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Abstract

We re-examine measure-category duality by a bitopological ap-
proach, using both the Euclidean and the density toplologies of the
line. We give a topological result (on convergence of homeomorphisms
to the identity) obtaining as a corollary results on in�nitary combina-
torics due to Kestelman and to Borwein and Ditor. As a by-product
we give a uni�ed proof of the measure and category cases of Uniform
Convergence Theorem for slowly varying functions.
Classi�cation: 26A03
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1 Introduction

In a topological space one has one space and one topology. One often needs to
have one space and two comparable topologies, one stronger and one weaker
(as in functional analysis, where one may have the strong and weak topologies
in play, or the weak and weak-star topologies). The resulting setting is that
of a bitopological space, formalized in this language by Kelly [Kel].
Measure-category duality is the theme of the well-known book by Oxtoby

[Oxt]. Here one has on the one hand measurable sets or functions, and
small sets are null sets (sets of measure zero), and on the other hand sets
or functions with the Baire property (brie�y, Baire sets or functions), where
small sets are meagre sets (sets of the �rst category).
In some situations, one has a dual theory, which has a measure-theoretic

formulation on the one hand and a topological (or Baire) formulation on the
other. We present here as a unifying theme the use of two topologies, each
of which gives one of the two cases.
Our starting point is the density topology (introduced in [HauPau], [GoWa],

[Mar] and studied also in [GNN] �see also [CLO], and for textbook treat-
ments [Kech], [LMZ]). Recall that for T measurable, t is a (metric) density
point of T if lim�!0 jT \ I�(t)j=� = 1; where I�(t) = (t� �=2; t+ �=2). By the
Lebesgue Density Theorem almost all points of T are density points ([Hal]
Section 61, [Oxt] Th. 3.20, or [Go¤]). A set U is d-open (open in the den-
sity topology) if each of its points is a density point of U: We mention three
properties:
(i) The density topology (d-topology) is �ner than (contains) the Euclid-

ean topology ([Kech], 17.47(ii)).
(ii) A set is Baire in the density topology i¤ it is (Lebesgue) measurable

([Kech], 17.47(iv)).
(iii) A function is d-continuous i¤ it is approximately continuous in Den-

joy�s sense ([Den]; [LMZ], p.1, 149).
The reader unfamiliar with the density topology may �nd it helpful to

think, in the style of Littlewood�s First Principle, of basic opens sets as being
intervals less some measurable set. See [Lit] Ch. 4, [Roy] Section 3.6 p.72.
Both measurability and the Baire property have been used as regular-

ity conditions, to exclude pathological situations. A classic instance is that
of additive functions, satisfying the Cauchy functional equation f(x + y) =
f(x)+ f(y). Such functions are either very good �continuous, and so linear,
f(x) = cx for some c �or very bad (one can construct such functions from
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Hamel bases, so this is called the Hamel pathology); see [BOst-SteinOstr] for
details. Another, related instance is that of the theory of regular variation
[BGT], where each may be used as a regularity condition to prove the ba-
sic result of the theory, the Uniform Convergence Theorem (UCT). In such
situations, the theory is usually developed in parallel, with the measure case
regarded as primary and the Baire case as secondary. Here, we develop the
two cases together. Our new viewpoint gives the interesting insight that it
is in fact the Baire case that is the primary one.
In Section 2 below we give our main result, the Category Embedding

Theorem (CET); the natural setting is a Baire space, i.e. a topological space
in which the Baire Category Theorem holds (see e.g. [Eng] 3.9): R is a Baire
space under both the Euclidean and density topologies. In Section 3 we give
our uni�ed treatment of the UCT. We close in Section 4 with some remarks.

2 Category Embedding Theorem (CET)

The three results of this section (or four, as Theorem 3 below has two cases)
develop a new aspect of measure-category duality. This has powerful appli-
cations: see Section 3 below for the Uniform Convergence Theorem (UCT)
of regular variation, [BOst5] for subadditive functions, [BOst10] for homo-
topy versions, and [BOst-SteinOstr] for applications to classical theorems of
Steinhaus and Ostrowski.
The topological Theorem 1 below is a topological version of the Kestelman-

Borwein-Ditor (KBD) Theorem given at the end of this section (see also
[BOst1], [BOst10], [BOst-SteinOstr]). The latter is a (homeomorphic) em-
bedding theorem (see e.g. [Eng] p. 67); Trautner uses the term covering
principle in [Trau]. We need the following de�nition.

