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Abstract

The Ostrowski theorem in question is that an additive function
bounded (above, say) on a set T of positive measure is continuous. In
the converse direction, recall that a topological space T is pseudocom-
pact if every function continuous on T is bounded. Thus theorems
of �converse Ostrowski�type relate to �additive (pseudo)compactness�.
We give a di¤erent characterization of such sets, in terms of the prop-
erty of �generic subuniversality�, arising from the Kestelman-Borwein-
Ditor theorem and relate these to various new forms of compactness.
Classi�cation: 26A03
Keywords: Ostrowski�s theorem, additive function, pseudocom-

pact, generically subuniversal, additively compact, shift-compact, com-
pactly shift-covered
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Usually in analysis, one distinguishes between ordinary, or Euclidean,
analysis and functional analysis by dimension ��nite or in�nite �or by com-
pactness properties (whether or not the unit ball is compact). By contrast,
here we do real (or Euclidean) analysis, but rather than taking the real line
R as a one-dimensional vector space over itself, instead consider it as an
in�nite-dimensional vector space over the rationals Q. Although sets such as
the unit ball are then non-compact, one can induce compactness by using the
shift, that is, the additive group structure of the reals. It is this combination
of compactness and additivity that underlies the paper. Indeed, in the light
of our results, we are now able to interpret the important work of Kestelman
[Kes], which partly motivates this paper and fully motivates [BOst3], as a
contribution relating to compactness.
Let Add denote the additive (real-valued) functions on R and for T � R;

let Add(T ) = ff jT : f 2 Addg denote the family of their restrictions to
T: Darboux�s theorem of 1875 ([Dar], [AD] Section 21.6; see also [BOst12]
Section 7 for a natural metric group setting) asserts that an additive function
bounded above on some interval is continuous, i.e.

Add\B+loc � C;

where B+loc denotes the functions on R which are locally bounded from above
everywhere and C those which are continuous. (Note that for an additive
function local boundedness from above in some neighbourhood implies local
boundedness everywhere.) The stronger result is Ostrowski�s theorem of 1929
[Ostr] that a (mid-point) convex, so a fortiori an additive, function bounded
above on some set T � R of positive measure is continuous (this too has
a natural metric group generalization, see [BOst12] Section 6), or, adapting
the earlier notation, in symbols

Add\B+loc(T ) � C; with jT j > 0:

We identify the natural converse of this (in relation to additive functions),
but require �rst a stronger formulation still, establishing a connection with
a weak (sequential) compactness notion of independent interest (additive
pseudocompactness).
The proof of Ostrowski�s theorem rests on two ideas: the Darboux di-

chotomy � for f 2 Add; either f is continuous, or everywhere (locally)
unbounded � and the subuniversal property of T ([Kes] Th. 2) � for any
null sequence fzng ! 0; there is a point t and an in�nite set Mt such that
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ft+ zm : m 2 Mtg � T: (Thus f(zn)!1 makes ff(t+ zm) : m 2 Mtg un-
bounded from above on T; a contradiction). Our strong form of Ostrowski�s
theorem requires merely the weaker hypothesis that f 2 Add be bounded
above on a subuniversal T: In this form it also embraces the category ana-
logue (cf. Mehdi�s Theorem [Meh] on the continuity of a mid-point convex
function bounded on a non-meagre Baire set); the two cases are viewed in
[BOst11] as bi-topologically associated (under the association of the density
topology to the Euclidean).
The key concept of universality (for which Mt needs to be co-�nite) is

implicit in Banach [Ban-I] and explicit although not in in name in Banach
[Ban-II] in the proofs that a measurable/Baire additive function is continuous
(see the commentary by Henryk Fast loc. cit. p. 314 for various one-way
implications among related results); in name it goes back to Kestelman [Kes],
where also subuniversality (a term coined in [BOst1]) originates but is given
less prominence than, with hindsight, it deserves. We will write T 2 S

