ned to be the ex-ante risk-neutral probability that a
disclosure occurs, and it is shown that the intensity is below q̂ = q̂(F ) if and only if q̂ itself is
below the Conjugate Golden Mean, �, circa 0:62. In Section 5 we identify a particularly simple
lower bound for the optimal Dye cuto¤ (p̂); when the density function is a power function on the

1See also the work of Tzur and Yaari (1999), Baginski et al. (2000) and Campbell et al (2003).
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range [0; �]; the bound being in terms of the power index. Concluding comments are presented
in Section 6. A proof of the Marginal Value Theorem of Section 2 is given in the Appendix.

2. Modelling disclosure and total value, results and implications

We assume the Dye (1985) stylized setting in which there are three successive dates: the �ex-ante�
date, the �interim�reporting date, and the �terminal�date. At the ex-ante date the manager of
a �rm and a risk-neutral investor have common prior beliefs regarding the distribution of the
terminal date valuation, X; of the �rm on an outcome interval 
value; which we normalize to be
the unit interval [0; 1]: Here one can interpret 0 as the minimum possible value for the �rm and
1 to be the maximum possible value. At this ex-ante date the expected terminal value (the �rst
moment of the distribution) is �: However, shortly afterwards it is common knowledge that, just
prior to the interim reporting date, the manager has the chance to privately observe (discover)
the realization of the true �rm value, denoted x: Thus the manager�s informational endowment
(�type�) is modelled with an event space 
info = fu; ig; and the manager remains uninformed
(of type u) with probability p, and will be perfectly informed of the �rm value with probability
(1� p). It is assumed that the endowment status (type) of the manager that may occur and the
realization of �rm value are independent random variables. If the manager receives the signal x;
the manager chooses either to make a credible announcement of the value of the observed signal,
or to make no disclosure. In the case that the manager does not receive a signal, it is assumed
that the manager cannot make a credible claim of being uninformed at this stage. Hence, when
the investor sees no disclosure from the manager, it is common knowledge that this could arise
either because the manager did not receive any new information concerning �rm value (an event
with probability p), or because the manager chose not to disclose information seen.
Thus we may de�ne two event subspaces as:
- the informed subspace I = fig � [0; 1] and
- the uninformed subspace U = fug � [0; 1]:
The �full event space�is thus 
info � 
value = fi; ug � [0; 1] and carries a product measure P

simply constructed from the two independent random variables: e the information endowment
(type) with e 2 fi; ug ={informed, uninformed} and the terminal �rm value X; distributed over
[0; 1]: We assume, as does Dye, that X has a distribution function F (x); with mean �; generated
from a continuous density f(x) satisfying f(x) > 0 for x > 0. The product measure over ! in

info � 
value is de�ned by:

dP(!) = pdF (x) = pf(x)dx; if ! = (u; x); and

dP(!) = (1� p)dF (x) = (1� p)f(x)dx; if ! = (i; x);

cf. Christensen and Feltham (2003) page 504. We de�ne the meaning of �asset�terminal value to
be the random variable X on the �full event space�obtained by setting X((e; x)) = x: This models
the value of the �rm as it becomes known to all market participants at the �terminal date�. Note
the important distinction between X de�ned on 
info �
value and the random variable X de�ned
only on 
value = [0; 1]:
In the Dye disclosure model the manager selects a disclosure cuto¤ t 2 [0; 1] so that, for

states of nature in I(t) = fig � [0; t); the discovered value is not disclosed, whereas, for states
in D(t) = fig � [t; 1]; values are truthfully disclosed and believed by the recipients. Hence,
in the event of non-disclosure at the interim reporting date, the investors recognize that their
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information identi�es the state of nature to be in the subspace N(t) = U [ I(t), and they value
the company according to the corresponding conditional risk-neutral expectation, namely:

V = V (t) = EP[XjN(t)] =
EP[X(1U + 1I(t))]
EP[(1U + 1I(t))]

: (2.1)

We refer to this as the �uninformed�investor valuation. Notice that since EP[X1I(t)] < �EP[1I(t)];
for 0 < t < 1; and EP[X1U ] = �EP[1U ] we have

V (t) < �: (2.2)

To see the emerging role of V (t) in the context of ex-ante risk-neutral valuation, consider �rst
the implications of valuing ex-ante the following contingent claim which we term the investor�s
call Ct. This call-like claim refers to information sets of an investor at the interim date and uses
an arbitrary valuation t (with 0 < t < 1) when no disclosure occurs.

De�nition 1: For any t with 0 < t < 1; de�ne the claim Ct by the payo¤:

Ct(!) =
�
t; if ! 2 N(t);
x; if ! = (i; x) 2 D(t):

For a graphical interpretation, we restrict attention to fig�
value identifying this set with [0; 1];
thus obtaining the following claim by restriction to 
value :

Ct(x) = maxfX(x); tg =
�
t; if x < t;
x if x � t;

The claim Ct(x) is illustrated in Figure 1 and has the hockey-stick shape typical of a call-option
(translate of a call).

Figure 1. Call-like valuation C(x) versus
realized value x (thick); valuation conditional
on non-disclosure V (t) versus cuto¤ t (faint).

In the language of characteristic functions we have that

Ct = X1D(t) + t1N(t):
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It is useful to refer to a related claim, namely:

CVt = X1D(t) + V (t)1N(t); (2.3)

for arbitrary t: The partition
1 = 1U + 1I(t) + 1D(t); (2.4)

and the de�ning property of conditional expected value, displayed in (2.1), permit us to compute
the ex-ante expected value of this last claim to be:

EP[CVt ] = EP[X1D(t) + V (t)1N(t)] = EP[X1D(t) + X(1U + 1I(t))] = EP[X] = �;

for any t with 0 < t < 1: Hence the following characterization is immediate.

Proposition (No-arbitrage characterization of the Dye cuto¤). The unique cuto¤ 
such that  = V () is that cuto¤ t for which

EP[Ct] = �:

Thus the investor�s call C; where  = V (); which corresponds to the Dye cuto¤, creates no
additional ex-ante expected value to the investor. On re�ection, this should be no surprise, in
view of the operation of the law of iterated expectation. Pursuing our quest to �nd ex-ante value
arising from the presence of the manager, we turn to the information sets of the manager at the
interim date. When the manager adopts a cuto¤ t and no disclosure is made the manager knows
that either the event U has occurred or that the discovered value is below the cuto¤ t: In the �rst
case the manager�s knowledge of the value of the �rm at the interim date is the same as ex-ante, so
we will regard it as being represented on U by X �1U . The expected value of this random variable
is � which is more than V (t): In the second case the manager knows the interim market valuation
to be V (t), possibly an improvement over the privately known, undisclosed value (certainly an
improvement if t = ). In either case there is here apparently a source of additional value. It
is convenient to formalize these observations in the form of the following contingent claim. The
term �total value�describing it will soon become clear.

