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Abstract

The Kestelman-Borwein-Ditor Theorem, on embedding a null se-
quence by translation in (measure/category) �large�sets, has two gen-
eralizations. Miller [MilH] replaces the translated sequence by a �se-
quence homotopic to the identity�. The authors, in [BOst9], replace
points by functions: a uniform functional null sequence replaces the
null sequence and translation receives a functional form. We give a
uni�ed approach to results of this kind. In particular, we show that (i)
Miller�s homotopy version follows from the functional version, and (ii)
the pointwise instance of the functional version follows from Miller�s
homotopy version.
Classi�cation: 26A03
Keywords: measure, category, measure-category duality, di¤er-

entiable homotopy.
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We begin by recalling the following result, due in this form in the measure
case to Borwein and Ditor [BoDi], but already known much earlier albeit in
somewhat weaker form by Kestelman ([Kes] Th. 3), and rediscovered by
Trautner [Trau] (see [BGT] p. xix and footnote p. 10). Below, for P a set
of reals (or property) that is Lebesgue measurable/has the Baire property
(�is Baire�for short), we say that �P holds for generically all t�to mean that
ft : t =2 Pg is null/meagre.

The Kestelman-Borwein-Ditor Theorem ( KBD Theorem). Let
fzng ! 0 be a null sequence of reals. If T is measurable and non-null/Baire
and non-meagre, then for generically all t 2 T there is an in�nite set Mt

such that
ft+ zm : m 2Mtg � T:

Furthermore, for any density point u of T , there is t 2 T arbitrarily close
to u for which the above holds.

We are concerned in this paper with what we loosely term �smooth gen-
eralizations�of the KBD Theorem, in that some form of di¤erentiability is
present in the assumptions concerning mappings on the pairs (t; z). In a
companion paper [BOst11] we derive a common non-smooth generalization
in which only continuity is assumed (the mappings are homeomorphisms).
We are also concerned by a further aspect � the �pointwise� nature of

theorem, because of the sequence of points zn which is in the datum. The
KBD Theorem was �rst generalized by Harry Miller [MilH], as below, by
replacing t + z with a more general function H(t; z) (originally de�ned on
R� R). We need a de�nition (the terminology is ours).

De�nition (Miller homotopy, cf. [MilH]). Let U be open and let I
be a non-degenerate interval (possibly in�nite, or semi-in�nite). We call a
function H : U � I ! R a Miller homotopy acting on U with distinguished
point z0 if:
(i) H(u; z0) � u; for all u 2 U;
(ii) H has continuous �rst-order partial derivatives H1 and H2, and
(iii) H2(u; z0) > 0; for all u 2 U:

Note. As the function H is di¤erentiable, and hence jointly continuous, it
is natural to regard it as establishing a homotopy to the identity (albeit utiliz-
ing a distinguished point z0 other than 0; and some interval about z0 instead
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of the customary unit interval). Condition (iii) is only a non-stationarity
requirement (map z ! �z; z0 ! �z0; if H2(u; z0) < 0):

Convention. We will refer to the distinguished point z0 as the �null
point� and any sequence zn ! z0 converging to the null point as a �null
sequence�. Thus in the case H(u; z) = u + z with z0 = 0; the sequence
zn ! z0 is a null sequence in the customary sense.

Miller�s Homotopy Theorem. Let H be a Miller homotopy acting on
an open set U with distinguished point z0: Let zn ! z0 be a null sequence
and let T � U be measurable and non-null/Baire and non-meagre. Then, for
generically all t 2 T; there is an in�nite set Mt such that

fH(t; zm) : m 2Mtg � T:

Stated thus, this too is a �pointwise�theorem, but it is noteworthy that
the substitutions,

zn(t) := H(t; zn)� t and un(t) = t+ zn(t); (1)

allow a functional reinterpretation of the theorem (we have used bold type
to distinguish functions from points). We may regard the sequence of func-
tions fzn(t)g; which converge to zero (see below), as the datum and now the
conclusion of Miller�s theorem reads: ft+ zm(t) : m 2Mtg � T; or, in short,

fum(t) : m 2Mtg � T: (2)

Thus Miller�s Theorem becomes simply a functional version of the KBD
Theorem. We now quote one of the functional generalizations which goes
beyond the KBD setting. This involves a continuously di¤erentiable function
f(:); see [BOst9] for the proof. It will be clear from its statement that the
case case f(u) = u yields the Miller Theorem in the form (2). We will need
several de�nitions.

