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Abstract. We consider the robust hedging problem in which an investor
wants to super-hedge an option in the framework of uncertainty in a model
of a stock price process. More specifically, the investor knows that the stock
price process is H -self-similar with H ∈ (1/2, 1), and that the log-returns are
Gaussian. This leads to two natural but mutually exclusive hypotheses both
being self-contained to fix the probabilistic model for the stock price. Namely,
the investor may assume that either the market is efficient, i.e. the stock price
process is a semimartingale, or that the centred log-returns are stationary. We
show that to be able to super-hedge a convex European vanilla-type option
robustly the investor must assume that the markets are efficient. If it turns
out that if the other hypothesis of stationarity of the log-returns is true,
then the investor can actually super-hedge the option as well as receive a net
hedging profit.
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1. Introduction

In the classical Black-Scholes model of financial market the logarithm of the
stock price is modeled by a drifted Brownian motion. However, in some studies of
real financial data it is concluded that the centred log-returns of the stock prices
exhibit the so-called long-range dependency property (see, e.g., [12, Chapter IV]).
This observation generates an intention to replace the driving Brownian motion
with independent increments by another Gaussian process with long memory,
or at least having the so-called H -self-similarity property, which is in many
cases taken to be evidence for the long-range dependence (when H belongs to
the interval (1/2, 1)). A natural candidate for the new driving process is the
fractional Brownian motion, which is a Gaussian process characterized by being
self-similar with stationary increments. This, what we call hypothesis (H1),
will result in a market model that exhibits arbitrage opportunities (see, e.g.,
[5, 10, 13]). Another natural candidate for the replacement of the Gaussian
driving process is an H -self-similar Gaussian martingale, which would still be in
the realm of H -self-similarity but would not generate arbitrage. This, what we
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call hypothesis (H2), does not exhibit long-range dependence but it resembles
it statistically, at least through the H -self-similarity property.

We consider a model of financial market, where the investor issuing a
European-type contingent claim assumes that the centred log-prices of the
underlying risky asset are jointly Gaussian and self-similar with parameter H
from the interval (1/2, 1), that corresponds to the case of long-range dependence.
We assume that the investor is not sure which one of the hypotheses, (H1) or
(H2), is actually realized. Then she looks for a so-called robust hedging strategy
with possible consumption, which allows to super-hedge the given contingent
claim independently of which one of the hypothesis is true. We define the robust
hedging price of a contingent claim as the minimal initial capital required to
construct a robust hedging strategy.

It turns out that in order to super-hedge a convex European vanilla-type
option robustly the investor should assume that (H2) is true. So that, the
robust hedging price is the hedging price under the hypothesis (H2). If (H1) is
true then the investor receives a net hedging profit.

The paper is organized as follows. In Section 2 we introduce the Gaussian
market models and fix some notation. Then we introduce the uncertainty set-
ting, i.e. the two competing hypothesis (H1) and (H2) on the model followed
by a short technical review of forward integration. This is necessary since we
need stochastic integration in order to define the self-financing condition, and
we cannot use the classical Itô calculus to define stochastic integrals. We also
give a short technical note on H -self-similar Gaussian processes, which provides
us with a reformulation of the uncertainty setting. In Section 3, which is the
core of the paper, we introduce and solve the robust hedging problem for con-
vex vanilla-type European options under the model uncertainty. We end the
paper with some remarks and discussion in Section 4. We comment how the ro-
bust option-pricing can be viewed through a concept called average risk-neutral
measure. We also remark the connection between robust hedging and the Wick-
Itô-Skorohod approach for option pricing. Finally, we comment on role of the
Gaussianity assumption for the uncertainty setting.

2. Gaussian market models with uncertainty

Gaussian market models. In this section we consider the classical pricing
model of two assets: the riskless bond, or money-market, S0 = (S0

t )t∈[0,T ] , and
the risky stock S = (St)t∈[0,T ] . Here T > 0 is the maturity time for the contin-
gent claims. We assume that the stock price is already discounted, i.e. S0

t ≡ 1.
Suppose (Ω,F, (Ft)t∈[0,T ],P) is a filtered probability space satisfying the usual

conditions of completeness and right continuity of the filtration (Ft)t∈[0,T ] . The
stock-price process is driven by an (Ft)t∈[0,T ] -adapted centred Gaussian process
X = (Xt)t∈[0,T ] , which is normalized with X0 = 0 and Var[X1] = 1, i.e.