De�nition 2: For any t with 0 < t < 1; the �rm�s total value, given t; refers to the
conditional valuation V (t) at the �interim reporting-date�de�ned in (2.1) and is de�ned to be the
random variable W =W(t) =W(t; !); where

W(t) = X � 1U + V (t) � 1I(t) + X � 1D(t): (2.5)

We assert that on the uninformed subspace U the manager, knowing (with probability p)
that he is uninformed, should subjectively value the �rm at �: This is justi�ed by considering
a notional trade in which the manager buys one share at the interim reporting date which he
buys2 for V = V (t) (the new market price when the market sees no disclosure), and then sells
it back to the market at the terminal date. The conditional expected value of the trade at the
interim reporting date (conditional on him not knowing the true value) is � � V . The ex-ante
expected value of this trade is thus

p(�� V (t)):
2This is a simpli�cation: with N shares outstanding the price is V=N per share, the expected value per share

purchased is �=N and the expected gain per share purchased is (�� V )=N:
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The expression just displayed is thus the value of a notional or �formal�option and corresponds
to trading what we call the �manager�s contingent claim�at the interim reporting time. This
opportunity to trade arises only at the interim reporting date and not any earlier. As just
indicated, the value of the expression can in principle be replicated by an insider trading strategy;
the value might also be replicated by other means, such as a corresponding equivalent reward to
the manager (expressly stated, or selected by way of an �esop�), or via a stock-repurchase. Theorem
3 below relates the minimization of V (t) over t to the maximization of an objective function for
the manager. The theorem thus entitles us to analyse disclosure by a �rm as though this formal
option was realizable by some mechanism (see the discussion in the following subsection).

2.1. Consequences of insider trading: components of total value

From the discussion above it is clear that any model of disclosure value will be intimately related
to a model in which managers have insider dealing possibilities. Indeed without this being the
case, it is inconceivable that the strategically active manager would have anything of value to
communicate. This, however, opens a critical modelling issue, since it would be unrealistic to
assume that a manager has unlimited insider dealing possibilities. A key modelling issue then
is how to allow for insider information based activity, which could lead to non-disclosure having
value, and at the same time place limited restrictions on such behaviour, so as to capture imperfect
institutional constraints that may be in place. Thus it is important here to stress exactly what
sort of �insider�dealing possibilities managers have in the current model. For us the only source
of insider dealing possibilities is that the manager �knows that he/she does not know�. That is,
dealing opportunity occurs when non-disclosure results from not receiving a signal on �rm value.
Seeing investors lower their valuation of the �rm because of non-disclosure, the manager who has
not been informed, knows that this revaluation is unwarranted because non disclosure did not
result from a signal of below cuto¤ value, but instead from no signal having been received. As is
assumed in the original Dye model, the manager cannot credibly signal non-receipt of information
at this stage. To reiterate this point: when we talk about insider dealing in this paper, we are only
referring to the above situation, not the more controversial case of the manager receiving a low-
value signal and then trading on that news without having made a disclosure. Thus in our model
the insider dealing strategy could be implemented, for instance by the company repurchasing
stock following non-disclosure. In such a setting it is unlikely that the securities regulators would
�nd against the company, since the �rm has not traded on a new signal of �rm value. For a
defence of assuming an even stronger form of insider dealing in disclosure models see Baiman and
Verrecchia (1996).
Returning to how participants (investors) form inferences in such a setting, we note that in

principle a market participant would be able to infer immediately the manager�s information
type (endowment) from the manager�s trading strategy, if it was observable and known to follow
a deterministic (pure) strategy based on his information. But this inference is invalid if either
the trading is not observable, or it is known that the manager pursues an optimized, mixed
strategy of buying and selling on the market, purposefully attempting to conceal some, or all, of
his information (perhaps successfully most of the time). Indeed such activity might be modelled
by multiple buying and selling in the time interval after the interim date. In this paper we are
concerned with the consequences of being able to realize the value of the �manager�s contingent
claim�. We therefore do not attempt to model any particular market mechanism, and are content
to note a very simple facilitating mechanism which would require the manager to enter into a one-
stage �obligatory auction�against an uninformed trader in which bids are made simultaneously.
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This ensures that the payo¤ in equilibrium to the manager�s bid is ex-ante expected to be the
simple expression:

p(�� ): (2.6)

In summary, to permit the expected value (2.6) to be replicated in trading strategies, the
manager may need to be empowered to trade on private information with, for the example, the
obligation to share a proportion of the gains with the investor. Additionally, in the interests
of fairness (but not for strategic reasons), the manager here is not allowed to short the stock.
This aligns the interests of the manager with those of the investor, but a similar incentive e¤ect
could be achieved by o¤ering the manager payment of some proportion of � � V at the interim
date, where V = V (t) is the price of the stock at the interim date. In the former case it should
be noted that the shareholders of the company are accordingly deemed to hold two �nancial
instruments: the underlying claim to X and the claim (right and obligation) to a share in the
manager�s contingent claim (be it gain, or loss). These two components taken together de�ne
what we mean by the expression �total value�in De�nition 2 above. An obvious extension to
this model would be to introduce agency theory considerations; however, in the agency context
the ��rst best solution�is usually trivial, whereas here it is not so, hence this paper concentrates
on characterizing the features of the �rst best.3

For a discussion of the pros and cons of insider trading see Leland (1992); note especially
that Leland�s model implies an increase on average in the value of shares when insider trading is
permitted which �nding is in keeping with our positive additional value creation.
An important implication is that the expected total value of the �rm (when investors are given

a positive proportion � of the manager�s contingent claim) is now lifted from � to

�+ �p(�� V (t)): (2.7)

For simplicity we have assumed that � = 1:

Thus the manager who anticipates the uniformed investor valuation (2.1), in response models
the total value which he can control, or can �create�, by the random variable W, as compared to
CVt de�ned in (2.3). When the manager�s interests are aligned with investors, the manager acts
so as to maximize the ex-ante valuation

W (t) := EP[W(t)]:

This is the manager�s objective function alluded to earlier.