(Gothic �S�for �subsequence�) when T is subuniversal. Its connection with
the Steinhaus Theorem (cf. e.g. [Com] Th. 4.6) is studied in [BOst12].
We will say T is generically subuniversal, written T 2 Sgen; if for any

null sequence fzng ! 0; there is a point t and an in�nite set Mt such that
ft+zm : m 2Mtg � T and further t 2 T: As t+zm converges to t throughMt,
an alternative usage might be to say that T is additively compact (see Note 5
at the end). The term �shift-compact�refers to a similar property studied in
Probability Theory (in the context of probabilities regarded as a semigroup
under convolution, for which see [PRV], [Par] Sect. 3.2, or [BH] Sect. 5.1),
and we borrow this term for our own related de�nition at the end of the paper.
Denoting by S the closed members of S, we have S � Sgen � S: Use of the
term is justi�ed by a result due in the measure case to Borwein and Ditor
[BoDi], known earlier (in weaker form, for both measure and category) by
Kestelman ([Kes] Th. 3), and rediscovered by Trautner [Trau]. Much more
is true, see [BOst6], [BOst5], [BOst9], [BOst10], [BOst12] which examine
consequences for various real-variable function classes and also metric group
formulations. Recall that in the category setting, �quasi everywhere�means
�except on a meagre set�(see e.g. [Kah]).

Theorem (Kestelman-Borwein-Ditor Theorem). Let fzng ! 0 be
a null sequence of reals. If T is measurable and non-null (resp. non-meagre),
then, for almost all (resp. for quasi-all) t 2 T; there is an in�nite set Mt
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such that
ft+ zm : m 2Mtg � T:

Recently understood to be the most signi�cant ingredient for the funda-
mental theorems of regular variation, this theorem contains hidden topolog-
ical aspects in the form of a notion of compactness, as we shall see below.
Hitherto universality was researched by combinatorialists to capture its lim-
itations (see [Mil] for the associated literature and for �forcing�connections
with genericity).
Adopting now a topological perspective, for any space T (not necessarily

a subset of reals as before), let B(T ); B+(T ); C(T ) denote respectively the sets
of real-valued functions that are bounded, bounded above, or continuous on
T ; recall (cf. [Eng] Section 3.10, or for a group perspective [Com] Section 6)
that a space T is pseudocompact if C(T ) � B(T ); equivalently C(T ) � B+(T ),
i.e. every continuous function on T is bounded/bounded above. (In a sep-
arable metric space, in particular when T is a subset of R equipped with
the usual topology, this property is of course equivalent to any of countable
compactness, compactness, sequential compactness �again, see [Eng] Sec-
tion 3.10.) For T � R with T 2 S; the Ostrowski theorem mentioned above
implies a �reverse�inclusion: Add(T )\B+(T ) � C(T ), since for f 2 Add; f jT
bounded implies in particular f jT continuous. In the de�nition below we
narrow the class of functions under the scope of pseudocompactness. This
allows generic subuniversality to be viewed as an additive (sequential) com-
pactness property and yields a natural converse to Ostrowski�s theorem. See
Note 5 for a further topological insight in relation to the Euclidean topology
of R:

De�nition. Say that T � R is Add-pseudocompact (additively pseudo-
compact) if every function ofAdd(T ) in C(T ) is bounded, i.e. Add(T )\C(T ) �
B(T ), equivalently Add(T )\C(T ) � B+(T ):

Additive-pseudocompactness Theorem (The Converse Ostrowski
Theorem). Let f 2 Add(R) and let T 2 Sgen be bounded. If f is continu-
ous on T; then f is bounded above on bounded intervals of R: In particular,
T is additively-pseudocompact.
The conclusions remain valid for the more general class of functions f

satisfying

�kv(t) := inf
�>0
sup
jzj<�

jf(t+ v + z)� f(v + z)j <1; for all u; t: (1)