(2.1) St = S0e
m(t)−σ

2

2
Var[Xt]+σXt ,

where σ > 0 is a model parameter, the volatility of the stock. On the mean
function m we will assume that it is absolutely continuous with respect to the
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Lebesgue measure, thus being of the form

m(t) =
∫ t

0
µ(u) du

for some µ ∈ L1([0, T ]).

2.2. Remark. Note that µ(t)dt is the mean of the returns (relative changes) of the
stock, but µ(t)dt− (σ2/2) dVar[Xt] is the mean of the log-returns. However, it
is well-known that the actual mean function, as long as it is smooth, is irrelevant
in option pricing. So that, we should not bother ourselves too much on the
differences of the mean of returns and log-returns.

Gaussian self-similar processes. In addition to the normalization X0 = 0
and Var[X1] = 1 we assume that the Gaussian noise X is H -self-similar for
some H ∈ (1/2, 1), i.e.

(Xt)t∈[0,T ]
d= (a−HXat)t∈[0,T/a],

where d= means equality of finite-dimensional distributions.

Since we assume that X is centred and Gaussian with X0 = 0 the H -self-
similarity can be written in terms of the covariance function as

Cov [Xt, Xs] = a−2HCov [Xat, Xas]

for all a > 0. In particular, since Var[X1] = 1, we must have

Var[Xt] = t2H .

But now, taking a process B centred with B0 = 0 and Var[B1] = 1 fixed, it
is easy to see that a Gaussian process B that is H -self-similar with stationary
increments must have the covariance function

Cov [Bt, Bs] =
1
2

(Var[Bt] + Var[Bs]−Var[Bt −Bs])

=
1
2
(
Var[Bt] + Var[Bs]−Var[B|t−s|]

)
=

1
2
(
t2H + s2H − |t− s|2H

)
.

We see that the process B is uniquely determined. This process is called the
fractional Brownian motion. It was introduced in [8] and given its name in [9].
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Assume then that M is a H -self-similar Gaussian martingale with M0 = 0
and Var[M1] = 1. Since M is a martingale we see that

Cov[Mt,Ms] = E[MtMs]

= E
[
E[MtMs|Fs]

]
= E

[
MsE[Mt|Fs]

]
= E[M2

s ]

= Var[Ms]

= s2H

for s ≤ t . So that, in this case too the process M is uniquely defined.

Self-financing strategies and arbitrage. In order to define the notion of ar-
bitrage, let us now fix some notation and recall some basic concepts of a financial
market model. A trading strategy is a two-dimensional process

πt = (βt, γt), t ∈ [0, T ],

where βt denotes the number of bonds, and γt denotes the number of stocks
owned by the investor at time t . The process π is assumed to be adapted to the
filtration (Ft)t∈[0,T ] , which is assumed to be generated by the stock-price process
S . The wealth process V (π) associated to a trading strategy π is

Vt(π) = βt + γtSt, t ∈ [0, T ].

We assume that π is admissible, i.e. V (π) is bounded from below by some
deterministic constant. Being based on the idea of the budget constraint on the
change of the position of the portfolio on the time interval [t, t+ ∆t] , we assume
that trading strategies are self-financing:

βt+∆t + γt+∆tSt = βt + γtSt.

Reorganizing the terms in the equation above we obtain the condition

Vt+∆t(π) = Vt(π) + γt(St+∆t − St).

From this it follows that the trading strategy is self-financing if its wealth satisfies

(2.3) Vt(π) = V0(π) +
∫ t

0
γu dSu,

where the integral is understood in a forward (pathwise) sense, and we give a
short review of forward integration below.
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A (self-financing) trading strategy π realizes an arbitrage opportunity if for
V0(π) = 0 we have VT (π) ≥ 0 P-a.s. and VT (π) > 0 with a positive P-
probability.

A (perfect) hedge of a contingent claim with an FT -measurable payoff G is a
(self-financing) trading strategy π that replicates the claim, i.e.

VT (π) = G P-a.s.

A super-hedge of a claim with the payoff G is a trading strategy π such that

VT (π) ≥ G P-a.s.

The fair price P (G) of the claim G is then the minimal initial capital needed
to super-hedge it:

P (G) = inf {V0(π) ; there is π such that VT (π) ≥ G P-a.s.} .

The uncertainty setting. The aforementioned properties for X are not suf-
ficient to fix the probabilistic model for the risky asset S . Let us now give two
natural but mutually exclusive assumptions that will fix the model:

(H1) The centred log-returns are stationary, i.e. the X has stationary incre-
ments.

(H2) The market is efficient in the sense that there are no arbitrage oppor-
tunities.