3To set the matter of simplicity in perspective, note that, if the manager is informed at the interim date and
the circumstance is that he makes no disclosure, then the market value of the share is V; but the manager knows
the realization is X = x < V: That is, an over-valuation of V � x occurs. The manager can notionally realize this
value increment and execute an arbitrage opportunity by being permitted to enter a short sale. In contrast, to the
previous option to gamble, this particular trade may be deemed as taking unfair advantage of the market. When
the distribution of �rm value is uniform, the ex-ante expected value of the arbitrage opportunity per unit share is

(1� p)( � 
2
)

where  = (p): The formula expresses the fact that the over-valuation occurs with probability q and the expected
gain on a single short position is the di¤erence between the interim price  and the expected low realization which
is the mid-point value =2: As a function of p this expression is again zero at the end-points p = 0 and p = 1 and
is concave. Permitting this kind of trade would not alter the manager�s insider gains qualitatively. The interests
of fairness and simplicity warrant exclusion of this extra term from consideration.
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We now employ contingent claim analysis in place of the notional trading strategy presented
earlier to compute W (t): Using the partition (2.4) for the purpose of eliminating 1D(t), we obtain
a decomposition of W, which has an immediate interpretation, namely as a �shortfall-or-nothing�
option (de�ned on the informed subspace) plus �asset�, as follows:

W(t) = (V � X) � 1I(t) + X: (2.8)

The terminology suggests that V; the uninformed investor valuation, is a �target�value, and V �X
measures the shortfall from the target. We stress at this juncture, because it will be critical later
when we identify the underlying �protective put�, that the manager, by not disclosing value,
protects investors from receiving a low market value when the above shortfall could be large.
(Recall that, in the event of non-disclosure, shares will be traded at V (t) at the interim date.)
Now the conditional valuation de�nition of V = V (t) (where t is any cuto¤ which the manger

is known to be using) is such that

EP[X � 1U + X � 1I(t)] = EP[V (1U + 1I(t))];

and re-arranging we obtain:

EP[(V � X) � 1I(t)] = EP[(X� V )1U ]:

But the �uninformed excess�claim is given by

EP[(X� V )1U ] = p(�� V ):

Hence we have valued the (manager�s) �informed shortfall-or-nothing�option struck at t:

EP[(V � X) � 1I(t)] = p(�� V ): (2.9)

Consequently, in agreement with valuations based on trading, we have

W (t) : = EP[W(t)] = EP[(V � X) � 1I(t) + X]
= EP[(V � X) � 1I(t)] + EP[X]
= p(�� V ) + �: (2.10)

Since � is the ex-ante value of the company when no opportunity exists of early value-discovery
(that is, prior to the interim reporting date); the equation (2.10) identi�es the �disclosure-
endowment�option (with cuto¤ t) as having the risk-neutral valuation:

U = U(t) = p(�� V (t)); (2.11)

which is positive for p positive, for 0 < t < 1; by (2.2). We have thus proved:

Theorem 1 (Valuation of the disclosure-endowment). If the manager�s objective is to
maximize over t the expected �total value� EP[W(t)]; where the total value W(t) is de�ned by
(2.5), then this amounts to maximizing the expression

�+ p(�� V (t));

where p is the given positive probability of non-discovery and � is the unconditional expectation
of the �rm�s terminal value.
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Since shares may be traded at the ex-ante date, we have assumed that the manager has been
incentivized to maximize the ex-ante stock value. This value is given by the risk-neutral valuation
W (t) = EP[W(t)]: His objective is thus to maximize U(t) over t; which in turn requires him to
minimize V (t) over t: Theorem 1 thus goes some way towards o¤ering an ex-ante justi�cation
for the assumption that the manager seeks to maximize �rm value at the interim reporting date.
Our next result leads to an identi�cation of the unique optimal choice of t.

Theorem 2 (Characterization of Marginal Values). Relative to variation in the cuto¤ t;
the marginal values of U; V;W are given by

dU(t) = dW (t) = �pdV (t) = pq(V (t)� t) dF (t)
P[N(t)]

; (2.12)

where P[N(t)] denotes the probability of the event N(t) under the measure P.

Comment. The formula (2.12) exhibits the trade-o¤between the incremental value of disclosure,
as represented by the t term, and the value of non-disclosure as represented by the V (t) term.
This interpretation brings our approach into coincidence with Dye�s.
The proof is given in the Appendix. An immediate consequence is the following key result.

Theorem 3 (Minimum Principle for the Dye cuto¤). The function V (t) achieves its
minimum on [0; 1] at the same location as the function W (t) achieves its maximum on [0; 1];
namely at the unique solution t =  of

V (t) = t;

that is at the Dye cuto¤.
Necessarily  < �; and hence the optimized formal �information-endowment�option is in fact

the �Dye disclosure option�and has the positive value

p(�� ):

Comment. We stress that the theorem does not depend on insider trading assumptions. It
merely identi�es where certain functions, namely V (t) and W (t) have extrema. When no disclo-
sure occurs, in the absence of any further information, investors would wish on intuitive grounds
to value the stock conservatively, that is as low as possible. The theorem asserts that this mini-
mum valuation occurs when t = ; that is, as though the manager acted so as to maximize W (t):
Rather than have W (t) represent some form of shadow price, we prefer to interpret the formal
option as a realizable gain (or loss) to a manager empowered to trade.
We show below in Subsection 2.3 (c) that the minimum characterization of  (i.e. as the

minimizer of V (t) over t) can be re-interpreted in the language of risk-management a¤orded by
the gain-to-loss ratio known as the Omega function introduced in Keating and Shadwick (2002a)
and Keating and Shadwick (2002b).

The optimal disclosure cuto¤(above which a value, if discovered, is reported) which maximizes
expected �rm value prior to the interim reporting date was derived by Dye (1985) as an equilibrium
strategy by implicit reference to the indi¤erence principle (i.e. to the manager�s indi¤erence
between non-disclosure and disclosure at the cuto¤). We note this observation is made explicit in
Cosimano, Jorgensen and Ramanan (2002). As we have just pointed out, Theorem 3 characterizes
Dye�s cuto¤ value (p) as the cuto¤ which is set equal to the minimum valuation conditional on
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non-disclosure (minimum taken over all disclosure cuto¤s). Thus the uninformed valuation, i.e.
the minimum conditional valuation, becomes the investor�s equilibrium proxy for unreported
value. This minimum principle of valuation operating in the Dye model is thus in keeping
with Grossman (1981), wherein the uninformed parties discount the value of the �rm to the
lowest possible value consistent with whatever discretionary disclosure is made. One interesting
implication of our minimum principle is equilibrium stability: suppose the investor �rst guesses
a cuto¤ equal to the mean � of X and responds with a conditional valuation V (�); then the
manager will adjust his/her cuto¤ to V (�); the investor in turn should respond with a conditional
valuation of V (V (�)) and so on, and this sequence of adjusted responses arising from the initial
guess will provably converge to (p) (indeed is liable to converge reasonably quickly, under mild
distributional assumptions).