4



Proof. If not, we may take f unbounded above; suppose that f(un)!1
for f 2 Add(R) and fung bounded. Suppose without loss of generality that
un ! u: Then zn := un � u ! 0: As T 2 Sgen; for some t 2 T and
some in�nite Mt we have ft + zm : m 2 Mtg � T: Hence f(t) + f(zm) =
f(t + zm) ! f(t); for m 2 Mt; because f is continuous on T: Thus, taking
limits with m 2Mt; we have

f(u)� f(t) = lim f(u+ zm)� f(t+ zm) =1;

a contradiction. With the more general assumption on f(:); the fact that
zm ! 0 yields the conclusion

inf
�>0
sup
jzj<�

jf(u+ z)� f(t+ z)j =1;

again a contradiction to (1) with v = u� t. �

We include for completeness the strong Ostrowski theorem (see the open-
ing paragraphs) in this language:

Converse Additive-pseudocompactness Theorem (Strong Ostrowski
Theorem). For f 2 Add(R) and T 2 S bounded, if f is bounded above on
T; then f is continuous on R:

Notes. 1. The above analysis, mutatis mutandis, may be repeated in a
Euclidean space Rd; or for homomorphisms between metric groups.
2. There is a formal connection here to the Ger-Kuczma investigation

of �sets of automatic continuity�(see [GerKucz] or [Kucz]): for f additive,
a subuniversal T is a �set of automatic continuity of f�given boundedness
from above. That is, f bounded above on T implies f is continuous �or
in Ger-Kuczma notation, T 2 B (Gothic �B�for boundedness). In symbols,
S � B: See [BOst6] for more on this.
3. In the measure, or category, setting, behaviour is �generic�if it holds

almost everywhere, or quasi-everywhere; thus one may speak of generic prop-
erties, and thence of generic points (as with points in general position in
geometry). In mathematical logic, genericity in the sense of forcing is linked
in the case of Cohen�s original forcing argument to genericity in the sense
of Baire category. See Mostowski�s book [Most], Ch. IX (especially p. 132,
and p.127, where Mostowski attributes this link to Ryll-Nardzewski) for the
earliest exposition here, and also [Kech], I.8B, II.16D for a modern textbook
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treatment. There is a similar link between Solovay�s �random forcing�argu-
ment in the measure context �the general framework is provided in [Zap]
(see also the rami�cations considered in the recent paper [FarZap]). The
terms �generic�, or �typical�, are also widely used in ergodic theory; cf. cite:
[AlpPras-1], [AlpPras-2].
4. The condition (1) is motivated by regular variation (for which see

[BGT], or [BOst1]). Indeed, we may say (following [BGT], Ch. 2, OR; Ch.
3, O�) that f(:) is O-regularly varying at u; if �ku(s) <1; for all s: Thus (1)
asserts that f(:) is O-regularly varying at all points u: A stronger form still
of this, appropriate to a Baire space which is a metric group, is explored in
[BOst12] Section 10.
5. In the proof above, the step from the bounded sequence fung to the

shifted subsequence t+ zm = t� u+ um justi�es the alternative usage for a
generically subuniversal set T � R being instead called additively compact.
The theorem and that step in its proof may be regarded as facilitating the
main contribution of this paper, which is the identi�cation of these two,
apparently di¤erent, properties as being of interest, and of their being one
and the same. In turn this suggests a narrowing of the concept (to fewer
sequences), as follows.

De�nition. Let us say that a set A in Rd is shift-compact if, for any
sequence of points an in A; there is a point t and a subsequence fan : n 2Mtg
such that t + an converges through Mt to a point t + a0 in A: Thus a shift-
compact set A is bounded.

Lemma. If A is bounded and additively-compact then A is shift-compact.

