STABLE RANKS OF BANACH ALGEBRAS OF OPERATOR-VALUED H^{∞} FUNCTIONS

AMOL SASANE

ABSTRACT. Let E be an infinite-dimensional Hilbert space, and let $H^{\infty}_{\mathcal{L}(E)}$ denote the Banach algebra of all functions $f: \mathbb{D} \to \mathcal{L}(E)$ that are holomorphic and bounded, equipped with the supremum norm $\|f\|_{\infty} := \sup_{z \in \mathbb{D}} \|f(z)\|_{\mathcal{L}(E)}, f \in H^{\infty}_{\mathcal{L}(E)}$. We show that the Bass and topological stable ranks of $H^{\infty}_{\mathcal{L}(E)}$ are infinite. If S is an open subset of \mathbb{T} , then let $A^{S}_{\mathcal{L}(E)}$ denote the subalgebra of $H^{\infty}_{\mathcal{L}(E)}$ of all functions that have a continuous extension to S. We also prove that $A^{S}_{\mathcal{L}(E)}$ has infinite Bass and topological stable ranks.

CDAM Research Report LSE-CDAM-2007-22

1. INTRODUCTION

In this paper, we prove that the Bass and topological stable ranks of the Banach algebras $H^{\infty}_{\mathcal{L}(E)}$ and $A^{S}_{\mathcal{L}(E)}$ (Definition 1.3) are all infinite when E is infinite-dimensional.

The notions of Bass/topological stable ranks play important roles in algebraic/topological K-theory (see [1] and [10]), but they also have applications in the control-theoretic problem of stabilization via a factorization approach (see [18], [5], [9]). We recall the definition of Bass stable rank and topological stable rank below.

Definition 1.1. Let \mathcal{A} be a ring with identity e and $n \in \mathbb{N}$. An element $a = (a_1, \ldots, a_n) \in \mathcal{A}^n$ is called *(left) unimodular* if there exists $b = (b_1, \ldots, b_n) \in \mathcal{A}^n$ such that

(1.1)
$$\sum_{k=1}^{n} b_k a_k = e_k$$

We denote the set of unimodular elements of \mathcal{A}^n by $U_n(\mathcal{A})$.

An element $a \in U_{n+1}(\mathcal{A})$ is called *(left) reducible* if there exists $x = (x_1, \ldots, x_n) \in \mathcal{A}^n$ such that

(1.2)
$$(a_1 + x_1 a_{n+1}, \dots, a_n + x_n a_{n+1}) \in U_n(\mathcal{A}).$$

The *(left)* Bass stable rank of \mathcal{A} , denoted by bsr \mathcal{A} , is the least integer $n \geq 1$ such that every $a \in U_{n+1}(\mathcal{A})$ is reducible, and it is infinite if no such integer n exists.

Now let \mathcal{A} denote a Banach algebra¹. The *(left) topological stable rank of* \mathcal{A} , denoted by tsr \mathcal{A} , is the least integer $n \geq 1$ such that $U_n(\mathcal{A})$ is dense in \mathcal{A}^n , and it is infinite if no such integer exists.

Date: 12 April, 2007.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30H05; Secondary 47A56, 46J15, 46L80.

Key words and phrases. Bass stable rank, topological stable rank, operator-valued holomorphic functions. ¹By a Banach algebra we mean a complex Banach algebra with a unit element e; we do not assume commutativity.

Remark 1.2. Analogously one can define a *right* Bass/topological stable rank, by changing the multiplication order in (1.1).

It turns out that for any ring \mathcal{A} the left Bass stable rank is always equal to the right stable rank (see [19]).

Moreover, it is known (see [10, Proposition 1.6]) that the left and right tsr's are equal whenever one has a Banach algebra with a continuous involution \star , and so in this case one can unambiguously talk about the tsr. In our case of $H^{\infty}_{\mathcal{L}(E)}$ and $A_{\mathcal{L}(E)}$, we use the involution \star^{\star} defined as follows: $f^{\star} = (f(\bar{\cdot}))^{*}$, and \star^{*} denotes the adjoint.

In this article we will study the Bass and topological stable ranks of the Banach algebras $A^{S}_{\mathcal{L}(E)}$, which we define below. We will denote the unit disc $\{z \in \mathbb{C} \mid |z| < 1\}$ by \mathbb{D} , the closed unit disk $\{z \in \mathbb{C} \mid |z| \leq 1\}$ by $\overline{\mathbb{D}}$, and the unit circle $\{z \in \mathbb{C} \mid |z| = 1\}$ by \mathbb{T} . Throughout this article, unless otherwise stated, E is an infinite-dimensional complex Hilbert space. We use the notation $\mathcal{L}(X,Y)$ for the complex Banach space of bounded linear operators between Hilbert spaces X to Y, equipped with the operator norm.

Definition 1.3. Let $H^{\infty}_{\mathcal{L}(E)}$ denote the Banach algebra of functions $f : \mathbb{D} \to \mathcal{L}(E)$ that are holomorphic and bounded, equipped with the supremum norm $\|f\|_{\infty} := \sup_{z \in \mathbb{D}} \|f(z)\|_{\mathcal{L}(E)}$.