Since the hypothesis (H1) leads to a non-semimartingale model, the classical
Itô integration theory is not at our disposal. However, there is an economically
meaningful notion of integral, viz. the forward integral, that can be applied for
non-semimartingales and, in particular, to the definition (2.3).

Forward integration. Actually, there are several slightly different versions of
the forward integral. Here we use a simple approach introduced by [6]. For
different kinds of forward integrals we refer to [11] and [18].

Let Πn = {0 = tn,0 < · · · < tn,K(n) = T} be a partition of [0, T ] such that

mesh(Πn) := max
tn,k∈Πn

|tn,k − tn,k−1| → 0

as n→∞ . Further, we cannot assume that our processes are properly integrable
over the entire interval [0, T ] . Thus, we define the integrals over the sub-intervals
[0, t] , t < T . The integral over the interval [0, T ] will then be interpreted as an
improper forward integral.

2.4. Definition. Let t < T and let Z = (Zu)u∈[0,T ] be a continuous process.
The forward integral of a process Y = (Yu)u∈[0,T ] with respect to Z along the
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sequence (Πn)∞n=1 is∫ t

0
Yu dZu := lim

n→∞

∑
tn,k∈Πn

tn,k≤t

Ytn,k−1

(
Ztn,k − Ztn,k−1

)
,

where the limit is assumed to exist P-a.s. The forward integral over the whole
interval [0, T ] is the improper forward integral∫ T

0
Yu dZu := lim

t↑T

∫ t

0
Yu dZu,

where the limit is again understood in the P-a.s. sense.

A priori there is nothing that ensures the existence of the forward integral.
However, we can show that if the integrator is a quadratic variation process and
the integrand is a smooth function of the integrator then the forward integral
exists.

2.5. Definition. A process Z = (Zt)t∈[0,T ] is a quadratic variation process along
the sequence (Πn)∞n=1 if the limit

〈Z〉t :=
∑

tn,k∈πn
tn,k≤t

(
Ztn,k − Ztn,k−1

)2

exists P-a.s. for all t ≤ T , and it is continuous in t .

2.6. Example. (i) For a standard Brownian motion W we have d〈W 〉t = dt
if the sequence (Πn) is refining. This follows from the Borel-Cantelli
lemma.

(ii) For a fractional Brownian motion B with H ∈ (1/2, 1) we have d〈B〉t =
0. This follows from the Hölder continuity of the fractional Brownian
motion.

(iii) If A is a continuous process with zero quadratic variation along (Πn)
and X is a continuous quadratic variation process along (Πn) then
d〈Z +A〉t = d〈Z〉t . This follows from the Cauchy-Schwartz inequality.

(iv) If X is a quadratic variation process along (Πn) and f ∈ C1(R) then
f ◦ Z is also a quadratic variation process along (Πn). Indeed,

d〈f ◦ Z〉t = f ′(Zt) d〈Z〉t

(cf. [6, p. 148]).

In what follows the sequence (Πn) will be a fixed refining partition of [0, T ]
that is omitted in the notation.

The following Itô formula for the forward integral is a simple generalization
of the theorem that can be found in [6, p. 144]. The proof is based on a second
order two-dimensional Taylor expansion. Actually, it is basically the same as in
the semimartingale case.
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2.7. Lemma (Itô formula). Let Z be a continuous quadratic variation process.
Suppose f ∈ C1,2([0, T )× R). Then

f(t, Zt) = f(s, Zs) +
∫ t

s

∂

∂t
f(u, Zu) du+

1
2

∫ t

s

∂2

∂z2
f(u, Zu) d〈Z〉u

+
∫ t

s

∂

∂z
f(u, Zu) dZu(2.8)

for 0 ≤ s ≤ t < T . In particular, the forward integral (2.8) exists and has a
modification, which is continuous in t.

2.9. Remark. (i) If the process Z has zero quadratic variation then the Itô
formula is the classical change-of-variables formula.

(ii) In the remainder of the paper we choose continuous modifications of
forward integrals.

(iii) The forward integral with non-semimartingale integrator does not sat-
isfy a dominated convergence theorem.

The uncertainty setting revisited. Recall the Fundamental Theorem of As-
set Pricing : The market is free of arbitrage if and only if there is a probability
measure equivalent to the original measure such that under it the stock-price
process is a local martingale. From this it follows that (H2) is equivalent to the
assumption that X is a martingale. We now also know that an H -self-similar
stationary-increment Gaussian process must be a fractional Brownian motion.
So that, we may equivalently rewrite our hypotheses (H1) and (H2) as:

(H1’) The driving process X is the fractional Brownian motion B .
(H2’) The driving process X is the Gaussian martingale M .