De�nition (uniformity - pointwise). We say that the null sequence
fzng ! z0 is a uniformly null sequence, or that zn ! z0 uniformly, if for
some positive constant K;

jzn � z0j � K2�n; for all n 2 !:
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De�nition (uniformity - functionwise). We say that the sequence of
functions fzn(:)g is a uniformly null function sequence on U; or that zn(:)!
z0 uniformly on U; if each zn(:) is measurable/Baire and, for some positive
constant K,

maxfjzn(u)jg � K � 2�n; for all n 2 ! and all u 2 U:

De�nition (bi-Lipschitz). We call a uniformly null sequence fzn(:)g
bi-Lipschitz if the mappings t ! un(t) are bi-Lipschitz uniformly in n, i.e.
for some �; � and all n we have

0 < � � 1 + zn(u)� zn(v)
u� v � �; for u 6= v:

In particular z0n is bounded away from�1; except perhaps at countably many
points.

The following theorem is proved in [BOst9] (where further improvements,
motivated by convex analysis, are given); it is manifestly a �functionwise�
theorem.

Theorem (Generic Re�ection Theorem). Let T be measurable/Baire.
Let f(:) be continuously di¤erentiable and non-stationary at generically all
points. Let fzn(:)g ! 0 be a uniformly null sequence that is bi-Lipschitz with

1 + f 0(t)z0n(t) > 0; for all n; (3)

for generically all t 2 T: Then, for generically all t 2 T; there is an in�nite
set Mt such that

f(un) + t� f(t) 2 T; for all n 2Mt: (4)

In particular, if f is linear and f(t) = �t with � 6= 0; then, for generically
all u 2 T; there is an in�nite set Mu such that

�un(u) + (1� �)u 2 T for all n 2Mu: (5)

Setting � = 1 in (5) thus yields (2). We will see that the apparently
stronger form �the Homotopic Re�ection Theorem �is equivalent to this.
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Proposition 1 (Canonical Homotopy). Let U be an open set and let
H be a Miller homotopy acting on U with distinguished point z0: Let f be
continuously di¤erentiable and increasing on U: Then

F (u; z) := u+ f(H(u; z))� f(u)

is a Miller homotopy acting on U with distinguished point z0: In particular,
the canonical homotopy

F (u; z) := u+ f(u+ z)� f(u)

is a Miller homotopy acting on U with distinguished point z0 = 0:

Proof. This is clear since F (u; z0) = u; and F2(u; z0) = f 0(u)H2(u; z0):
�

We call the particular case canonical for two reasons. In the �rst place,
if F (u; z) := f(H(u; z)) + g(u) is a Miller homotopy, then the substitution
z = z0 yields g(u) = u � f(u); making the choice of g(:) unique, and H is
recoverable from F . The second reason is even more fundamental; we defer
this to the end of the paper.

Proposition 2 (Composition Theorem). Let U be an open set and
let H and F be Miller homotopies acting on U with distinguished point z0:
Then

G(u; z) := F (H(u; z); z)

is a Miller homotopy acting on some open subset of U with distinguished
point z0:

Proof. As H(u; z0) = u; by continuity, for any u 2 U; there is a neigh-
bourhood W � J of (u; z0), so that H maps W � J into U and W � V: The
rest is clear since

G2(u; z0) = F1(H(u; z0); z0)H2(u; z0) + F2(H(u; z); z0)

= H2(u; z0) + F2(H(u; z); z0) > 0: �

Proposition 3. Let H be a Miller homotopy acting on an open set U
with distinguished point z0: Let zn ! z0 uniformly. Put

zn(u) := H(u; zn)� u:
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Then
(i) fzn(u)g ! 0;
(ii) fzn(u)g is locally uniformly null in U ,
(iii) for some large enough N; fzn(u) : n � Ng is locally bi-Lipschitz in

U:

Proof. Since H1(t; z0) = 1; for any t; we may invoke the Mean Value
Theorem to write the Taylor expansion for (u; z) near (t; z0) as

