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Abstract

The in�nite combinatorics here give statements in which, from
some sequence, an in�nite subsequence will satisfy some condition �
for example, belong to some speci�ed set. Our results give such state-
ments generically �that is, for �nearly all�points, or as we shall say,
for quasi all points �all o¤ a null set in the measure case, or all o¤
a meagre set in the category case. The prototypical result here goes
back to Kestelman in 1947 and to Borwein and Ditor in the measure
case, and can be extended to the category case also. Our main result
is what we call the Category Embedding Theorem (CET), which con-
tains the Kestelman-Borwein-Ditor Theorem (KBD) as a special case.
Our main contribution is to obtain functionwise rather than pointwise
versions of such results. We thus subsume results in a number of re-
cent and related areas, concerning e.g. additive, subadditive, convex
and regularly varying functions.
Classi�cation: 26A03 Keywords: automatic continuity, mea-

surable function, Baire property, generic property, in�nite combina-
torics, function spaces, additive function, subadditive function, mid-
point convex function, regularly varying function.
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1 Introduction

We shall be concerned here with both measure and category (cf. [Oxt]), and
need concepts of smallness for each. On the measure side, we deal with the
class L of (Lebesgue) measurable sets, and interpret small sets as (Lebesgue)
null sets; on the category side we deal with the class Ba of sets with the Baire
property (brie�y, Baire sets), and interpret small sets as meagre sets (those
of the �rst category). We use quasi everywhere (q.e.), or for quasi all points,
to mean for all points o¤ a meagre set. For � L or Ba; we say that P 2 �
holds for generically all t if ft : t =2 Pg is null/meagre according as � is L or
Ba:
Our starting-point is the following result, due to Kestelman [Kes] and to

Borwein and Ditor [BoDi]. This exempli�es the in�nite combinatorics of the
title, but concerns scalars, rather than functions.

Theorem (Kestelman-Borwein-Ditor Theorem). Let fzng ! 0 be
a null sequence of reals. If T is measurable and non-null/Baire and non-
meagre, then for generically all t 2 T there is an in�nite set Mt such that

ft+ zm : m 2Mtg � T:

This result (brie�y, the KBD theorem) is a corollary of a topological
result, the Category Embedding Theorem (CET), given in one form in Sec-
tion 2 below and in another form in [BOst-bit]. The starting point there is
that hn(t) := t + zn is a sequence of self-homeomorphisms of the line which
converge uniformly to the identity.
Results of this type are crucial in several recent studies by the present

authors. First, one may study additive functions � solutions of the Cauchy
functional equation. For these, one has a dichotomy � such functions are
either very good or very bad. Regularity conditions discriminating between
these two may be given in either measure or category forms; a uni�ed treat-
ment is given in [BOst-SteinOstr], including as special cases classical results
of Steinhaus and Ostrowski. Next, results of Steinhaus-Ostrowski type are
the key to the fundamental theorem of regular variation, the uniform con-
vergence theorem (UCT: see e.g. [BGT], Section 1.2). A similarly uni�ed
treatment of the measure and category cases here is contained in a com-
panion paper, [BOst-bit]. Additivity may be weakened to subadditivity; the
subadditive case is treated along similar lines in [BOst5]. It may also be
weakened to (mid-point) convexity, for which see [BOst6]. Furthermore, such
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results remain valid under smooth deformation; homotopy versions are given
in [BOst10].
Our object here is to give a uni�ed treatment of such in�nite combina-

torics on function spaces in general, thus providing a common perspective
on all these results. In Section 2 below we give the CET, in what we call
its conjuction form (the motivation being the need to handle bilateral shifts
t � zm; t + zm): In Section 3 we work in normed groups, as in [BOst12], ex-
tending the bitopological approach of [BOst-bit] to this more general setting.
What motivates such a broader context is the re-interpretation of a sequence
of self-homeomorphisms hn(t) uniformly converging to the identity as giving
rise to null function sequences zn(t) := hn(t) � t (converging in supremum
norm to zero) which need not be constant as in the KBD Theorem. In Section
4 we give generic forms of some results appearing in Kuczma [Kucz], Ch. IX,
which we term re�ection theorems. We close in Section 5 with a treatment
in this vein of a genericity result, due to Császár [Csa], which makes explicit
work in [Kucz], IX.7.
As in [BOst-bit] we will need the density topology (introduced in [HauPau],