De�nition (weak category convergence). A sequence of homeomor-
phisms hn satis�es the weak category convergence condition (wcc) if:
For any non-empty open set U; there is an non-empty open set V � U

such that, for each k 2 !;\
n�k

V nh�1n (V ) is meagre. (wcc)

Equivalently, for each k 2 !; there is a meagre setM such that, for t =2M;

t 2 V =) (9n � k) hn(t) 2 V:
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We will see below in Theorem 2 that this is a weak form of convergence
to the identity and indeed Theorems 3E and D verify that, for zn ! 0; the
homeomorphisms hn(x) := x + zn satisfy (wcc) in the Euclidean and in the
density topologies. However, it is not true that hn(x) converges to the identity
pointwise in the sense of the density topology; furthermore, whereas addition
(a two-argument operation) is not d-continuous (see [HePo]), translation (a
one-argument operation) is. We write �quasi all�for �all o¤ a meagre set�and,
for P a set of reals (or property) that is measurable/Baire, we say that �P
holds for generically all t�to mean that ft : t =2 Pg is null/meagre.

Theorem 1 (Category Embedding Theorem, CET). Let X be a
Baire space. Suppose given homeomorphisms hn : X ! X for which the
weak category convergence condition (wcc) is met. Then, for any non-meagre
Baire set T; for quasi all t 2 T; there is an in�nite set Mt such that

fhm(t) : m 2Mtg � T:

Proof. Suppose T is Baire and non-meagre. We may assume that T =
UnM with U non-empty and M meagre. Let V � U satisfy (wcc).
Since the functions hn are homeomorphisms, the set

M 0 :=M [
[
n

h�1n (M)

is meagre. Put

W = h(V ) :=
\
k2!

[
n�k

V \ h�1n (V ) � V � U:

Then V \W is co-meagre in V: Indeed

V nW =
[
k2!

\
n�k

V nh�1n (V );

which by assumption is meagre.
Let t 2 V \ WnM 0 so that t 2 T: Now there exists an in�nite set Mt

such that, for m 2 Mt, there are points vm 2 V with t = h�1m (vm): Since
h�1m (vm) = t =2 h�1m (M); we have vm =2 M; and hence vm 2 T: Thus fhm(t) :
m 2Mtg � T for t in a co-meagre set, as asserted. �

Clearly the result relativizes to any open subset of T on which T is
non-meagre; that is, the embedding property is a local one. The following
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lemma sheds some light on the signi�cance of the category convergence con-
dition (wcc). The result is capable of improvement, for instance by replacing
the countable family generating the coarser topology by a �-discrete family
(which is then metrizable by Bing�s Theorem, given regularity assumptions
�see [Eng] Th. 4.4.8).

Theorem 2 (Convergence to the identity). Assume that the home-
omorphisms hn : X ! X satisfy the weak category convergence condition
(wcc) and that X is a Baire space. Suppose there is a countable family B
of open subsets of X which generates a (coarser) Hausdor¤ topology on X:
Then, for quasi all (under the original topology) t; there is an in�nite Nt
such that

lim
m2Nt

hm(t) = t:

Proof. For U in the countable base B of the coarser topology and for
k 2 ! select open Vk(U) so thatMk(U) :=

T
n�k Vk(U)nh�1n (Vk(U)) is meagre.

Thus
M :=

[
k2!

[
U2B

Mk(U)

is meagre. Now Bt = fU 2 B : t 2 Ug is a basis for the neighbourhoods of t:
But, for t 2 Vk(U)nM; we have t 2 h�1m (Vk(U)) for some m = mk(t) � k; i.e.
hm(t) 2 Vk(U) � U: Thus hmk(t)(t)! t; for all t =2M: �

We now deduce the category and measure cases of the Kestelman-Borwein-
Ditor Theorem (stated below) as two corollaries of the above theorem by
applying it �rst to the usual and then to the density topology on the reals,
R.
For our �rst application we take X = R with the usual Euclidean topol-

ogy, a Baire space. We let zn ! 0 be a null sequence. It is convenient to
take

hn(x) = x� zn; so that h�1n (x) = x+ zn:
This is a homeomorphism. We verify (wcc). If U is non-empty and open,
let V = (a; b) be any interval contained in U . For later use we identify our
result thus (with E here for Euclidean and D below for density).

Theorem 3E (Translation Theorem �E). Let V be an open interval.
For any null sequence fzng ! 0 and each k 2 !;

Hk =
\
n�k

V n(V + zn) is empty.
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Proof. Assume �rst that the null sequence is positive. Then, for all n so
large that a+ zn < b; we have

V \ h�1n (V ) = (a; a+ zn);

and so, for any k 2 !; \
n�k

V nh�1n (V ) is empty.

