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Abstract
We use Choquet�s analytic capacitability theorem and the Kestelman-

Borwein-Ditor theorem (on the inclusion of null sequences by trans-
lation) to derive results on �analytic automaticity�� for instance, a
stronger common generalization of the Jones/Kominek theorems that
an additive function, whose restriction is continuous/bounded on an
analytic set T spanning R (e.g., containing a Hamel basis), is contin-
uous on R. We obtain results on �compact spannability��the ability
of compact sets to span R. From this, we derive Jones� Theorem
from Kominek�s. We cite several applications including the Uniform
Convergence Theorem of regular variation.

Classi�cation: 26A03
Keywords: Jones� theorem, Kominek�s theorem, analytic set,

Choquet capacity, Hamel basis, uniform convergence theorem, regular
variation.
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1 Introduction

This paper, on additive functions, is a sequel to [BOst], where we study
subadditive functions, and in turn leads on to the companion paper [BOst6],
on convex and related functions.
Darboux�s theorem of 1875 ([Dar], [AD, Section 21.6]) asserts that, for

additive functions, local boundedness implies continuity. Ostrowski�s result
of 1929 [Ostr], that a (mid-point) convex, so a fortiori an additive, function
bounded above on some set T of positive measure is continuous, may be
regarded as thinning out Darboux�s assumed �local�character from a property
holding on an interval to the same property holding only on a set of positive
measure. From this perspective Jones� theorem of 1942 [Jones2], that an
additive function continuous on a set T which is analytic (for de�nition and
background see [Rog2]) and contains a Hamel basis is continuous, may be
seen as a further thinning out.
There is a closely related, more recent result of Z. Kominek in 1981

[Kom2], that an additive function bounded on a set T; which is analytic
and contains a Hamel basis, is continuous. As boundedness is here limited
to T , it is not immediately clear what the logical relationship between these
theorems is, despite the almost identical proof structure, as elegantly derived
by Kominek (from ideas which he attributes as implict in Jones). For con-
venience, let us say brie�y that T is a spanning set when R regarded as a
vector space over Q has T as a spanning set of vectors. (In the presence of
the Axiom of Choice a spanning set contains a Hamel basis.)
The theorems of Jones and Kominek are results on automatic continuity

(see Ho¤mann-Jørgensen [THJ] for background and references) of a partic-
ular type: the set T; on which a property is assumed, is analytic (and �big
enough��say, spanning a subset of positive measure or one that is co-meagre,
and hence spanning all of R, or containing a Hamel basis if the Axiom of
Choice is assumed). We unify results of this type, which we dub theorems
on analytic automaticity, by showing that both are instances of a stronger
theorem of the same type. See [BOst6] for a range of such theorems touch-
ing convex functions (see Note 1 at the end of the paper) and making the
connection with the uniform convergence theorem of regular variation (for
which see e.g. [BGT]).
Our theorem identi�es circumstances when a weak property, such as local

boundedness, that has been given �analytic thinning out�still implies a strong
property, such as continuity. The theorem calls for three ingredients: an
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initial �weak implies strong�hypothesis (for which the canonical example is
Darboux�s theorem), the sequential character of the weak property (to be
de�ned), and a modicum of vector-space structure (given by the theorem;
but see also the re-formulation of Section 5 making explicit the underlying
sequential combinatorics, which we require for [BOst6]).

De�nitions. For a family F of functions from Rd to R, we denote by
F(T ) the family ff jT : f 2 Fg of functions in F restricted to T � Rd. Let
us denote a convergent sequence with limit x0; by fxng ! x0: We say the
property Q of functions (property being regarded set-theoretically, i.e. as a
family of functions from Rd to R) is sequential on T if

f 2 Q i¤ (8fxn : n > 0g � T )[(fxng ! x0) =) f jfxn : n > 0g 2 Q(fxn : n > 0g)]:

If we further require the limit point to be enumerated in the sequence, we
call Q completely sequential on T if

f 2 Q i¤ (8fxng � T )[(fxng ! x0) =) f jfxng 2 Q(fxng)]:

Our interest rests on properties that are completely sequential; our theo-
rem below contains a condition referring to completely sequential properties,
that is, the condition is required to hold on convergent sequences with limit
included (so on a compact set), rather than on arbitrary sequences.
Note that if Q is (completely) sequential then f jfxng 2 Q(fxng) i¤

f jfxn : n 2 Mg 2 Q(fxn : n 2 Mg); for every in�nite M. The theorem
below gives conditions for the following analytic thinning principle: if

Q(Rd) =) P(Rd)

holds, then
Q(T ) =) P(Rd)

holds for analytic T:

Main Theorem (Analytic Automaticity Theorem). Suppose that
(a) functions of F having the property Q on Rd have a property P on Rd;

where Q is a property of functions from Rd to R that is completely sequential
on Rd, and
(b) F preserves Q under vector addition and subtraction on compact sets

and also under shift, that is:
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(i) for compact sets S and T; functions of F having Q on S and T have
Q on S � T ;
(ii) functions of F having Q on any T � Rd have Q on � +T := f� + t :

t 2 Tg; for any � 2 Rd:
Then, for any analytic set T spanning Rd as a vector space over Q (e.g.

containing a Hamel basis), functions of F having Q on T have P on Rd:

Remark. In applications, as in the two examples that follow, the condi-
tions (i) and (ii) need only be veri�ed on compact sets arising as convergent
sequences with limit points included, in view of the properties needing to be
completely sequential. This is indeed the form that is relevant in examples,
but we have not included an extra assertion here along these lines to avoid
overburdening the statement of the theorem. See, however, Section 5.

Example 1. The class of additive functions, Add, preserves C, the
continuous functions, under vector sums and di¤erences on compact domains,
i.e. for f 2 Add and S; T compact, if f jS 2 C(S) and f jT 2 C(T ) then
f jS � T 2 C(S � T ): Indeed let un = sn � tn 2 S � T: Then fsn : n 2
!g and ftn : n 2 !g are precompact sets. By compactness of S and T;
without loss of generality we may assume that sn ! s 2 S and tn ! t 2 T:
Then, by additivity, lim f(sn � tn) = lim[f(sn) � f(tn)]; and by continuity
lim[f(sn)� f(tn)] = f(s)� f(t): Thus f is continuous on S � T:

Example 2. The class of additive functions, Add, preserves Bloc, the
locally bounded functions, under vector sums and di¤erences on compact do-
mains, i.e. for f 2 Add and S; T compact, if f jS 2 Bloc(S) and f jT 2 Bloc(T )
then f jS � T 2 Bloc(S � T ): The proof is similar to but simpler than that
above.

Corollary (Theorems of Jones and Kominek). Let f be additive and
either have a continuous restriction, or a bounded restriction, f jT , where T
is some analytic set spanning R. Then f is continuous.

Proof. Applying the Main Theorem, let F beAdd; the family of additive
functions, and P be C, the family of continuous functions. Thus with Q = C
we obtain Jones�Theorem and with Q = Bloc; the locally bounded functions,
we obtain a sharpened form of Kominek�s theorem. �

The use of spanning sets here is natural, since an additive function is
speci�ed by its values on a spanning set. This idea can be made precise.
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Kominek ([Kom2, Th. 1]) also shows that nothing less than a spanning
set will do here. This ��Kominek�s other theorem��may be regarded as a
converse to the Kominek theorem above.

We will need the following result, due in the measure case in this form to
Borwein and Ditor [BoDi], but already known much earlier albeit in some-
what weaker form by Kestelman ([Kes, Th. 3]), and rediscovered by Trautner
[Trau]. Much more is true, see [BOst6], [BOst9], [BOst11]. Following J-P
Kahane [Kah], the term �quasi all�below refers to �all o¤ some meagre set�.

Theorem (Kestelman-Borwein-Ditor Theorem). Let fzng ! 0 be
a null sequence of reals. If T is measurable and non-null/ Baire non-meagre,
then for almost all/quasi all t 2 T there is an in�nite set Mt such that

ft+ zm : m 2Mtg � T:

2 Some lemmas: expansion and contraction

For clarity�s sake we work in R rather than Rd: We begin with the common
proof of the Jones and Kominek theorems as it is short, illuminating and
depends on three simple lemmas, the second and third of which we need
elsewhere (for the Souslin operation therein, see [Rog2]). The stronger result
that Jones�Theorem implies Kominek�s Theorem is deduced in the subse-
quent section on spannability.