[GoWa], [Mar] and studied also in [GNN] �see also [CLO], and for textbook
treatments [Kech], [LMZ]). Recall that for T measurable, t is a (metric)
density point of T if lim�!0 jT \ I�(t)j=� = 1; where I�(t) = (t� �=2; t+ �=2).
By the Lebesgue Density Theorem almost all points of T are density points
([Hal] Section 61, [Oxt] Th. 3.20, or [Go¤]). A set U is d-open (open in the
density topology) if each of its points is a density point of U: We mention
three properties:
(i) The density topology (d-topology) is �ner than (contains) the Euclid-

ean topology ([Kech], 17.47(ii)).
(ii) A set is Baire in the density topology i¤ it is (Lebesgue) measurable

([Kech], 17.47(iv)).
(iii) A function is d-continuous i¤ it is approximately continuous in Den-

joy�s sense ([Den]; [LMZ], p.1, 149).
The reader unfamiliar with the density topology may �nd it helpful to

think, in the style of Littlewood�s First Principle, of basic opens sets as being
intervals less some measurable set. See [Lit] Ch. 4, [Roy] Section 3.6 p.72.
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2 Conjunction Category Embedding Theorem

We recall a de�nition from [BOst-bit] and then formulate two variants. The
�rst two de�nitions refer to homeomorphisms which form a sequence of �ap-
proximations�to the identity in the sense of (approx) below, while the third
introduces a relaxation.

De�nition (weak category convergence). A sequence of auto-homeomorphisms
hn of a space X satis�es the weak category convergence condition (wcc) if:
For any non-empty open set U; there is an non-empty open set V � U

such that, for each k 2 !;\
n�k

V nh�1n (V ) is meagre. (wcc)

Equivalently, for each k 2 !; there is a meagre setM such that, for t =2M;

t 2 V =) (9n � k) hn(t) 2 V: (approx)

We say that the homeomorphisms hn satisfy the weak category convergence
conjunctively (wccc) if:\

n�k

V n[h�12n (V ) [ h�12n+1(V )] is meagre. (wccc)

Finally, we formulate a local version of (wcc) which allows some rescaling
of hn: Say that the sequence of homeomorphisms hn satis�es the re-scaled
weak category convergence condition at u (rwcc) if for every open set U with
u 2 U there is an open set V with u 2 V � U and � = �u > 0 with\

n�k

�V nh�1n (V ) is meagre. (rwcc)

Remarks. 1. In the case of the line with Euclidean topology the func-
tions hn(t) = t � zn; with sign selected according to parity, are autohomeo-
morphisms. The condition (wccc) is used to deduce the bilateral embedding
result

ft� zm; t+ zm : m 2Mtg � T:

Multiple conjunction forms, k-fold ones, may also be considered by working
modulo k rather than 2 in (wccc).
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2. Taking h2n+1 = h2n reduces (wccc) to (wcc).
3. For (rwcc) the approximation condition (approx) becomes

s = ��1t 2 V =) (9n � k) hn(�s) 2 V:

4. Consider the a¢ ne homeomorphisms

An(t) = �nt+ zn

with �n � 2� > 0 and zn ! 0: For any symmetric interval I� about the
origin of radius �; we have

�nI� + zn � 2�I� + zn = I2�� + zn:

For n large enough we have zn 2 I��; so

�nI� + zn � I��;

i.e.
An(I�) � I��; so that �I�nAn(I�) is meagre.

Thus A�1n satis�es the (rwcc) at the origin.
Note that if M is meagre then T := I�nM is Baire non-null, and we have

An(T ) = An(I�nM) � �I�nAn(M);

so
�TnAn(T ) is meagre.

Theorem 1 (Category Embedding Theorem - Conjunction form).
Let X be a Baire space. Suppose given homeomorphisms hn : X ! X which
satisfy the weak category convergence condition conjunctively (wccc). Then,
for any non-meagre Baire set T; for quasi all t 2 T; there is an in�nite set
Mt such that

fhm(t); hm+1(t) : m 2Mtg � T:

Proof. Suppose T is Baire and non-meagre. We may assume that T =
UnM with U non-empty and M meagre. Let V � U satisfy (wccc).
Since the functions hn are homeomorphisms, the set

M 0 :=M [
[
n

h�1n (M)

5



is meagre. Put

W = h(V ) :=
\
k2!