2.10. Remark. (i) By using the Kolmogorov continuity criterion we see that
both M and B are continuous processes.

(ii) The Gaussian martingale M can be realized by using a standard Brow-
nian motion W . Indeed, it is easy to see that the process

Wt =
1√
2H

∫ t

0

1
uH−1/2

dMu

is a standard Brownian motion. So that, we have

Mt =
√

2H
∫ t

0
uH−1/2 dWu.

In particular, this yields that the hypothesis (H2’), or equivalently the
hypothesis (H2), means that we are dealing with a non-homogeneous
Black-Scholes model

dSt
St

= µ(t) dt+ σ
√

2HtH−1/2 dWt.
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It can be read from the equation above that M is a quadratic variation
process with

d〈M〉t = 2Ht2H−1 dt,

and S is a quadratic variation process with

d〈S〉t = 2Ht2H−1S2
t dt.

We also note that the market model under (H2) is complete in the sense
that all claims can be hedged with admissible self-financing strategies.

(iii) Let us also observe that the hypothesis (H1) or, equivalently, the hy-
pothesis (H1’) corresponds to the model

dSt
St

=
(
µ(t)− σ2Ht2H−1

)
dt+ σ dBt.

The reason for the local drift to be µ(t) − σ2Ht2H−1 is that the frac-
tional Brownian motion with H ∈ (1/2, 1) has zero quadratic variation.
Hence, the Itô formula with respect to it takes the form of a classi-
cal change-of-variables formula. Moreover, in this case S also has zero
quadratic variation, and thus, the market model under (H1) admits
arbitrage opportunities.

3. Robust replication

The problem. In this section we consider the robust hedging problem for an
investor, who does not know whether (H1) or (H2) is true, but who must super-
hedge a European contingent claim.

3.1. Definition. (i) A (self-financing) strategy π is a robust hedge for the
claim G under the uncertainty (H1) versus (H2) if it super-hedges a
contingent claim with the payoff G under the both hypotheses (H1)
and (H2).

(ii) A robust hedge π is minimal if it is a perfect hedge under (H1) or
(H2).

(iii) The robust hedging price P (G) of the claim with the payoff G is

P (G) = inf {β0 + γ0S0 ; π = (β, γ) is a robust hedge for G } .

We now find the solution to the robust hedging problem in the case where
the claim G is a convex European vanilla-type option, i.e. if it is of the form
G = F (ST ) for some convex function F .

The solution. Let us first consider the case when hypothesis (H2) is true. It
is well-known how one can hedge claims in such non-homogeneous Black-Scholes
model (see, e.g., [12, Chapter VII]). Indeed, let v(t, St) be the price of the option
F (ST ) at time t . Since

d〈S〉t = σ22Ht2H−1S2
t dt,
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by using the Itô formula we get

v(t, St) = v(0, S0) +
∫ t

0

∂

∂s
v(u, Su) dSu

+
∫ t

0

(
∂

∂t
v(u, Su) + σ2Hu2H−1S2

u

∂2

∂s2
v(u, Su)

)
du.

Thus, we see that v(t, s) satisfies the fractional-type backward Black-Scholes par-
tial differential equation

∂

∂t
v(t, s) + σ2Ht2H−1s2 ∂

2

∂s2
v(t, s) = 0,(3.2)

v(T, s) = F (s).(3.3)

Hence, by applying the Feynman-Kac formula we obtain

(3.4) v(t, St) =
1√
2π

∫ ∞
−∞

F

(
Ste

σ
√
T 2H−t2Hy−σ

2

2 (T 2H−t2H)
)
e−

y2

2 dy,

and, in particular, that

(3.5) v(0, S0) =
1√
2π

∫ ∞
−∞

F

(
S0e

σTHy−σ
2

2
T 2H

)
e−

y2

2 dy.

We also note that the strategy

(3.6) πt =
(
v(t, St)−

∂

∂s
v(t, St)St,

∂

∂s
v(t, St)

)
is a perfect hedge for the option F (ST ) under (H2). So that, the robust price
P (F (ST )) must be at least v(0, S0).

Let us then consider the case when the hypothesis (H1) is true. We shall show
that the strategy (3.6) with initial wealth (3.5) is actually a super-hedge. Then
(3.6) is the minimal robust hedge and that (3.5) is the robust hedging price.

We shall now use the fact that the option payoff F (ST ) is convex.