Analytic Covering Lemma ([Kucz, p. 227], cf. [Jones2, Th. 11]).
Let T be analytic and let f : R ! R have continuous restriction f jT: Then
T is covered by a countable family of bounded analytic sets on each of which
f is bounded.

Proof. For k 2 ! de�ne Tk := fx 2 T : jf(x)j < kg \ (�k; k): Now
fx 2 T : jf(x)j < kg is relatively open and so takes the form T \Uk for some
open subset Uk of R, giving the result since Uk is analytic. �

Analytic Dichotomy Lemma (Spanning). Suppose that an analytic
set T � R spans a set of positive measure or a non-meagre set. Then T
spans R.
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Proof. If T spans P � R; then

P � S :=
[

m;h2!;m>0

[
r2Zh

�r1
m
T + :::+

rh
m
T
�
:

In the measure case, if P is non-null, it follows that, for some h;m 2 N and
r 2 Zh, the set

r1
m
T + :::+

rh
m
T

has positive measure, and hence so does S 0 = r1T + :::+ rhT: By Steinhaus�
Theorem ([St], [BGT, Th. 1.1.1], [BOst3]), S 0 � S 0 contains an interval
around the origin, and so T spans an interval, say (� 1

k
; 1
k
) for some k 2 N.

Hence T spans (�n
k
; n
k
) for any n 2 N, i.e. T spans R.

In the category case, S 0 is non-meagre and so, by the Pettis-Piccard The-
orem ([Pic1], [Pic2], [Pet1], [BGT, Th. 1.1.1], [BOst3]), S 0 � S 0 contains an
interval around the origin, hence the similar result. �

In the category case, the result may also be derived from the Banach-
Kuratowski Dichotomy Theorem ([Ban, Satz 1], [Kur1, Ch. VI. 13. XII],
[Kel, Ch. 6 Prob. P p. 211]) by considering S; the subgroup generated by
T ; since T is analytic, S is Baire and, being non-meagre, is clopen and hence
all of R, as the latter is a connected group.

Expansion Lemma ([Jones2, Th. 4], [Kom2, Th. 2], and [Kucz, p.
215]). Suppose that S is Souslin-H, i.e. of the form

S =
[
�2!!

\1n=1H(�jn);

with each H(�jn) 2 H, for some family of analytic sets H on which f is
bounded. If S spans R as a vector space over Q (e.g. contains a Hamel
basis), then for each n there are sets H1; :::; Hk each of the form H(�jn);
such that for some integers r1; :::; rk

T = r1H1 + :::+ rkHk

has positive measure/ is non-meagre, and so T � T contains an interval.

Proof. For any n 2 ! we have

S �
[
�2!!

H(�jn):
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Enumerate the countable family fH(�jn) : � 2 !ng as fTh : h 2 !g: Since S
spans Rd, we have

Rd =
[
h2!

[
k;s2Nh

[
r2Zh

�
r1
s1
Tk1 + :::+

rh
sh
Tkh

�
=

[
m;h2!;m>0

[
k2Nh

[
r2Zh

�r1
m
Tk1 + :::+

rh
m
Tkh

�
:

As each Tk is analytic, so too is the continuous image

r1
m
Tk1 + :::+

rh
m
Tkh ;

which is thus measurable. Hence, for some h;m 2 N and k 2 Nh and r 2 Zh
the set

r1
m
Tk1 + :::+

rh
m
Tkh

has positive measure/ is non-meagre, and hence r1Tk1 + :::+ rhTkh does the
same. �

The above results will be used to prove the Main Theorem; but we may
now also obtain, as a direct corollary, a reformulation and strengthening of
the two theorems which motivate this paper:

Theorem JK (Theorems of Jones and Kominek). Let f be additive
and either have a continuous restriction, or a bounded restriction f jT; where
T is some analytic set spanning a set of positive measure/ a non-meagre set.
Then f is continuous.