[
n�k

V \ h�12n (V ) \ h�12n+1(V ) � V � U:

Then V \W is co-meagre in V: Indeed

V nW =
[
k2!

\
k�n

V n[h�12n (V ) [ V nh�12n (V )];

which by assumption is meagre.
Let t 2 V \ WnM 0 so that t 2 T: Now there exists an in�nite set Mt

such that, for m 2 Mt, there are points v2m; v2m+1 2 V with t = h�12m(vm) =
h�12m+1(vm+1): Since h

�1
2m(v2m) = t =2 h�12m(M); we have v2m =2 M; and hence

v2m 2 T ; likewise v2m+1 2 T: Thus fh2m(t); h2m+1(t) : m 2 Mtg � T for t in
a co-meagre set, as asserted. �

The result above strengthens the Category Embedding Theorem of [BOst-bit]
with almost the same proof. We close with a further strengthening obtained
by reworking the proof so as replace (wccc) with (rwcc).

Corollary 1 (Locally rescaled CET). Let R be given a Baire topology
and let T be Baire non-meagre. Suppose that hn are homeomorphisms satis-
fying (rwcc) at 0: Then, for quasi all u 2 T and quasi all t 2 T near u (i.e
in some open set U with u 2 U), there is an in�nite Mt;u such that

u+ hm(t� u) 2 T; for all m 2Mt;u:

Proof. Let T = UnM [ N with U open and M;N meagre. As our
conclusions concern quasi all members of T; we may take N = ?; which
means that �for quasi all u 2 T�is synonymous with �for all u 2 UnM�. Fix
u 2 T: Then 0 2 U � u; select V; with u 2 V � U; and � = �u such that

V � U � u and
\
n�k

�V nh�1n (V ) is meagre.

Further, select W � V with

�W � V � U � u:
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Put
S = �W \

\
k2!

[
n�k

h�1n (Tu);

then
M 0 = �WnS =

[
k2!

\
n�k

�Wnh�1n (Tu) �
[
k2!

\
n�k

�V nh�1n (Tu)

is meagre. But �Wn(M �u) � (U �u)n(Mnu) so for t 2 (u+ �W )\T with
t =2 (M 0 + u) [M we have x := t � u 2 (Tu \ S) and so there is an in�nite
set Mt;u such that

t� u = x 2 h�1m (Tu); for m 2Mt;u: (equiv)

Thus
u+ hm(t� u) 2 T; for m 2Mt;u: �

3 Shift-embeddings

We now specialize Theorem 1 to a metric group setting in order to con-
sider sequences of autohomeomorphisms generated as shifts hn(x) = xzn: Let
T be a normed group with norm jjtjj := d(t; eT ), where d is right-invariant
(see [BOst12] for background and references). Thus d(x; y) = d(e; yx�1) =
jjyx�1jj: The conjugate metric is ~d(x; y) = jjxy�1jj = d(e; xy�1) = d(x�1; y�1):
Let A = Auth(T ) denote the set of bounded autohomeomorphisms h from T
to T (i.e. having supT d(h(t); t) <1) with composition � as group operation.
We write " for eA; so that "(t) := t: Recall that A has the right-invariant
metric

dA(h; h
0) = sup

T
d(h(t); h0(t));

which generates the norm

jjhjjA := dA(h; ") = sup
T
d(h(t); t):

Let C = Cb(T ) denote the set of continuous functions from T to T with
norm-bounded range and with group operation pointwise multiplication:

x � y(t) = x(t)y(t):

Here the identity element is the constant function t ! eT ; to be written e:
Thus e(t) := eT : We give C the supremum norm.
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De�nition. Say that zn 2 C is a null sequence in C or simply that zn is
uniformly null, if zn ! e; in sup norm, i.e.

jjznjj := sup dT (zn(t); eT )! 0:

Thus zn is a null sequence in C i¤ z�1n is a null sequence in C (where z�1n (t) :=
zn(t)

�1): Put
�n(t) = zn(t)t;

then

jj�njjA := sup dT (�n(t); t) = sup dT (zn(t)t; t) = sup dT (zn(t); eT ) = jjznjjC:

One thus has the following result.