Proof of Theorem 3. The characterization of the optimal cuto¤ follows from Theorem 2. The
uniqueness of the solution to V (t) = t is well-known (Dye, Jung & Kwon). Since the solution 
to V (t) = t is necessarily in the interval (0; 1); we have  = V () < � by (2.2).

Corollary (Implicit Protective Put) If  is the solution to V (t) = t; then

EP[(V � X)+ � 1I ] = p(�� ):

Comment. Thus the Dye-disclosure option value p(�� ) is seen to be notionally a put option
value in the informed state; that is, (V �X)+ �1I is the implicit protective put contract (given
to the manager) on the �asset�value X falling below the strike V () =  in the notional context
of an informed manager o¤ering full disclosure. We stress that we have left open the mechanism
selection by which the manager participates in this value creation .

Proof. If t is selected to be the Dye cuto¤ ; then in fact we have, by appeal to (2.9)

EP[(V � X)+ � 1I ] = EP[(V � X) � 1I()] = p(�� );

because, by de�nition, V () =  and I() = fig � [0; ):

The Informed-put is thus interpreted as �protective�insurance against the asset value X falling
below the uninformed investor valuation. In conclusion, the ex-ante expected �total value�of the
�rm in the presence of an endowment of imperfect information (for an exogenously given positive
p) is given, as in (2.10), by the risk-neutral valuation:

W () =EP[(V ()� X)+ � 1I + X]:

The conclusion just drawn is based upon the uncertainty parameter p being exogenously given.
Our next step is to consider endogenizing this parameter: we enable the manager to select p so as
to maximize the ex-ante total value of the �rm. This means that the Dye cuto¤ is now a function
of p: We thus write  = (p): It will also be convenient to replace the information-endowment
option value U((p)); as de�ned in (2.11), by the notation

�(p) = p(�� (p));

for the Dye Disclosure option value which now emphasizes dependence on p; that is on the
uncertainty of value discovery.

11



There are now two possible scenarios with regard to optimal selection of p.
In the �rst scenario (the �rst-best scenario) it is the manager who is capable of selecting p at

no cost, and so is thus able to bargain with the investor for an appropriation of some part (1��)
of the Dye-option value, as in (2.7). In this case his objective is to maximize �(p) over p: We
show that there is a unique optimizing value p = p̂:

Theorem 4 (Uniqueness Theorem). The option value �(p) regarded as a function of p is
strictly concave, with a unique maximum located at p = p̂; and has the property that �0(0) = �,
so that

maxf�0(p) : p < p̂g = �:
For a proof see Section 3.3. We show in Figure 2 the benchmark case of the uniform distribu-

tion. It is important to realize that the result of Theorem 4 is likely to be true in any reasonable
setting for the market mechanism that might be selected for facilitating informed trading after the
interim date. The option value will be zero at the end-points and is likely to be concave on a more
general argument based on lottery considerations (see Section 3.4). The unique internal optimum
would then still be guaranteed to exist, but explicit forms might well be harder to achieve. This
is ultimately our justi�cation here for the simple form (2.6).

Figure 2. Disclosure-option value
�(p) versus uncertainty p �the

uniform case.

In the second scenario for the optimal selection of p there is a cost to the manager of acquiring
the information endowment and the cost is borne by the �rm (since the endowment is regarded as
creating additional value for the �rm). Now, by Theorem 4, �(p) is increasing with p for p < p̂;
it is thus natural in a �rst model to assume an acquisition cost proportional to p; say of the form
�p; where � is an observed constant. Here the manager is rewarded by a share in the residual
value of the �rm, and hence the manager�s objective is to maximize the concave function

�(p)� �p

over p � p̂: The optimizing level p = p̂(�) is evidently unique. (The notation is meant to subsume
the �rst scenario as the extreme case in which � = 0; so that p̂(0) = p̂:)
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2.2. Valuing the Dye disclosure option: an example

In the �rst-best scenario benchmark case when value is distributed uniformly over [0; 1], the
maximized option value occurs with p̂ at the (complementary) golden mean, which we take to
signify 1� � = (3�

p
5)=2; or about :38. The Dye cuto¤ in this case is also equal to 1� �. The

disclosure option is then worth approximately up to a valuable 8% of ex-ante expected value4.
Without the acquisition of any additional information, prior to the interim reporting date the
expected value of the �rm is � = 0:5 (i.e. half of the maximum �rm value which we normalize
to unity), and, in the case when the manager�s contingent claim from the optimized disclosure-
endowment option is included in the portfolio of an investor, this increases the ex-ante value to
0:545 (as computed in Section 3.2).
Before continuing with the formal analysis, consider brie�y the general intuition for the above

type of numerical result. A simple implication of the above results is that an optimally imperfectly
endowed manager increases the ex-ante total value of the company as compared to the same
company without the disclosure option (i.e. a company with a completely unendowed manager)
and this evidently depends also on the selected value for � in (2.7). This could and should be
construed as ex-ante value creation, by way of utilizing a randomized (mixed) strategy whereby a
player (the manager) selects his/her own �information type�by selecting a probability distribution
over the type space 
info. This is just one game-theoretic aspect of our analysis: the value of a
game can often only be extracted by use of randomized mechanisms rather than pure strategies
(akin to the tactic which is sometimes referred to as �stirring up the fog�). Indeed, we should
regard the two scenarios: company with unendowed management, and company with partially
endowed management, as respectively a game with informational structure modelled by 
value,
and a larger game obtained by the addition of informational structure modelled by 
info �
value.
The larger game has larger value. This is the second well-known game-theoretic aspect brought
out by our analysis: if you don�t like the game you�re in, then embed the game into a �larger
game�. On both matters refer to Brandenburger and Nalebu¤ (1996).
Of course this comes at risk: at the interim reporting date the value of the larger game could

drop to V (t); as compared to being maintained at � in the smaller game. The larger game bene�ts
an investor wishing to sell at the ex-ante date by way of the total value.