Proof. By the Analytic Dichotomy Lemma, T spans R. By the Expan-
sion Lemma, in all cases, f is bounded on a set of the form (r1H1 + ::: +
rkHk) � (r1H1 + ::: + rkHk); which contains an interval. So by Darboux�s
Theorem f is continuous. �

In particular, one has the theorems of Jones and Kominek in their original
formulation:

Corollary (Theorems of Jones and Kominek). Let f be additive and
either have a continuous restriction, or a bounded restriction, f jT , where T
is some analytic set spanning R. Then f is continuous.
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3 On spannability theory

Our proof of the Analytic Automaticity Theorem relies on the Expansion
Lemma of the last section and on an analysis of spanning properties of ana-
lytic sets. Here we view R as a vector space over Q and for S � R denote by
LinQ(S) the linear span of S regarded as a set of vectors in R as a space over
Q. One might expect by analogy with classical theorems asserting that a
�large�analytic set contains a �large�compact subset (cf. [Rog2, Part 1 Sect.
3.5], and [Kech, Ch. III 29.E]) that perhaps for analytic S the span LinQ(S)
is equal to LinQ(F ) with F either compact or �-compact. We examine this
intuition and �nd below that enough of this is true to enable a deduction of
Jones�Theorem from Kominek�s Theorem.
Our �rst lemma follows directly from Choquet�s Capacitability Theorem

[Ch4] (see especially [Del2, p. 186], and [Kech, Ch. III 30.C]). For complete-
ness, we include the brief proof. Incidentally, the argument we employ goes
back to Choquet�s theorem, and indeed further, to [ROD] (see e.g. [Del1, p.
43]).

Compact Contraction Lemma. For T analytic, if T +T has positive
Lebesgue measure, then for some compact subset S of T , S + S has positive
measure.

Proof. We present a direct proof (see below for our original inspiration
in Choquet�s Theorem). As T 2 is analytic, we may write ([Rog2, p. 11])
T 2 = h(H); for some continuous h and some K�� subset of the reals, e.g. the
set H of the irrationals, so that H =

T
i

S
j d(i; j); where d(i; j) are compact

and, without loss of generality, the unions are each increasing: d(i; j) �
d(i; j + 1). The map g(x; y) := x + y is continuous and hence so is the
composition f = g � h: Thus T + T = f(H) is analytic. Suppose that T + T
is of positive measure. Hence, by the capacitability argument for analytic
sets ([Ch4], or [Si, Th.4.2 p. 774], or [Rog1, p. 90], there referred to as an
�Increasing sets lemma�), for some compact set A; the set f(A) has positive
measure. Indeed if jf(H)j > � > 0; then the set A may be taken in the formT
i d(i; ji); where the indices ji are chosen inductively, by reference to the

increasing union, so that jf [H \
T
i<k d(i; ji)]j > �; for each k: (Thus A � H

and f(A) =
T
i f [H \

T
i<k d(i; ji)] has positive measure, cf. [EKR]).

The conclusion follows as S = h(A) is compact and S+S = g(S) = f(A):
�
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Note. The result may be deduced indirectly from the Choquet Capac-
itability Theorem by considering the capacity I : R2 ! R; de�ned by
I(X) = jg(X)j; where, as before, g(x; y) := x + y is continuous and j:j
denotes Lebesgue measure on R (on this point see [Del2, Section 1.1.1, p.
186]). Indeed, the set T 2 is analytic ([Rog2, Section 2.8, p. 37-41]), so
I(T 2) = sup I(K2); where the supremum ranges over compact subsets K of
T: Actually, the Capacitability Theorem says only that I(T 2) = sup I(K2);
where the supremum ranges over compact subsets K2 of T 2; but such a set
may be embedded in K2 where K = �1(K)[ �2(K); with �i the projections
onto the axes of the product space.

Corollary. For T analytic and "i 2 f�1g, if "1T + :::+"dT has positive
measure (measure greater than �) or is non-meagre, then for some compact
subset S of T , the compact set K = "1S + ::: + "dS has K +K of positive
measure (measure greater than �).