Lemma. For zn in C, the sequence �n converges to the identity in A i¤
zn is a uniformly null sequence (in C).

The next two theorems correspond to Theorem 3E and 3D of [BOst-bit]
for the (wcc), extended from the reals to normed groups.

Theorem 2N (Norm topology shift theorem). If  n in A con-
verges to the identity, then  n satis�es the weak category convergence condi-
tion (wcc). Indeed the sequence satis�es (wccc).

Proof. It is more convenient to prove the equivalent statement that  �1n
satis�es the category convergence condition.
Put zn =  n(z0); so that zn ! z0: Let k be given.
Suppose that y 2 B"(z0); i.e. r = d(y; z0) < ": For some N > k; we have

"n = d( n; id) <
1
3
("� r); for all n � N: Now

d(y; zn) � d(y; z0) + d(z0; zn)

= d(y; z0) + d(z0;  n(z0)) � r + "n:

For y =  n(x) and n � N;

d(z0; x) � d(z0; zn) + d(zn; y) + d(y; x)

= d(z0; zn) + d(zn; y) + d(x;  n(x))

� "n + (r + "n) + "n < ":

8



So x 2 B"(z0); giving y 2  n(B"(z0)): Thus

y =2
\
n�N

B"(z0)n n(B"(z0)) �
\
n�k

B"(z0)n n(B"(z0)):

It now follows that \
n�k

B"(z0)n n(B"(z0)) = ?;

giving (wcc) as required; similarly for (wccc). �

Theorem 2D (Density topology shift theorem). Let T be a normed
locally compact group with left-invariant Haar measure m. Let V be m-
measurable and non-null. For any null sequence zn in C(T ) let hn(t) :=
tz�1n (t): Then for each k 2 !;

Hk =
\
n�k

V n[h�12n (V )[h�12n+1(V )] is of m-measure zero, so meagre in the d-topology.

That is, the sequence hn(t) = tz�1n (t) satis�es the weak category convergence
condition (wccc)

Proof. Suppose otherwise. We write V z for V �z; etc. so that t 2 h�1n (V )
i¤ hn(t) 2 V i¤ t 2 V zn(t): Now, for some k; m(Hk) > 0: Write H for Hk:
Since H � V; we have, for n � k; that ; = H \ h�1n (V ) and so a fortiori
h =2 Hzn(h) for h 2 H: Let u be a metric density point of H: Thus, for some
bounded (Borel) neighbourhood U�u we have

m[H \ U�u] >
3

4
m[U�u]:

Fix U� and put
� = m[U�u]:

Let E = H\U�u: For any zn(t); we havem[(Ezn(t))\U�uzn(t)] = m[E] >
3
4
�: By Theorem A of [Hal] p. 266, for all large enough n; we have

m(U�u4U�uzn(t)) < �=4:

Hence, for all n large enough we have j(Ezn(t))nU�uj � �=4: Put F =
(EBjjznjj(e)) \ U�u; then m[F ] > �=2 for all large enough n: But � � m[E [
F ] = m[E] +m[F ]�m[E \ F ] � 3

4
� + 1

2
��m[E \ F ]: So for h 2 H we have

m[H \ (Hzn(h))] � m[E \ F ] � 1

4
�;
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contradicting h =2 Hzn(h) for h 2 H: This establishes the claim. �

Remark. The only fact about hn used in the proof above is that, for
some sequence of radii r(n) tending to zero, hn(t) 2 Br(n)(t): One may thus
verify the (rwcc) condition in the following context.

Corollary 2. For An(t) := �nt+ zn; with �n ! � > 0 and zn uniformly
null, and for V bounded and of �nite positive measure,\

n�k

�V nAn(V ) is of m-measure zero, so meagre in the d-topology.

Proof. Put �n = �+ "n; so that "n ! 0; and let

Wn := ("n + zn)(V ) := f"nv + zn(v) : v 2 V g

so that
(�n + zn)(V ) � �V +Wn:

Nowm[Wn]! 0 and diam(Wn)! 0; so since �V is of �nite positive measure
Theorem 2D yields that \

n�k

�V nAn(V ) is null,

as required. �
As an immediate corollary of Theorems 1 and 2N we obtain the following

special case of Theorem 1.