3.7. Lemma. Let v be the function solving the fractional-type backward Black-
Scholes partial differential equation (3.2)–(3.3) with a convex boundary function
F . Then

∂

∂t
v(t, s) ≤ 0

for almost all t ≤ T and s > 0.

Proof. Observe that (3.2) directly implies

∂

∂t
v(t, s) = −σ2Ht2H−1s2 ∂

2

∂s2
v(t, s),
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and thus, it is enough to show that

∂2

∂s2
v(t, s) ≥ 0

for almost all t ≤ T and s > 0. Now, by the Feynman-Kac formula (3.4) we
have that

∂2

∂s2
v(t, s)

=
∂2

∂s2

(
1√
2π

∫ ∞
−∞

F

(
seσ
√
T 2H−t2Hy−σ

2

2 (T 2H−t2H)
)
e−

y2

2 dy
)

=
1√
2π

∫ ∞
−∞

∂2

∂s2
F

(
seσ
√
T 2H−t2Hy−σ

2

2 (T 2H−t2H)
)
e−

y2

2 dy.

Thus, the desired assertion follows from this since the second (distributional)
derivative of a convex function is positive. �

Recall that under the hypothesis (H1) we have d〈S〉t = 0. Consequently, by
applying the Itô formula to the value function v defined by (3.4), we have

(3.8) v(t, St) = v(0, S0) +
∫ t

0

∂

∂t
v(u, Su) du+

∫ t

0

∂

∂s
v(u, Su) dSu.

Lemma 3.7 now guarantees that the consumption process

(3.9) Ct := −
∫ t

0

∂

∂t
v(u, Su) du

is positive and increasing. So that, once we notice that the formula (3.8) repre-
sents hedging with consumption, or super-hedging, we have proved the following
result:

3.10. Theorem. The robust price of the contingent claim with the convex payoff
F (ST ) is given by (3.5), and the minimal robust hedge is given by (3.6).

If (H2) is true then the investor hedges the claim perfectly. If (H1) is true
then the investor super-hedges the claim, and on the time interval [0, t] she could
consume her net hedging profit Ct given by (3.9).

3.11. Remark. Of course, consuming Ct , t ∈ [0, T ] , progressively is out of the
question for the investor, since she is not sure if (H1) is true. So that, if (H1)
turns out to be true the investor will enjoy (consume) her net hedging profit CT
at time T when the option is exercised.

4. Concluding remarks and discussion

Average risk-neutral measure and Wick-Itô-Skorohod approach. The
pricing of options and arbitrage in the fractional Black-Scholes model, i.e. under
the hypothesis (H1), has been studied in, e.g., [1, 2, 3, 4, 7, 14, 15, 16]. Since
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the fractional Black-Scholes model admits arbitrage opportunities, there is no
risk-neutral or martingale measure to be used in pricing. A most likely analogue
to the martingale measure is the so-called average risk-neutral measure. Since it
is impossible to ask for an equivalent measure under which S is a martingale,
one asks merely for an equivalent measure Q such that St is log-normal with

EQ[St] = S0.

Such a measure, which was introduced in [17], exists and it is unique. Another
approach, which was taken in [7], is to use the so-called Wick-Itô-Skorohod in-
tegrals to define the wealth of a self-financing strategy. In [16] the connection
of this and the more economically sounded forward integration approach was
investigated.

Being economically not well-justified, both the Wick-Itô-Skorohod approach
and the approach based on the average risk-neutral-measure surprisingly give
the same pricing (and hedging) formulas as does the hypothesis (H2). So that,
they actually correspond to the case when the stock price process is driven by a
Gaussian self-similar martingale. Let us also note that the consumption process
(3.9) is the difference of the wealth of the forward (pathwise) and the Wick-Itô-
Skorohod values of the replicating self-financing strategy studied in [16].

On the Assumption of Gaussianity. It is interesting to note that in deriving
Theorem 3.10 we did not actually use the fact that the stock price process is
Gaussian. The Gaussian pricing function in (3.4) was due to the Feynman-Kac
formula, but the pricing argument was derived straight from the Itô formula. So
that, Theorem 3.10 remains true under the more general uncertainty setting:

The driving process X in (2.1) is continuous with X0 = 0, E[Xt] = 0,
Var[X1] = 1, and there is uncertainty between the following hypotheses:

(H1”) d〈X〉t = 0.
(H2”) d〈X〉t = 2Ht2H−1 dt .

Note that under hypothesis (H1”) the market model admits arbitrage oppor-
tunities. Under hypothesis (H2”) the market model may still have arbitrage
strategies, but at least all European vanilla-type claims can be hedged (see [1]).
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