Proof. In the measure case the same approach may be used based now
on the continuous function g(x1; :::; xd) := "1x1 + ::: + "dxd ensuring that
K is of positive measure (measure greater than �): In the category case, if
T 0 = "1T + :::+ "dT is non-meagre then, by the Steinhaus Theorem ([St], or
[BGT, Cor. 1.1.3]), T 0+T 0 contains an interval. The measure case may now
be applied to T 0 in lieu of T: (Alternatively one may apply the Pettis-Piccard
Theorem, as in the Analytic Dichotomy Lemma.) �

Theorem (Compact Spanning Approximation). For T analytic, if
the linear span of T is non-null or is non-meagre, then there exists a compact
subset of T which spans all the reals. If T is symmetric about the origin,
then the compact spanning subset may be taken symmetric.

Proof. If T is non-null or non-meagre, then T spans all the reals (by the
Analytic Dichotomy Lemma); then for some "i 2 f�1g, "1T + ::: + "dT has
positive measure/ is non-meagre. Hence for some K compact "1K+ :::+"dK
has positive measure/ is non-meagre. Hence K spans some and hence all
reals.
Let T be symmetric. If T spans the reals, then so does T+ = T \ R+:

Choose a compact K+ � T+ to span the reals. Then K := K+ [ (�K+) � T
is compact, symmetric and spans the reals. �

As a corollary, we deduce the relation between the theorems of Jones and
Kominek.
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Corollary. Kominek�s Theorem implies Jones�s Theorem.

Proof. If T is an analytic spanning set, then it contains a compact
spanning set K. If f is continuous on T; then f is bounded on the compact
set K: By Kominek�s Theorem, as f is additive and bounded on a compact
spanning set, f is continuous. �

We continue with regard to the question of whether, for T analytic, there
is a compact K � T such that LinQ(T ) = LinQ(K). Evidently, the question
really relates to analytic sets T with LinQ(T ) (also analytic) of measure zero
or meagre (as T has the Baire property), since the case where LinQ(T ) has
positive measure, or is non-meagre, is settled positively by the Compact
Spanning Approximation Theorem. Note that if W := LinQ(T ) = LinQ(K)
for some compact K; then LinQ(T ) is �-compact. Laczkovich [Lacz] shows
that any proper analytic subgroup of the reals is covered by a null �-compact
set, so the �-compact structure is not surprising. Indeed, as Roy Davies
has observed (private communication), there are �-compact proper additive
subgroups A of the reals which can be covered by the sums F; F + F; F +
F + F; ::: for some closed set F with F = �F; none of which contains a
non-empty interval. For example A may be the subgroup generated by F:
The earliest such example is due to Sierpiński ([Sierp1]). We are thus led to:

Theorem (Compact Spanning Theorem). If the subspace W of R
is both �-compact and G� there exists a compact set K in W such that W =
LinQ(K):

Proof. This result follows from the generalized Piccard theorem (see e.g.
[Kom1]), since W is completely metrizable ([Eng, Section 4.3]). Indeed, if
W =

S
n2!Kn with each Kn compact, then for some n 2 ! the set Kn is

non-meagre in W: So by Piccard�s Theorem Kn+Kn has non-empty interior
in the topological space W: Let us suppose that W contains the relatively
open interval of points J \W: Note that for any w 2 W; (w + J) \W =
w + (J \ W ) � W; as W is a vector space. Hence, for any w 2 J \ W;
putting I = J � w = (�a;+b); we have 0 2 I \W and R =

S
m2!mI: Thus

W =
S
m2!m(I \W ): We deduce that J \W spans W; and the theorem

follows since Kn +Kn is compact: �

Of course, the above theorem addresses not only the �small case�of null
and meagre subspaces of ambiguous Borel class one ([Kech, II.11.A]), but
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also the �large case�, e.g. the case when W = R. Indeed, combining Th.6.3.3
and Th.6.3.4 of Jayne and Rogers in [Rog2], uncountable G� sets that are
�-compact are characterized up to �rst-level Borel isomorphism uniquely as
copies of [0; 1]. Interest in the G� case here is motivated by Solecki�s analytic
dichotomy theorem below.
The above result is perhaps the best one may hope for �for two reasons.