Corollary 3. If X is a Baire non-meagre subset of functions x(:) in
C[0; 1] and fn ! f in C[0; 1] in sup-norm, then for quasi all x 2 X there is
an in�nite set Mx such that

fx+ fm � f : m 2Mxg � X :

Proof. Let zn = fn� f ; then zn ! 0: Since C[0; 1]; a complete metric space,
is a Baire space, and x! x+ zn is a sequence of homeomorphisms, Theorem
2N applies. �

We may now deduce two strengthened forms of the Kestelman-Borwein-
Ditor embedding theorem. Putting hn(t) = tzn(t) we obtain the following
corollary.
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Theorem 3 (Functionwise Embedding Theorem). Let T be a
normed locally compact group, zn a null sequence in Cb(T ) such that t !
tzn(t) is, for each n; an autohomeomorphism. If S is Haar measurable and
non-null, resp. Baire and non-meagre, then for generically all t 2 S there is
an in�nite set Mt such that

ftzm(t) : m 2Mtg � S:

Next let zn and wn be null sequences in Cb(T ): Put h2n(t) = tzn(t) and
h2n+1(t) = twn(t); then the merged sequence z0(t); w0(t); z1(t); w1(t); ::: is a
null sequence in Cb(T ): Thus one has

Theorem 4 (Functionwise Conjunction Embedding Theorem).
Let T be a normed locally compact group, zn and wn null sequences in Cb(T )
such that t ! tzn(t) is, for each n; an autohomeomorphism. If S is Haar
measurable and non-null, resp. Baire and non-meagre, then for generically
all t 2 S there is an in�nite set Mt such that

ftzm(t); twm(t) : m 2Mtg � T:

This includes the result on bi-lateral shifts mentioned earlier.

4 Generic Re�ection Theorem

In this section, working again in the context of T = R, we begin by formulat-
ing simple conditions ensuring that various null sequences zn ! 0 in Cb(R)
lead to autohomeomorphisms hn(t) := t + zn(t) of R in the usual or in the
density topology. This will enable us to apply the functionwise embedding
theorems.

De�nition. Say that h : R! R is bi-Lipschitz (a notion implicit in [Br])
if, for some �; �;

0 < � � h(u)� h(v)

u� v
� �; for u 6= v:

In particular, h is continuous and strictly increasing, and so is invertible with
continuous and strictly increasing inverse, also bi-Lipschitz, and di¤eren-
tiable, except possibly for at most countably many points. The bi-Lipschitz
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functions preserve density points � in particular images and preimages of
null/meagre sets are null/meagre (see [Br], or [CL1] and [CL2]) �and so are
homeomorphisms in the d-topology on R:

De�nition. Call a null sequence zn in Cb bi-Lipschitz if the mappings
u ! u + zn(u) are bi-Lipschitz uniformly in n, i.e. for some �; � and all n
we have

0 < � � 1 + zn(u)� zn(v)

u� v
� �; for u 6= v: (1)

In particular z0n is bounded away from�1; except perhaps at countably many
points.

De�nition. For zn a sequence in Cb; the f-conjugate sequence �zn is
de�ned as follows:

�zn(t); or zfn(t); := f(t+ zn(t))� f(t):

Lemma. For f Lipschitz, the f-conjugate sequence is null in Cb: If zn(t)
satis�es (1) and the derivative f 0(t) is continuous near z = u and satis�es

1 + (�� 1)f 0(u) > 0;

and is bounded above in a neighbourhood of t = u; then the f-conjugate
sequence f�zn(t)g is locally bi-Lipschitz near t = u. In particular for zn
di¤erentiable this is so if

1 + f 0(u)z0n(u) > 0; for all n:

Proof. For f with Lipschitz constant �f we have jj�znjj � �f jjznjj; as

j�zn(t)j = jf(t+ zn(t))� f(t)j � �f jzn(t)j:

For f di¤erentiable, we may write f(u)� f(v) = f 0(w(u; v))(u� v) and

f(u+ zn(u))� f(v + zn(v)) = f 0(wn(u; v))[zn(u)� zn(v) + (u� v)]:

Thus we have

�zn(u)� �zn(v)
u� v

= f 0(wn(u; v))
zn(u)� zn(v)

u� v
+ [f 0(wn(u; v))� f 0(w(u; v))]:
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Hence

1 +
�zn(u)� �zn(v)

u� v
= 1 + f 0(wn)

zn(u)� zn(v)

u� v
+ [f 0(wn(u; v))� f 0(w(u; v))]

� 1 + (�� 1)f 0(wn) + [f 0(wn(u; v))� f 0(w(u; v))]

and the latter term is positive for v in a small enough neighbourhood of
t = u: To obtain the di¤erentiable case we note that in the preceeding line

1 + f 0(wn)
zn(u)� zn(v)

u� v
> 0

for v in a small enough neighbourhood of t = u: �

As an immediate corollary of the above Lemma and the CET and the
two shift theorems, we have:

Theorem 5 (Generic Re�ection Theorem). Let T be measurable/Baire,
f(:) be continuously di¤erentiable and non-stationary at generically all points,
zn ! 0 in supremum norm be a null sequence that is bi-Lipschitz with

1 + f 0(t)z0n(t) > 0; for all n; (2)

for generically all t 2 T: Then, for generically all t 2 T; there is an in�nite
set Mt such that

t+ f(t+ zn(t))� f(t) 2 T; for all n 2Mt: (3)

In particular, if in addition f is linear and f(t) = �t with � 6= 0; then for
generically all u 2 T; there is an in�nite set Mu such that

�un + (1� �)u 2 T for all n 2Mu; where un = u+ zn(u): (4)

For our closing results we need the following.

De�nitions.
1. Say that f is smooth for zn if (2) holds.
2. More generally, say that the sequence fn of function from R to R is

smooth for zn if:
(i) �zn(t) := fn(t+ zn(t))� fn(t) is a null sequence, and
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(ii) hn(t) := t+ �zn(t) is an autohomeomorphism.

Example 1. Here the linear case f(t) = �t is of particular interest. Here

hn(t) := t+ f(t+ zn(t))� f(t) = t+ �zn(t):

For � > 0; the derivative condition for hn to be increasing reads

1 + �z0n(t) � 0; or z0n(t) � � 1/�:

So, if the null function sequence is constant (as in Kestelman-Borwein-Ditor
Theorem), with zn(t) � zn; the condition is satis�ed, as it reduces simply to
0 � � 1/�:

Example 2. Let �n be a sequence of non-zero reals and zn a null sequence
in C: Put

fn(t) = �nf(t);

where f(:) is continuously di¤erentiable. Thus

j�zn(t)j = jfn(t+ zn(t))� fn(t)j = �njzn(t)jjf 0(vn(t))j;

for some vn(t): Thus j�zn(t)j ! 0 on compacts if �n is bounded. Now

d

dt
(t+ �nf(t+ zn(t))� �nf(t)) = 1 + 
n(f

0(t+ zn(t))[1 + z0n(t)]� f 0(t))

= 1 + 
nf
0(t+ zn(t))z

0
n(t) + �n[f

0(t+ zn(t))� f 0(t)]:

Thus, for �n bounded, a condition such as

1 + �nf
0(t)z0n(t) > 0

ensures that t+ �zn(t) is a Euclidean homeomorphism. This will be so when
zn(t) � zn (constant).
For f(t) = t we have

�zn(t) = �nzn(t):

Thus if (1) holds for zn; then, for u; v distinct and �n > 0;

1� �n < 1 + �n(�� 1) � 1 + �n
zn(u)� zn(v)

u� v
� 1 + �n(� � 1):
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So, for 0 < �n < 1; we conclude that �zn is bi-Lipschitz. If zn(t) = zn
(constant) then the only condition that needs to be in place is that �njjznjj !
0: This can be easily be arranged by replacing zn by a subsequence ẑn = zk(n)
such that �njjzk(n)jj ! 0:

Theorem 6 (Smooth Image Theorem). Let f and g both be smooth
for zn 2 C which is di¤erentiable and bi-Lipschitz. Then, for generically all
t 2 T; there is an in�nite set Mt such that

t+ zfn 2 T; and t+ zgn 2 T for all n 2Mu: (5)

In particular, for f smooth and g(t) = t the identity map we obtain the
simultaneous embedding:

t+ zfn 2 T; and t+ zn 2 T for all n 2Mt:

Furthermore, if f and g are smooth and linear and f(t) = �t with � 6= 0;
g(t) = �t with � 6= 0; then for generically all t 2 T; there is an in�nite set
Mt such that

t+ �zn 2 T; and t+ �zn 2 T for all n 2Mt:

For instance, taking � = 1; � = �1 we obtain generic bilateral embedding:

t+ zn 2 T; and t� zn 2 T for all n 2Mt:

For �n = 2n and zn(t) = zn constant, the following result (though not its
proof) appears implicitly in the proof of Császár�s Non-separation theorem
(of a mid-point convex function and its lower hull by a measurable function);
see [BOst6] for applications.

Theorem 7 (Császár�s Genericity Theorem, [Csa], or [Kucz] p 223-
226). Let T be measurable, non-null or Baire, non-meagre.
(i) Let f�ng be bounded from below by unity and let fzng ! 0 be uniformly
null. For generically all t 2 T; there are points tn 2 T such that, along some
subsequence of n;

t = �ntn + (1� �n)un(t); where un(t) = t+ zn(t):

(ii) Let f�ng be positive and bounded away from zero and let fzng ! 0 be a
null sequence of reals. For generically all u 2 T and generically all t near
u; there are points tn 2 T such that, along some subsequence of n;

t = �ntn + (1� �n)un; where un = u+ zn:
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Proof. The conclusions concern subsequences; so we may divide the
argument according as �n tends to in�nity or is convergent. Suppose �rst
that an ! 1; and so also that, for all n; �n > 1: For 
n := 1=�n and
�n = 1 � 
n, we have 0 < �n < 1: Taking fn(t) = �nt = (1 � 
n)t; we
conclude from Example 2 above that for generically all t 2 T there is an
in�nite set Mt such that

tn = t+ (1� 
n)zn(t) 2 T; for n 2Mt:

So
tn = 
nt+ (1� 
n)[t+ zn(t)] 2 T;

and equivalently
t = �ntn + (1� �n)un(t):

Now suppose that �n ! � > 0: Thus (1 � �n)zn ! 0: Take h�1n (t) =
An(t) = �nt + (1 � �n)zn(t): Since (rwcc) holds at 0 in the Euclidean case
(by Remark 4 of Section 2), and also in the density case by Corollary 2, we
conclude that there is an in�nite set Mt;u such that

t� u = x 2 h�1m (Tu); for m 2Mt;u:

Thus, as in (equiv), we have

t� u = h�1n (tn � u) = �n(tn � u) + (1� �n)zn;

or again
t = �ntn + (1� �n)(u+ zn): �

Remarks. 1. Theorem 5 applies also to sequences zn which converge
to zero on compacts. This is because all our results are local and because
of the procedure of capping which follows. Suppose zn(t) only converges to
zero on compacts and that t+ zn(t) is is a Euclidean homeomorphism (i.e. is
strictly increasing and continuous). For any interval (a; b) in R, the capped
sequence:

ẑn(t) =

8<:
zn(a); for t � a;
zn(t); for a < t < b;
zn(b) for t � b;

has ẑn ! 0 in supremum norm, and the substitution of ẑn for zn preserves the
homeomorphism property (i.e. t+ ẑn(t) is strictly increasing and continuous)
as well as equality with t+ zn(t) on (a; b).

16



For instance, consider f(t) = t2 and a given null sequence of constants
wn ! 0: Here its f -conjugate sequence is zn(t) := wn(2t+ wn) and

hn(t) := t+ zn(t) = t(1 + 2wn) + w2n

is increasing for n large enough; however zn ! 0 uniformly only on com-
pacts. Nevertheless, by the capping procedure, here too, for T Baire non-
meagre/measurable non-null, for generically all t in T there is an in�nite set
Mt such that

ft+ zn(t) : m 2Mtg � T:

2. Other examples of smooth generation of null sequences are

�zn(t) := f('(t) + zn(t))� f('(t));

where ' is homeomorphism. Thus if  = '�1; then t+ �zn(t) becomes, under
the substitution u = '(t)

 (u) + f(u+ zn( (u)))� f(u):

The special case  = f then leads to the embedding of the sequence

f(u+ zn( (u))):
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