H(u; z) = t+ (u� t) +H2(t; z0)(z � z0) + o(jj(u� t; z � z0)jj): (6)

Hence,
zn(u) = H2(t; z0)(zn � z0) + o(jj(u� t; zn � z0)jj): (7)

Thus the sequence has limit zero, and uniformity is clear provided u is close
enough to t: Again by the Mean Value Theorem, for some wn = wn(u; v); we
have

H(u; zn)�H(v; zn) = H1(wn; zn)(u� v);
so

zn(u)� zn(v) = (H1(wn; zn)� 1)(u� v):
Hence

1 +
zn(u)� zn(v)

u� v = H1(wn; zn):

But H1(t; z0) = 1; so near (t; z0) we can ensure that 12 � H1(wn; zn) � 2: �

Remark. Formula (7) indicates that in practice fzn(u)g is close to
monotonic if fzng is (see e.g. [BGT] Section 1.7.6 for slow decrease and
related matters).

Proposition 4. Let H be a Miller homotopy acting on an open set U
with distinguished point z0: Let zn ! z0 monotonically. Then the functions

hn(t) := H(t; zn)

are homotopic to the identity, and local di¤eomorphisms, hence locally �bi-
Lipschitz�(thus preserve null sets both ways); moreover

hn(t)! t; ultimately monotonically.
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Proof. Invertibility of hn follows from the Inverse Function Theorem.
Note that since H1(t0; z0) = 1; for any t0; we may invoke the Mean Value
Theorem to write the Taylor expansion near (t0; z0) as

H(t; z) = t0 + (t� t0) +H2(t0; z0)(z � z0) + o(jj(t� t0; z � z0)jj):

From here we deduce that

hn(t) = t+H2(t0; z0)(zn� z0)+ o(jj(t� t0; zn� z0)jj); as t! t0 and n!1.

Thus hn is almost a shift and hn(t)! t: The ultimate monotonicity, at any
t; follows from the continuity and positivity of the partial derivative H2 at
(t; z0): �

Corollary (Miller�s Theorem) The functionwise Generic Re�ection
Theorem implies the pointwise Miller Homotopy Theorem.

Proof. Indeed, the de�nition (1) and the argument following it are now
justi�ed by Proposition 3. So Miller�s Theorem follows from the Generic
Re�ection Theorem by taking f(u) = u: �

Now we obtain a pointwise converse: Miller�s Homotopy Theorem implies
the pointwise Homotopic Generic Re�ection Theorem.

Theorem (Pointwise Homotopic Generic Re�ection). Let U be
an open set and let H be a Miller homotopy acting on U with distinguished
point z0: Let T � U be measurable and non-null/Baire and non-meagre and
let zn ! z0: Then Miller�s theorem implies that, for generically all u 2 T;
there is an in�nite Mu such that

ff(um) + u� f(u) : m 2Mug = ff(H(u; zm)) + u� f(u) : m 2Mug � T:

In particular, for H(t; z) = t+ z and z0 = 0, we have

ff(u+ zm) + u� f(u) : m 2Mug � T:

Proof. Since
F (t; z) := f(H(t; z)) + t� f(t)

is a Miller homotopy, we may apply Miller�s Theorem to the homotopy F (t; z)
to obtain

fF (t; zm) : m 2Mtg � T: �
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A �rst homotopic generalization of the Generic Re�ection theorem may
be obtained by taking a function sequence zn(u) and transforming by a Miller
homotopy H. Then,

~zn(u) = H(u; zn(u))� u
is uniformly null and locally bi-Lipschitz. However, a conclusion in the form

ff(H(u; zm(u))) + u� f(u) : m 2Mug � T

is already available, in the equivalent form

ff(u+ ~zm(u)) + u� f(u) : m 2Mug � T:

Our �nal result is obtained by replacing the f construction here by the obvi-
ous generalization, suggested by Propositions 1 and 2, a composition Miller
homotopy F:We see below that the Generic Re�ection Theorem implies such
a generalization of itself. We thus have the following result.