The same argument applies if the null sequence is negative, but with the
end-points exchanged. �

For our second application we enrich the topology of R, retaining the
functions hn. We consider instead the density topology. This is translation-
invariant, and so each hn continues to be a homeomorphism. The intervals
remain open. A set is d-nowhere dense i¤ it is measurable and null.

Lemma. R under the density topology is a Baire space.

Proof. Let U be a non-empty d-open set. Suppose that An is a sequence
of sets d-nowhere dense in U . Since this means that each set An has measure
zero, their union has measure zero and so the complement in U is non-empty,
since U has positive measure. �

To verify the weak category convergence of the sequence hn; consider U
non-empty and d-open; then consider any measurable non-null V � U; for
instance V of the form U \ (a; b) for some �nite interval. To verify (wcc)
in relation to V; it now su¢ ces to prove the following result, which is of
independent interest (cf. Littlewood�s First Principle, as above).

Theorem 3D (Translation Theorem �D). Let V be measurable and
non-null. For any null sequence fzng ! 0 and each k 2 !;

Hk =
\
n�k

V n(V + zn) is of measure zero, so meagre in the d-topology.

Proof. Suppose otherwise.
Then for some k; jHkj > 0: Write H for Hk: Since H � V; we have, for

n � k; that ; = H\h�1n (V ) = H\(V +zn) and so a fortiori ; = H\(H+zn):
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Let u be a density point of H: Thus for some interval I�(u) = (u��=2; u+
�=2) we have

jH \ I�(u)j >
3

4
�:

Let E = H\I�(u): For any zn; we have j(E+zn)\(I�(u)+zn)j = jEj > 3
4
�:

For 0 < zn < �=4; we have j(E + zn)nI�(u)j � j(u + �=2; u + 3�=4)j � �=4:
Put F = (E + zn) \ I�(u); then jF j > �=2:
But � � jE [ F j = jEj+ jF j � jE \ F j � 3

4
� + 1

2
� � jE \ F j: So

jH \ (H + zn)j � jE \ F j �
1

4
�;

contradicting ; = H \ (H + zn): This establishes the claim. �

An immediate �rst corollary of the theorems above is the following result,
due in this form in the measure case to Borwein and Ditor [BoDi], but already
known much earlier albeit in somewhat weaker form by Kestelman ([Kes] Th.
3), and rediscovered by Trautner [Trau] (see [BGT] p. xix and footnote p.
10).

Theorem (Kestelman-Borwein-Ditor Theorem). Let fzng ! 0 be
a null sequence of reals. If T is Lebesgue, non-null/Baire, non-meagre, then
for generically all t 2 T there is an in�nite set Mt such that

ft+ zm : m 2Mtg � T:

Furthermore, for any density point u of T , there is t 2 T arbitrarily close
to u for which the above holds.

3 The Uniform Convergence Theorem

A second corollary of our results is the fundamental theorem of regular varia-
tion below, the UCT. This has traditionally been proved in the measure and
Baire cases separately (see [BGT] Section 1.2 for details and references). This
raises the question of �nding the minimal common generalization of the mea-
surability and Baire-property assumptions, an old question raised in [BGT]
p. 11 and answered in [BOst4]. We content ourselves here with proving the
two cases together. The brief proof, inspired by one due to Csiszár and Erd½os
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[CsEr] (called the �fourth proof�in [BGT]), appeals only to the Kestelman-
Borwein-Ditor Theorem. That was discovered in [BOst1]; we quote it here
for completeness �shortened (indeed, �from 3" to 2"�), and abstracted from
a wider combinatorial context. For another proof, albeit for the measurable
case only, see [Trau], where Trautner employs also a theorem of Egorov (cf.
Littlewood�s Third Principle, see [Lit] Ch. 4, [Roy] Section 3.6 and Problem
31, or [Hal] Section 55 p. 243). Recall (see [BGT]) that a function h : R! R
is slowly varying (in additive notation) if for every sequence fxng ! 1 and
each u 2 R

lim
n!1

h(u+ xn)� h(xn) = 0:

Theorem (Uniform Convergence Theorem). If h is slowly varying
and measurable, or Baire, then uniformly in u on compacts:

lim
n!1

h(u+ xn)� h(xn) = 0:

Proof. Suppose otherwise. Then for some measurable/Baire slowly vary-
ing function h and some " > 0; there is fung ! u and fxng ! 1 such that

jh(un + xn)� h(xn)j � 2": (1)

Now, for each point y; we have

lim
n
jh(y + xn)� h(xn)j = 0;

so there is k = k(y) such that, for n � k;

jh(y + xn)� h(xn)j < ":

For k 2 !; de�ne the measurable/Baire set

Tk :=
\
n�k

fy : jh(y + u+ xn)� h(xn)j < "g:

Since fTk : k 2 !g covers R, it follows that, for some k 2 !; the set Tk is
non-null/non-meagre. Writing zn := un � u; we have, for some t 2 Tk and
for some in�nite Mt, that

ft+ zm : m 2Mtg � Tk:
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Thus
jh(t+ um + xm)� h(xm)j < ":

Since um + xm !1; we have, for m large enough and in Mt; that

jh(t+ um + xm)� h(um + xm)j < ":

The last two inequalities together imply, for m large enough and in Mt, that

jh(um + xm)� h(xm)j � jh(um + xm)� h(t+ um + xm)j
+jh(t+ um + xm)� h(xm)j

< 2";

and this contradicts (1). �

4 Remarks

1. Topology and category. Regular variation is a continuous-variable theory,
and so refers to an uncountable setting. In general topology also, countability
conditions may be used, but are not assumed in general. By contrast, roughly
speaking, Baire category methods apply in that part of general topology in
which some degree of countability is present (hence its a¢ nity with measure
theory, in which countability is intrinsic). That this su¢ ces here �e.g., in the
proof of the UCT �is a result of the use of proof by contradiction, in which
we work with a sequence witnessing the supposed failure of the conclusion.
See also [BGT], Section 1.9 for more on sequential aspects.
2. Qualitative and quantitative measure theory. When measure-category

duality applies, one passes from the Baire to the measure case by changing
�meagre/non-meagre�to �null/non-null�. This is qualitative measure theory
(where all that counts is whether measure is zero or positive), rather than
quantitative measure theory, where the numerical value of measure counts.
Quantitative measure theory is used in the �rst proof of the UCT in [BGT]
(p.6-7 �due to Delange in 1955, [Del]). This is the only direct proof; the
other proofs are indirect, by contradiction (see Remark 1 above). The place
that quantitative measure theory is used here is in the proof of Theorem 3D,
establishing the applicability of the CET to the density topology. It seems
that some use of quantitative measure theory, somewhere, is needed here.
3. Other proofs of the UCT. Several other proofs of the UCT are given in

[BGT]. The second, third (due to Matuszewska) and fourth (due to Csiszár
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and Erd½os) are indirect, use qualitative measure theory, and have immediate
category translations. The �fth proof, due to Elliott, uses Egorov�s theorem
but covers the measure case only. A sixth proof, due to Trautner [Trau], also
uses Egorov�s theorem so again applies only to the measure case, cf. [Oxt]
Chapter 8. (Trautner was unaware both of Kestelman�s work and that of
Borwein and Ditor.) Our (seventh) proof here is based on the fourth, and
on the insights gained in our earlier papers, cited below. A further proof via
the Bounded Equivalence Principle is given in [BOst1].
4. Limitations of measure-category duality. Measure and category are

explored at textbook length in [Oxt]; see Ch. 19 for duality (including the
Sierpiński-Erd½os Duality Principle under the Continuum Hypothesis), Ch. 17
(in ergodic theory, duality extends to some but not all forms of the Poincaré
recurrence theorem) and Ch. 21 (in probability theory, duality extends as
far as the zero-one law but not to the strong law of large numbers). Du-
ality also fails to extend to the theory of random series [Kah]. For further
limitations of duality, see [DoF], [Bart], [BGJS]. For Wilczyński�s theory of
a.e.-convergence associated with �-ideals, see [PWW]. For a set-theoretic
explanation of the duality in regular variation in terms of forcing see [BOst1]
Section 5, [Mil1] Section 6.
5. Convergence concepts. In the second-countable case (wcc) implies a

form of I-a.e. convergence to the identity, with I the �-ideal of meagre
sets. See [PWW] for further information here. Note also the possibility of
convergence down a sub-subsequence of a given subsequence, as occurs in the
notion of convergence with respect to I [PWW] �in this connection see [Mil2]
regarding circumstances (and their dependence on the Souslin Hypothesis)
when the two modes of convergence relative to I are equivalent.
The result just cited is the abstract form of the relationship between

convergence in probability and almost-sure convergence. The latter implies
the former, but not conversely in general, although a sequence converging in
probability has a subsequence converging almost surely. The former is metric,
the latter not even topological in general (see [Dud] Section 9.2 Problem 2).
But the latter reduces to the former in exceptional circumstances (when the
measure space is purely atomic, when there are no non-trivial null sets);
again, see [Mil2] and [WW].
6. Regular variation and Tauberian theory. For a textbook account of

the extensive applications of regular variation in Tauberian theory, see [Kor]
Ch. IV (and also [BGT], Ch. 4,5).
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