First of all, we refer to a further result of Laczkovich in [Lacz], where he
gives an example of a null Borel subgroup G of R with the property that, for
any �-compact cover fKn : n 2 !g; there is n such that Kn +Kn contains
an interval. By a simple modi�cation G may be assumed to be a vector
subspace (e.g. W :=

S
m2!

1
m+1

G is a vector subspace which is also Borel
and, being null, is proper). It is not, however, �-compact, as otherwise the
representation

S
n2!Kn would force, for some n; the sum Kn+Kn to contain

an interval, thus contradicting the fact that the subspace is null. It would
be interesting to know whether there exists a G� proper vector subspace of R
which is not �-compact. (Lavrentie¤�s theorem on the topological invariance
of G� sets �see [Eng, p. 276] �would at best permit a direct modi�cation to
Laczkovich�s construction to yield a G�� proper vector subspace which is not
�-compact.)
Secondly, there is Solecki�s analytic dichotomy theorem (reformulating

and generalizing a speci�c instance discovered by Petruska, [Pet]) as follows.
For I a family of closed sets (in any Polish space), let Iext denote the sets
covered by a countable union of sets in I: Then, for A an analytic set, either
A 2 Iext, or A contains a G� set not in Iext. See [Sol1], where a number of clas-
sical theorems, asserting that a �large�analytic set contains a �large�compact
subset, are deduced, and also [Sol2] for further applications of dichotomy.
We note that, by an appeal directly to Petruska�s theorem in [Pet],

Laczkovich [Lacz] shows that any proper analytic subgroup of the reals is
covered by a null �-compact set.

4 Proof of the Main Theorem

Suppose that T is analytic and, for simplicity, contains a Hamel basis. Let
h 2 F be such that for every fxng ! x0 with fxng � T (i.e. for every
convergent sequence which together with its limit lies in T ), we have hjfxng 2
Q(fxng), but that h =2 P. Then h =2 Q (by the hypothesis that Q =) P).
SinceQ is completely sequential, there is a convergent sequence fum : m 2 !g
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such that hjfum : m 2 !g =2 Q.
Put Tk = T \ (�k; k): Since T contains a Hamel basis, we have by the

Expansion Lemma of Section 2 that, for some k; n 2 N and r 2 Zn; the set

r1Tk + :::+ rnTk

has positive measure. By the Compact Contraction Lemma of Section 3 there
is a compact subset S of Tk such that r1S + :::+ rnS has positive measure.
By the Kestelman-Borwein-Ditor Theorem, for some t 2 S � T and for

i = 1; :::; n; there are sequences fvmi : m 2Mg � S � T such that

t+ um = r1v
m
1 + :::+ rnv

m
n :

By the local compactness of Rm; the compactness of S and passage to an
in�nite subset M0 � M; we may assume that each sequence vi = fvmi :
m 2 Mg is convergent to a point of S. As each vi is in T; it follows that
hjfving 2 Q(fving). Hence, since F preserves Q under shift and under vector
addition and subtraction on the sets fvmi : m 2 Mg; currently assumed
compact, hjfumgm2M 2 Q(fumgm2M): But this contradicts h =2 Q, since
hjfum : m 2 !g 2 Q i¤ hjfum : m 2 Mg 2 Q for every in�nite M. Hence
after all h 2 P. �

5 Variants, ideals under Rd-shifts
Here we point to two generalizations. The �rst such, Theorem 1, makes
explicit reference to the sequential combinatorics used in the proof of Section
4. The second, Theorem 2, restricts attention to analytic, spanning sets T
which are �shifted-symmetric�.

De�nitions. Let c(Rd) denote the the sequence space of Rd; i.e. the
additive group of convergent sequences u = fung of vectors in Rd (with
term-wise addition). A subgroup G, invariant under the action of (termwise)
shifts by elements of Rd; will be called an Rd-shift ideal (in the sequence
space of Rd); it will be called a complete Rd-shift ideal if it is also closed
under subsequence formation, that is:
(i) u;v 2 G implies that u� v 2 G (subgroup property),
(ii) u 2 G implies t + u = ft + ung 2 G, for each t in Rd (Rd-shift

invariance),
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(iii) u 2 G implies that uM = fum : m 2 Mg 2 G, for every in�nite M
(completeness).