2.3. Qualitative properties

Having identi�ed that a unique optimizing p exists (which implies a unique Dye option value), it
is next natural to ask what general qualitative properties can be determined for the optimal Dye
disclosure option. Below we formally show:
(a) that it is never optimal for the manager to become fully informed ( p̂ 6= 0); and we explain

how this follows intuitively from the presence of insurance cover provided from the protective put
(see Proposition 4 of Section 3.3);
(b) that it is never optimal for the manager�s odds5 against being informed to be greater than

1. That is, in the optimal situation q̂ = 1� p̂ > p̂: This follows from tracking the consequence of
the uncertainty parameter p when decreasing it in�nitesimally from the optimum. There needs
to be a trade o¤ between the in�nitesimal gain in being informed slightly more frequently and the
in�nitesimal loss in the reduced shielding from �bad news�(previously hidden by non-disclosure).
More precisely, the increase in the unconditional probability q (probability of the manager being

4Strictly speaking, this is value per share permitted to be traded by the informed manager.
5Recall that the �odds against�this event are given by the ratio p=q; this ratio will be denoted �:
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informed) equals the drop in the conditional probability of an informed manager not disclosing.
(Again see Proposition 4 of Section 3.3).
In a companion paper we have investigated the dependence of the disclosure option value both

on p and on the distribution F and have derived comparative statics of various model parameters,
such as (p):We have also found upper and lower bounds on both (p) as well as on p̂; the �optimal
informational-uncertainty�; in the case of (p) for a general distribution F the bounds refer to
the variance p(1 � p) and to some other natural risk measures. As a sample, we quote a crude
estimate of the �disclosure option�value which takes the form

p(1� p)EF [(��X); X < �]: (2.13)

This simple formula identi�es the essential nature of the option value in that it depends on the
binomial variance e¤ect, p(1� p); and quite naturally on the expectation of low value discovery,
that is on �below mean-target performance�, in the words of Fishburn (1977).
(c) Finally, we turn to an intuitive interpretation of the expectations that arise in character-

izing and valuing the Dye cuto¤. We show that many of the considerations may be reduced to
working with the Omega function which arises in portfolio risk management, i.e. the gain-to-loss
ratio relative to a target t.
Let us consider how the disclosure cuto¤ t categorizes risk. The downside risk is this: when

the realized value x has x < t; the notional loss in share value is (t�x) relative to a full disclosure.
The non-disclosure protects the investor from this loss, giving the protective shield a value, namely
the expected �notional gain�, which equalsZ t

0

(t� x)f(x)dx:

This gain is o¤set simultaneously by the upside risk. Suppose now that the realized value x has
x > t. A manager, if informed of x, will report x > t; and the investors will have a net gain of
(x� t): No such gain arises if the manager is uninformed. Thus the expected �foregone notional
gain�resulting from imperfect information is

p

Z 1

t

(x� t)f(x)dx:

At equilibrium the gain must equal the loss. That is,

p

Z 1

t

(x� t)f(x)dx =
Z t

0

(t� x)f(x)dx; (2.14)

or R 1
t
(x� t)f(x)dxR t

0
(t� x)f(x)dx

=
1

p
:

The �gain-to-loss ratio�on the left-hand side may be re-written in the equivalent form


(t) =

R 1
t
(1� F (x))dxR t
0
F (x)dx

=
1

p
; (2.15)

in view of the following two identities (veri�able e.g. by integration by parts) namely:Z 1

t

(x� t)f(x)dx =
Z 1

t

(1� F (x))dx;
Z t

0

(t� x)f(x)dx =
Z t

0

F (x)dx: (2.16)
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The notation is due to Keating and Shadwick (2002a). To summarize: with reference to (2.14)
we have shown the following.

Proposition. Optimal risk-shielding via the Dye disclosure strategy is characterized by the
cuto¤ level t satisfying the equation

p
(t) = 1: (2.17)

Let us concentrate on the left-hand side expression in the later of the identities of (2.16). This
integral has the structure of a put valuation Pt. Its dependence on t is crucial to our considerations
(the earlier identity has of course a call valuation structure). We propose the term �hemi-mean�
function, as de�ned and denoted by:

H(t) =

Z t

0

(t� x)f(x)dx:

This function represents an expected shortfall relative to t; and is also known as the �rst lower
partial moment, LPM1 and is also called the �target shortfall�in Harlow (1991). See also Bawa
(1975). Our chosen terminology is by analogy to the lower �semi-variance�which refers to LPM2,
see McNeil, Frey and Embrechts (2005). It is our thesis that the behaviour of the cuto¤ t is
dictated only by (distributional) properties of F (x) but only in respect of the lower mean
interval [0; �], so, more properly, on tghe properties of the hemi-mean.
After some manipulation, starting from the put-call parity propertyZ 1

t

(x� t)f(x)dx = (�� t) +H(t)

(deducible from the facts that
R 1
0
f(x)dx = 1 and

R 1
0
xf(x)dx = �); one may reformulate (2.17)

to the form
H(t)

�� t =
p

q
; (2.18)

as given in Jung and Kwon (1988), albeit in our current notation.
The appearance of the 
-statistic should not come as a complete surprise �it has recently been

discussed in the portfolio risk-management literature on target (t) returns, since its introduction
in Keating and Shadwick (2002a). Its salient mathematical features are given in Cascon, A.,
Keating, C., Shadwick, W.F.(2002).
In our investigations the most convenient primitive tool is the H(t) function, and equation

(2.18) is just one justi�cation. It is a natural tool especially if one re�ects on the perfectly
informed, fully disclosing manager who reports x < �; here the investor su¤ers a loss of � � x
resulting from the disclosure (relative to the ex-ante valuation �). Accordingly, a relevant statistic
for the investor is the lower partial moment EF [��X;X < �] = H(�); cf. (2.13).
Evidently,


(t) = �(t) + 1; where �(t) =
�� t
H(t)

;

and which of these functions, 
 or �; to use for analysis very much depends on context. For
example, in studying sensitivity to stochastic dominance, if F1 dominates F2 (in second order, or
a fortiori, in �rst order), then clearly �1 majorizes �2; in which case �(t) is increasing in t; it is
obvious that 1 > 2 (for �xed p).
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The generalized risk measure of Bernell Stone (1973) over distributions F is de�ned by refer-
ence to deviations below a range cuto¤ (F ); from a target level �(F ); by the formula

��(F ) =

Z (F )

0

j�(F )� xj�dF (x):

ThusH(�); the hemi-mean at �; is merely �1(F ) with (F ) taken to be �: Evidently F (�) = �0(F ):
But estimates re�ning (2.13) naturally lead to the exogenous range cuto¤(p); and the endogenous
range cuto¤ (p̂). We explore these notions and the appropriate concepts of stochastic dominance
in a companion paper.

3. Further properties of the optimal cuto¤

In this section some fundamental properties of the Dye cuto¤ will be derived. First of all a
derivation of the explicit form of V (t) will be presented, and then applied to the case of a speci�c
distributional assumption to o¤er some simple benchmark results.