Theorem (Homotopic Generic Re�ection). Let H and F be Miller
homotopies acting on an open set U with distinguished point z0: Let T � U
be non-null/non-meagre and let fzn(u)g be a uniformly null sequence that is
bi-Lipschitz on U (so converging to z0). If

1 + [F2(u; z0) +H2(u; z0)]z
0
n(u) > 0; for all n;

for generically all u 2 U; then, for generically all u 2 T; there is an in�nite
Mu such that

fF (H(u; zm(u)); zm(u)) : m 2Mug � T:
In particular, let f be continuously di¤erentiable and non-stationary in

U: If, for u 2 U;
1 + f 0(u)H1(u; z0) > 0; for all n;

(in particular if 1 + f 0(u) > 0 on U), then, for generically all u 2 T; there
is an in�nite Mu such that

ff(un(u))+u�f(u) : m 2Mug = ff(H(u; zm(u)))+u�f(u) : m 2Mug � T:

Proof. According to Proposition 2 the equation

G(t; z) = F (H(t; z); z)
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de�nes a homotopy provided the composition is valid. Let

�zn(t) := F (H(t; zn(t)); zn(t))� t = G(t; zn(t))� t:

Thus

1 + �z0n(t) = F1(H(t; zn(t)); zn(t))H1(t; zn(t))

+[F1(H(t; zn(t)); zn(t))H2(t; zn(t)) + F2(H(t; zn(t)); zn(t))]z
0
n(t):

Then, by Proposition 3, this is locally a uniformly null, bi-Lipschitz sequence
tending to zero. Hence, the Generic Re�ection Theorem (applied with f(u) =
u) yields the desired conclusion:

ft+ �zm(t) : m 2Mug � T;

or
fF (H(u; zm(u)); zm(u)) : m 2Mug � T:

Remarks.
1. The Homotopic Re�ection Theorem follows from the special linear case

f(u) = u of the Generic Re�ection Theorem. In turn the Homotopic Re�ec-
tion Theorem may be applied to F (t; z) = f(t+ z)� f(t) + u; for a general
f(:); to obtain the conclusion of the Generic Re�ection Theorem. Thus the
special linear case f(u) = u contains the nub; it is actually equivalent to
the general case of the Generic Re�ection Theorem. This is ultimately the
reason for regarding the homotopy in Proposition 1 as canonical.
2. There is an alternative approach to the Homotopic Re�ection Theorem.

One can adapt the proof in [BOst9] of the Generic Re�ection Theorem, as
follows. Firstly, we need to de�ne the analogue of the f -congugate: the
F -conjugate of fzm(t)g is de�ned to be

�zm(t) := F (H(t; zm(t)); zm(t))� F (t; z0) = F (H(t; zm(t)); zm(t))� t:

Secondly, as may be expected from Proposition 3, we set

fn(t) := F (H(t; zn(t)); zn(t)):

Hence

f 0n(t) : = F1(H(t; zn(t)); zn(t))H1(t; zn(t))

+[F1(H(t; zn(t)); zn(t))H2(t; zn(t)) + F2(t; zn(t))]z
0
n(t);
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so that fn(u) is increasing for u near t0 (with at most countably many ex-
ceptions) provided

1 + [F2(t; z0) +H2(t; z0)]z
0
n(t) > 0;

since H1(t0; z0) = F1(t0; z0) = 1:
Now by (6) applied to F we have

fn(t) = H(t; zn(t))+(t� t0)+F2(t0; z0)(zn(t)� z0)+o(jj(t� t0; zn(t)� z0)jj);

since H(t0; z0) = t0: Applying (6) again, but now to H; we have

fn(t) = t+ [H2(t0; z0) + F2(t0; z0)](zn(t)� z0) + o(jj(t� t0; zn(t)� z0)jj):

Hence, since H2 and F2 are continuous, for u su¢ ciently close to t and n
large enough, we have the critical inequality

jfn(u)� uj �M jznj;

for some constant M: This is all that is needed for the proof in [BOst9] to
proceed.
3. The overall conclusion is that all the functional re�ection theorems are

equivalent. This is because, in the limit, all the null sequences act like �rst-
order in�nitesimals added to the identity. Thus, despite its being restricted to
the pointwise case, Miller�s Theorem falls barely short of the full story. The
essence of the KBD Theorem is that it applies to a wide class of sequences
homotopic to the identity, as Miller was the �rst to observe.
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