De�nition. Say that a sequence u = fung is Q-good for h if

hjfung 2 Qjfung;

and put
GhQ = fu : hjfung 2 Qjfungg:

If Q is completely sequential, then u is Q-good for h i¤ every subsequence
of u is Q-good for h. One then has:
Lemma. If Q is completely sequential and F preserves Q under shift

and under vector addition and subtraction on compacts, then GhQ for h 2 F
is a complete Rd-shift ideal.

Example 1. The convergent sequences form a complete Rd-shift ideal, and
so do the eventually constant sequences. We now refer to the examples of
Section 1.
Example 2. ForQ = Bloc, and F = Add; thenQ is sequential, F preserves

Q under vector addition and subtraction on bounded sets and also under shift
and , so that GhQ is a complete Rd-shift ideal when h 2 F .
Example 3. For Q = �C, and F = Add; then Q is sequential, F preserves

Q under vector addition and subtraction on bounded sets and also under
shift, so that GQ is a complete Rd-shift ideal.
Example 4. In the case of the slowly varying functions, i.e. for

F = Sv = fh : (8fxn !1g)(8u) lim
n!1

jh(u+ xn)� h(xn)j = 0g;

and for h slowly varying (h 2 Sv), let Gh be the set of convergent sequences
u = fung good for h; i.e. those satisfying: for all fxng ! 1;

lim
n!1

jh(un + xn)� h(xn)j = 0:

In [BOst6] we show that Gh for h 2 F is a complete Rd-shift ideal.

Theorem 1. (Analytic Automaticity Theorem - combinatorial
form).
Suppose that

13



(a) functions of F having Q on Rd have P on Rd; where Q is a property
of functions from Rd to R that is completely sequential on R;
(b) for all h 2 F , the family GhQ of Q-good sequences is a complete

Rd-shift ideal (closed under vector addition and subtraction, invariant under
shift, closed under subsequence formation).
Then, for any analytic set T spanning R as a vector space over Q (e.g.

containing a Hamel basis), functions of F having Q on T have P on Rd:

Proof of Theorem 1. This is a rephrasing of the main theorem in the
language of Rd-shift ideals. �

Theorem 2. (Symmetric Analytic Automaticity Theorem).
Suppose that
(a) functions of F having the property Q on Rd have a property P on Rd;

where Q is a property of functions from Rd to R that is completely sequential
on Rd,
(b) F preserves Q under vector addition on compact sets and also under

shift, that is:
(i), for compact sets S and T; functions of F having Q on S and T have

Q on S + T ;
(ii) functions of F having Q on any T � Rd have Q on � +T := f� + t :

t 2 Tg; for any � 2 Rd;
Then, for any analytic set T spanning Rd as a vector space over Q (e.g.

containing a Hamel basis) such that, for some � , S := � + T is symmetric
(i.e. S = �S), functions of F having Q on T have P on Rd:

Proof of Theorem 2. Since S = � + T is an analytic spanning set if
T is, we may as well assume by (ii) that T is in fact symmetric. It follows
that in the Expansion Lemma all the factors ri may be taken positive. In
this case the proof of the Main Theorem requires only that F preserves Q
under vector addition on compact sets and also under shift. �

Note. 1. In [BOst6] we show that Theorem 2 applies also to subadditive
functions and to convex functions.
2. Much of the work here carries over from the present Euclidean setting

to topological groups. We will develop this programme elsewhere.
3. We thank Anatole Beck for the eventual constancy part of Example 1

of this section.

14



Postcript. Dellacherie ([Del1, p.43]) points out the important yet ne-
glected work on capacities of R. O. Davies [ROD] in 1952, at the same time
as Choquet�s three notes ([Ch1]�[Ch3]) in the Comptes Rendus, and well
before his seminal paper of 1955 [Ch4]. Roy Davies has been a long-standing
friend, mentor and collaborator of the second author. It is a pleasure for
both authors to dedicate this paper to him, on the occasion of his eightieth
birthday.
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