3.1. Some explicit formulas

We recall the explicit formula for V (t); which we will also write as V (t; p) whenever the choice of
p needs to be clear. We will use the notation

F (t) =

Z t

0

f(x)dx; E(t) =

Z t

0

xf(x)dx;

and we recall that � = EF [X]; so that 0 < � < 1:With this notation, we note that the hemi-mean
satis�es

H(t) = tF (t)� E(t):
If the strike value t is known, then, conditional on no disclosure, which is an event of probability

p+qF (t), the risk-neutral investors compute the conditional expected value of the �rm to be V (t);
where:

V (t) = V (t; p) =
p�+ qE(t)

p+ qF (t)
; (3.1)

(as in Jung and Kwon, (1988)), which is the explicit version of (2.1). This is a continuous function
of t: Since 0 < � < 1 and V (0) = � > 0 and V (1) = � < 1; by continuity, there is at least one
value t such that V (t) = t: The equation V (t) = t may be rewritten in the equivalent implicit
relation:

Y (t; p) = p(�� t)� q(tF (t)� E(t)) = 0: (3.2)

The function Y (:; p) is an increasing, convex function with Y (0; p) < 0 and Y (�; p) > 0; so there
is a unique  = (p) such that Y (; p) = 0.

3.2. The benchmark example: the uniform case

For the uniform distribution f(x) � 1; we have � = 0:5 and F (�) = �; and E(�) = 1
2
�2 = 0:125:

For a feel of the context, take p = q = 0:5 to obtain

V (t) =
1 + t2

2(1 + t)
;
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so that  is the positive root of t2 + 2t � 1 = 0; i.e.  =
p
2 � 1 = 0:414: The option value of

disclosure is thus �(0:5) = 0:5(0:5� 0:414) = 0:043:
For general p; we have

(p) =

p
p

1 +
p
p
; �(p) =

p(1�pp)
2(1 +

p
p)
:

The Dye cuto¤ and the disclosure-option value as functions of the uncertainty p are illustrated
respectively in Figure 2 and Figure 3.

Figure 3. Dye cuto¤ (p) versus
uncertainty p �the uniform case.

By routine calculus, the option value �(p) is maximized at

p = p̂ =
1

2
(3�

p
5) � :381966011;

with (p̂) = 0:381966: The option value is worth

�(p̂) =
1

4
(5
p
5� 11) � :045084972:

The option-value as a contribution of total pre-discovery expected �rm value is thus over 8.25%.

3.3. Fundamental properties

Jung and Kwon showed that (p) is strictly increasing in p: This entitles us to consider the
equivalent inverse relation p = p(g); whereby we regard the cuto¤ value g as the independent
variable ranging over [0; �], while the originating uncertainty p becomes the dependent variable
(it is then the �implied uncertainty parameter�). We will switch back and forth between equivalent
formulations according to need, bearing in mind that we wish to continue working with explicit
formulas. Thus when the Dye option value �(p) is to be equivalently viewed as a function of the
cuto¤ g we will write the option value as �(g):

Proposition 1. The uncertainty of discovery, p; as a function of the Dye cuto¤ g; is given, for
0 � g � �; by

p = p(g) =
H(g)

(�� g) +H(g) : (3.3)
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It is an increasing, convex function with extreme values p(0) = 0 and p(�) = 1; and with extreme
slopes p0(0) = 0 and p0(�) = 1=H(�):
We illustrate this result in Figure 4 for the uniform case.

Figure 4. p(g) for 0 � g � � in the
uniform case.

Proof. The de�ning equation for the cuto¤  = (p) is V (t) = t; which in explicit terms is

g = V (g; p) =
p�+ qE(g)

p+ qF (g)
;

or
p(�� g) = q(gF (g)� E(g)) = qH(g):

This may be solved for p as asserted. From (3.3) we compute that

dp

dg
=
F (g)(�� g) +H(g)
((�� g) +H(g))2

; (3.4)

which is positive for g < �: Furthermore,

d2p

dg2
=
[f(g)(�� g)] ((�� g) +H(g))2 + [F (g)(�� g) +H(g)][1� F (g)]

((�� g) +H(g))4
;

which is seen to be positive for g < �:

Proposition 2 (Marginal Trade-o¤). The marginal value of the Dye cuto¤ is related to the
disclosure option value as follows:

pqd = �(p)
dp

P(N())
: (3.5)

Proof. The substitution H(g) = �(� � g); with � = p
q
denoting the odds in (3.4), and, noting

that 1 + � = 1
q
; leads for g = (p) to

d

dp
=

((�� ) +H())2

F ()(�� ) +H() =
(�� )2(1 + �)2
(�� )[F () + �] =

p(�� )
pq(p+ qF ())

:
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That is,
d

dp
=

�(p)

pq(p+ qF (g))
: (3.6)

Comments. The formula (3.5) may be interpreted as a trade-o¤ between a loss of value in W
and a gain in option-value�. As the cuto¤change d upgrades or downgrades valuation in the set
N(); the incremental loss or gain inW is dWP(N()); which is equal by (8.2) to pq(1�V 0())d;
and this simpli�es to the variance e¤ect pqd; since V 0() = 0 (by our characterization of the
Dye cuto¤). The right-hand side of formula (3.5) is the corresponding incremental gain or loss
in option-value obtained from multiplying the increment in probability, equal to dp=P(N()), by
the current option value �(p):
The fact that d=dp > 0 was �rst shown in Jung and Kwon (1988) by implicit di¤erentiation

of Y (t; p): Here we have explained their result by interpreting the marginal substitution e¤ects
as trade-o¤s.

Proposition 3. The value of the disclosure option, as a function of the optimal cuto¤, is given
by

� = �(g) =
(�� g)H(g)
H(g) + (�� g) :

It is strictly increasing in the range [0; �=2]; hence is maximized in the range [�=2; �]: The deriv-
ative satis�es

d�

dg
= q(g)2

 
F (g)�

�
p(g)

1� p(g)

�2!
:

Proof. The de�ning equation for the option value is � = p(��g); hence the formula follows from
(3.3) of Proposition 1. We may now compute that

�0(g) =
d�

dg
=
(�� g)2F (g)�H2(g)

[H(g) + (�� g)]2 : (3.7)

Hence we have
�0(0) = 0; �0(�) = �1 < 0:

Moreover, for 0 < g � �=2; we have g � �� g; so, since F < 1;

(�� g)2F (g)�H2(g) � g2F (g)�H2(g) > g2F 2(g)�H2(g) > 0:

Thus � has a stationary point in (�=2; �):We will see in Theorem 4 below that this location is
unique.
The last assertion of the theorem follows on using the substitution H(g) = �(� � g); where