Proof. Let an is a sequence in A with limit a0; then zn := an � a0 is
a null sequence, hence for some t 2 A and in�nite Mt we have t + zn in A
for n 2 Mt; thus with s := t � a0 we have s + an = t + zn in A converging
through Mt to s+ a0 = t; also in A. Thus A is shift-compact. �

Evidently, �nite products of shift-compact sets are shift-compact. Count-
able products exhibit a more general form of shift-compactness. The follow-
ing theorem asserts that, modulo shifts, a covering property is satis�ed by
bounded shift-compact sets. The Kestelman-Borwein-Ditor Theorem (which
may also be established in a group setting, [BOst12]) thus identi�es �large
sets�(non-null measurable sets and non-meagre Baire sets) as having these
properties locally, or globally when bounded; as to their scope, reference
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may be made to models of set-theory where all sets are measurable, or all
are Baire (Solovay�s model [So], or Shelah�s model [She]).

It will be convenient to make the following.

De�nitions. 1. Say that D:= fD1; :::; Dhg shift-covers A; or is a shifted-
cover of A if, there are d1; :::; dh in R such that

(D1 � d1) [ ::: [ (Dh � dh) � A:

Say that A is compactly shift-covered if every open cover U of A contains a
�nite subfamily D which shift-covers A:
2. Say thatD:= fD1; :::; Dhg strongly shift-covers A; or is a strong shifted-

cover of A if, there are arbitrarily small d1; :::; dh in R such that

(D1 � d1) [ ::: [ (Dh � dh) � A:

Say that A is compactly strongly shift-covered if every open cover U of A
contains a �nite subfamily D which strongly shift-covers A:

Example. Note that A � R is a dense-open (open in the density topol-
ogy) i¤ each point of A is a density point of A: Suppose a0 is a limit point of
such a set A in the usual topology; then, for any " > 0; we may �nd a point
� 2 A to within "=2 of a0 and hence some t 2 A within "=2 of the point �
such that some subsequence t + am is included in A, with limit t + a0 and
with jtj < ": That is, a dense-open set is strongly shift-compact.

Compactness Theorem (Compactness modulo shift). Let A be a
shift-compact subset of R. Then A is compactly shift-covered, i.e. for any
Euclidean-open cover U of A; there is a �nite subset V of U and arbitrarily
small translations, one for each member of V, such that the corresponding
translates of V cover A:

Proof. Let U be an open cover of A and let " > 0: Since R is second-
countable we may assume that U is a countable family. Write U = fUi :
i 2 !g: Let Q = fqj : j 2 !g enumerate the rationals. Suppose, contrary
to the theorem, that there is no �nite subset V of U such that translates of
elements V, each translated by one element of Q; do not cover A: For each
n; choose an 2 A not covered by fUi � qj : i; j < ng: As A is bounded, we
may assume, by passing to a subsequence (if necessary), that an converges
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to some point a0; and also that, for some t; the sequence t+ an lies entirely
in A: Let Ui in U cover t + a0: Without loss of generality we may assume
that t + an 2 Ui for all n: Thus an 2 Ui � t for all n: Thus we may select
V := Ui � qj to be a translation of Ui such that an 2 V = Ui � qj for all n:
But this is a contradiction, since an is not covered by fUi0 � qj0 : i0; j0 < ng
for n > maxfi; jg: �

The above proof of the compactness theorem for shift-covering may be
improved to strong shift-covering, with only a minor modi�cation (replacing
Q with a set Q" = fq"j : j 2 !g which enumerates, for given " > 0; a dense
subset of the "-interval about 0), yielding the following.

Strong Compactness Theorem (Strong Compactness modulo shift).
Let A be a strongly right-shift compact subset of R. Then A is compactly
strongly shift-covered, i.e. for any Euclidean-open cover U of A; there is a
�nite subset V of U and arbitrarily small translations, one for each member
of V, such that the corresponding translates of V cover A:

Thus by re-engaging with problems in classical real analysis, we have
been able to identify a new topological scheme for various notions of weak
compactness, based on families that cover a space only after their elements
have been subjected to a small translation, as above (or more generally a
uniformly small topological transformation).
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