� = p
q
in (3.7). Indeed, we have

d�

dg
=
F (g)� �2

(�+ 1)2
= q2

 
F (g)�

�
p

q

�2!
:

Proposition 4 (Optimal uncertainty). Stationarity of �(g) occurs in the open interval 0 <
p < 1 i¤ g = (p) and p

F (g) =
p

1� p;
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and hence
0 < p <

1

2
:

The optimality condition for p may be restated as

q = 1� p = p

p+ qF ((p))
=

p

P[N()]
: (3.8)

Comment. The equation (3.8) is useful for tracking marginal trade-o¤s. Suppose that the
uncertainty parameter is decreased in�nitesimally. The equation (3.8) then asserts a trade-o¤
between the in�nitesimal gain from being informed with an in�nitesimal loss of the probability
of shielding from bad news by non-disclosure.
Proof. Since F () < F (�); we have, at the optimal p; that in fact

p =

p
F ()

1 +
p
F ()

<

p
F (�)

1 +
p
F (�)

<
1

2
: (3.9)

As regards the restatement of the optimality condition, note that the condition F () = p2=q2

is equivalent to
p

q
+ F () =

p

q

�
1 +

p

q

�
=
p

q2
:

The latter may be rearranged to read :

p+ qF () =
p

q
;

from which the result (3.8) follows.

Theorem 4 (Uniqueness Theorem). The option value, regarded as a function of p; is strictly
concave with �0(0) = � and �0(1) = �H(�); so that its maximum p̂ is unique and

maxf�0(p) : p < p̂g = �:

See Section 3.4 for an informal game-theoretic proof of concavity.
Proof. Recalling that �(p) = p(�� (p)); we have

d�

dp
= (�� (p))� pd

dp
: (3.10)

Notice that, for p = 1; we have (1) = �; so referring to the formula for dp=d; as in (3.4), we
have

�0(1) = �H(�):
Next we observe that

1

p

dp

d
=
F ()(�� ) +H()
H()[(�� ) +H()] =

1 + F ()
H()

(�� )
(�� ) +H() : (3.11)

But
F ()

H()
� 1


;
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so our result concerning the extreme slope follows from the observation that, by (3.11), we have

lim
p!0

1

p

dp

d
= +1:

Now, recalling the formula (3.6)

d

dp
=

�(p)

pq(p+ qF ())
;

and referring to (3.10) above, we have, by the quotient rule of calculus, that

d2

dp2
=

h
(�� (p))� pd

dp

i
pq(p+ qF ())� etc

[pq(p+ qF ())]2

=

h
�(p)
p
� p �(p)

pq(p+qF ())

i
pq(p+ qF ())� etc

[pq(p+ qF ())]2

=
�(p) (q(p+ qF ())� p)��(p)

h
q(p+ qF ())� p(p+ qF ()) + pq

�
1� F () + f�(p)

p(p+qF ())

�i
[pq(p+ qF ())]2

= ��(p)
p[1� (p+ qF ())] + pq

�
[1� F ()] + f�(p)

p(p+qF ())

�
[pq(p+ qF ())]2

< 0:

Here f = f() = F 0():

Corollary. If a price �p with � > 0 were to be paid for purchasing the option with uncertainty
p, then
i) the option is worth buying if and only if the price � per unit of uncertainty satis�es � < �;
ii) if the option is worth buying, then the corresponding unique optimal level of uncertainty p =
p(�) satis�es p(�) < p̂;
iii) the value of the option decreases strictly with �; for � < �:
Proof. If a price � were to be paid per unit of uncertainty for purchasing the option, then the
optimal level p = p̂(�) must maximize the concave function

�(p)� p�;

and hence solves the equation
� = �0(p̂(�)):

Hence � < maxf�0(p) : p < p̂g < �; and moreover, with p = p̂(�); we have

� < p(�� (p));

so that again
� < �� (p) < �:

Now, as 0 < � < � = maxf�0(p) : p < p̂g; there is indeed a unique solution p = p̂(�) to the
�rst-order condition � = �0(p): Since we have �0(p) < 0; for p > p̂; the solution p(�) satis�es

p̂(�) < p̂:
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It remains to prove that
�̂(�) := �(p̂(�))� �p̂(�) (3.12)

is positive. Note that �̂(�) is convex, being the negative of the Fenchel dual6 of �: Indeed, as in
the Envelope Theorem,

d�̂

d�
= �0(p̂(�))

dp̂

d�
� p̂(�)� � dp̂

d�
= �p̂(�);

since � = �0(p(�)): Thus �̂(�) is strictly decreasing in � for 0 < � < �: But for � = � we obtain
p̂(�) = p̂(�) = 0; and so �̂(�) = 0: Hence �̂(�) > 0 for � < �: In particular of course

�p(�) < p̂(�� (p̂)):

3.4. An informal game-theoretic approach to concavity

Here is an informal game-theoretic proof of Theorem 4. �(p) is the value of a gamble. Consider
two such gambles: for p = p0 and for p = p1; and further consider the following composite gamble.
The initial step is a lottery determining a move to one of the two gambles with manager�s value
�(pi): We consider two version of this game. In the �rst we intend that neither the manager,
nor the other market participants, observes the outcome of the initial lottery, but all agents know
that the chance move, leading to the subgame with uncertainty parameter p0; has probability
1� r:
In a variant game, assuming all players observe the outcome of the composite game, the

manager computes the value, given the additionally available information to be

(1� r)�(p0) + r�(p1):

However, the probabilities pi identify the uncertainty of being informed and, without needing
to observe the outcome of the �rst stage lottery, the manager knows that the probability of being
uninformed is

pr = (1� r)p0 + rp1:
This is enough information to determine how to behave optimally. Thus the manager might as
well be allowed to observe the outcome of the lottery.
What is the connection between

�(pr) = �+ pr(�� (pr))

and
r�(p0) + (1� r)�(p1) ?

To answer this question, consider the uninformed market participants. If they observe the �rst step
lottery, they know which of the two subgames the market moves to, and therefore what valuation
calculation to make. If they do not observe the initial lottery, they are at a disadvantage, and so

6Formally, the Fenchel dual of the concave function �(p) is the concave function of � given by

��(�) = inf
p
[p� ��(p)]:
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the manager has an advantage. The value of the game in which only the manager observes the
initial lottery is thus surely greater to the manager. Hence

�(pr) > (1� r)�(p0) + r�(p1)

for 0 < r < 1: This proves concavity.

4. Disclosure intensity

Proposition. The intensity of disclosure, that is the ex-ante risk-neutral probability of a disclo-
sure occurring, de�ned by

�(p) = (1� p)(1� F ((p)));
is a decreasing function of p: The extreme values are �(0) = 1 and �(1) = 0; and the extreme
slopes are � 0(0) = �1 and � 0(1) = �(1� �) = �H(1):
If it is a convex function of p; which is the case if for instance f 0(t) � 0 in the region (0; �);

then
�(p) � (1� �)(1� p):

We illustrate the result in Figure 5 for the uniform case.

Figure 5. Disclosure intensity �(p)
against p (bold) and tangential
approximation (faint) �in the

uniform case.

Proof. The monotonicity result is obvious, since both 1 � p and 1 � F ((p)) are decreasing
with p (the latter factor because both F (t) and (t) are increasing with t). Since d=dp > 0 and
d2p=d2 > 0 (by Proposition 1), routine calculations starting from

� 0(p) = �
�
(1� ) + (1� p)f()d

dp

�
< 0;

lead to

� 00(p) = (1 + f())
d

dp
� (1� p)f 0()

�
d

dp

�2
+ (1� p)f()d

2p

dg2

�
d

dp

�3
> 0:
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Proposition. It is the case that

�(p̂) � p̂ i¤ p̂ � 1

2
(3�

p
5) = :38::::

Proof. We have, since F ((p̂)) = �2;

�(p̂) = (1� p̂)(1� F ((p̂)) = 1� �2

1 + �
= 1� �:

We may now argue that
1� � � p̂

is equivalent to

1� p̂ � � = p̂

1� p̂ ;

that is to
1� 3p̂+ p̂2 � 0;

from which our result follows.

5. Densities with an initial power form

Suppose it is the case, for 0 � t � �; that f(t) = Kt��1; with � > 0: We call such densities
�initially of index ��.
Proposition. If the density is initially of index � then the Dye cuto¤ (p̂) satis�es

�

�+ 2
� < (p̂) < �:

Proof. Recall that the optimality condition satis�ed by p = p̂() takes the form

F (g(p))(�� g)2 = H(g)2:

We note that F (t) = Kt�=� and H(t) = Kt�+1=�(� + 1): Observe that, since F (�) � 1; we
also have

K

�
�� � 1:

We show that the maximum value of F (t)(�� t)2 in (0; �) occurs at t = ��; where

� =
�

�+ 2
;

and that F (��)(�� ��)2 > H(��)2: It follows that the optimality condition is satis�ed uniquely
in [��; �]:
Step 1. We �nd the location of the maximum of the function F (t)(�� t)2 in (0; �):
Solving

0 = f(t)(�� t)2 � 2F (t)(�� t) = K(�� t)t��1[(�� t)� 2

�
t]

yields t = ��, as asserted.
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Step 2 We note that the maximum value is as follows:

M =
K

�
(��)��2(1� �)2 = K

�
��+2

�
1 +

2

�

����
2

�+ 2

�2
:

Step 3. This maximum M is above H(��)2 i¤

4

�
1 +

2

�

���
�+ 1

�+ 2

�2
� K

�
��:

But, for � > 0; we have

�+ 1

�+ 2
� 1

2
; and

�
1 +

2

�

��
> 1:

Thus we have, for � > 0; that

4

�
1 +

2

�

���
�+ 1

�+ 2

�2
> 1 � K

�
��;

and so the function H(t)2 intersects F (t)(�� t)2 in the interval ( ��
�+2
; �):

Notice that

lim
�!1

"
4

�
1 +

2

�

���
�+ 1

�+ 2

�2#
= 4e2 = 29:55:::;

so the maximum M is liable to be signi�cantly above H(��)2:

6. Conclusion

We have re�ned the original Dye disclosure model by recognizing that the possibility of an upper
tailed disclosure strategy confers an option on the manager, namely whether to disclose or not
to disclose �rm value above a selected cuto¤. Dye�s motivation for the lack of credible commu-
nication, when the manager is uninformed, was principally to show why unravelling does not
necessarily happen. While lack of unravelling clearly had implications for existing investors, this
was not his principle concern at that time when he established his possibility theorem for a cuto¤
disclosure strategy. In our research we concentrate on these value implications, while preserving
the same qualitative cuto¤ disclosure features of the Dye model. Once one becomes concerned
about the value implications to investors of a Dye disclosure strategy, one becomes sensitive to
the trading assumptions that managers are allowed to operate with. We show that in the event
of non-disclosure investors will be less harmed if management are allowed to trade when they
know that they do not know �rm value. Said another way: we show how investors can bene�t
(receive additional value) when the market devalues the company, following non-disclosure, yet
management know this non-disclosure arises from no new information being received (rather than
from discovery of low value).
The value of the �Dye option�depends on both the location of the cuto¤and on the probability

q of the manager being perfectly informed as to �rm value. Given the probability q, the option
value is found to be maximized at the cuto¤ level originally identi�ed by Dye.
The Dye cuto¤ level is a function of the probability q. The maximized option value is corre-

spondingly also a function of the probability q, and in its dependence on this variable it too may
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be maximized by a manager empowered to select the value of q. Thus one of the contributions
of this paper is to provide a formal link between the manager�s own choice of information type
and ex-ante additional value creation. Impounding this �additional value�into a total value of the
�rm, and using our contingent claims analysis with some representative parameter values, allows
us to demonstrate that the Dye disclosure option can add up to something like 8% per share to
the value of the �rm. Furthermore we provide a new link between corporate disclosure strategy
and risk-management methodology. The link we identify refers to the risk-measure known as the
Omega function, which takes the form of a gain-to-loss ratio. We show how the Dye cuto¤ level
corresponds to this gain-to-loss ratio being chosen so as to provide optimal risk-shielding to the
investor.
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8. Appendix: Proof of the Marginal Values Theorem

Working from the identity

V (t)P(N(t)) = EP[X1N(t)] =
Z
N(t)

XdP(!);

di¤erentiation gives

dV (t)P(N(t)) + V (t)dP(N(t)) = dEP[X1N(t)] = tdP(N(t));

so that
dV (t)P(N(t)) = (t� V (t))dP(N(t)):

Since dP(N(t)) = qdF (t); we can write this explicitly as

V 0(t) = (t� V (t)) q

p+ qF (t)
f(t); (8.1)

where F (t) denotes the cumulative distribution function (for the probability law of the random
variable X) and is assumed to be of the form

F (t) =

Z t

0

f(x)dx;

for some continuous f(x): Hence

W 0(t) = (V (t)� t) pq

p+ qF (t)
f(t): (8.2)
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