The Banach algebra $A_{\mathcal{L}(E)}$ is defined as the subalgebra of $H^{\infty}_{\mathcal{L}(E)}$ of all functions $f \in H^{\infty}_{\mathcal{L}(E)}$ that have a continuous extension to \mathbb{T} .

More generally, let S be an open subset of \mathbb{T} . The Banach algebra $A_{\mathcal{L}(E)}^S$ is defined as the subalgebra of $H_{\mathcal{L}(E)}^{\infty}$ of all functions $f \in H_{\mathcal{L}(E)}^{\infty}$ that have a continuous extension to S.

If $E = \mathbb{C}$, then we denote $H^{\infty}_{\mathcal{L}(E)}$, $A_{\mathcal{L}(E)}$, simply by H^{∞} , A, respectively.

Sergei Treil proved that bsr $H^{\infty} = 1$ [16], and Daniel Suárez showed that tsr $H^{\infty} = 2$ [15]. The Bass stable rank of the ring of all finite square matrices of size n with entries from the ring \mathcal{A} is related to the Bass stable rank of \mathcal{A} [17, Theorem 3]:

(1.3)
$$\operatorname{bsr} \mathcal{A}^{n \times n} = \lfloor -(\operatorname{bsr} \mathcal{A} - 1)/n \rfloor + 1.$$

Here for $r \in \mathbb{R}$, $\lfloor r \rfloor$ denotes the largest integer less than or equal to r. So when E is finitedimensional, bsr $H^{\infty}_{\mathcal{L}(E)} = 1$. There is also a similar relation relating the tsr 's when \mathcal{A} is a Banach algebra with a continuous involution (see the proof of [10, Theorem 6.1]):

(1.4)
$$\operatorname{tsr} \mathcal{A}^{n \times n} = \left[(\operatorname{tsr} \mathcal{A} - 1)/n \right] + 1.$$

Here $\lceil r \rceil$ denotes the least integer greater than r. Hence tsr $H^{\infty}_{\mathcal{L}(E)} = 2$ when E is finitedimensional.

The above results are also known for the disk algebra A: bsr A = 1 [7], tsr A = 2 [10]. Using the relations (1.3) and (1.4) above, we also have bsr $A_{\mathcal{L}(E)} = 1$ and tsr $A_{\mathcal{L}(E)} = 2$ when E is finite-dimensional.

In this article our main result is the following, which is proved in Section 2:

Theorem 1.4. If dim $E = \infty$, then bsr $H^{\infty}_{\mathcal{L}(E)} = \infty$.

It is known that bsr \mathcal{A} is less than or equal to the minimum of the left and right tsr's of \mathcal{A} [10, Corollary 2.4]. So we have the following:

Corollary 1.5. If dim $E = \infty$, then tsr $H^{\infty}_{\mathcal{L}(E)} = \infty$.

Analogously, we also show that bsr $A_{\mathcal{L}(E)}^S = \text{tsr } A_{\mathcal{L}(E)}^S = \infty$ in Section 3 (disk algebra case; $S = \mathbb{T}$) and Section 4 (general S).

2. Proof of Theorem 1.4

In this section we will prove our main result (Theorem 1.4) that bsr $H_{\mathcal{L}(E)}^{\infty} = \infty$ when dim $E = \infty$. The proof is similar to that of [2, Corollary, p. 292] that bsr $\mathcal{L}(E) = \infty$ if E is an infinite-dimensional Hilbert space. We will use the following result [2, Theorem 2]:

Theorem 2.1. Let \mathcal{A} be a Banach algebra with Bass stable rank not greater than n. Then for any $m \ge n+1$, $U_m(\mathcal{A})$ is connected by arcs in \mathcal{A}^m .

If $a \in U_m(\mathcal{A})$, let t_a be the map $t_a : GL_m(\mathcal{A}) \to U_m(\mathcal{A})$ given by $t_a(\sigma) = \sigma(a), \sigma \in GL_m(\mathcal{A})$. Then the map t_a is surjective.

In the above, $GL_m(\mathcal{A})$ denotes the group of all invertible elements in the set of all matrices of size $m \times m$ in the ring \mathcal{A} . If m = 1, then we will denote the set $GL_m(\mathcal{A})$ simply by $GL(\mathcal{A})$.

We begin by showing that $GL(H^{\infty}_{\mathcal{L}(E)})$ is path connected.

Theorem 2.2. $GL(H^{\infty}_{\mathcal{L}(E)})$ is path connected.

In order to prove this theorem, we will use the characterization of $H^{\infty}_{\mathcal{L}(E)}$ functions as being those bounded linear operators on H^2_E that commute with the shift operator [11]. We quote this result below, but first we recall the definition of H^2_E and the shift operator:

Definition 2.3. We denote by H_E^2 the Hilbert space of functions $f : \mathbb{D} \to E$ that are holomorphic in \mathbb{D} such that

$$||f||_2 := \sup_{0 < r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} ||f(re^{i\theta})||_E^2 d\theta \right)^{1/2} < \infty.$$

The shift operator S is the bounded linear transformation on H_E^2 of multiplication by z.

We recall the following result [11, Theorem B, Section 1.15]:

Theorem 2.4. A bounded linear operator T on H^2_E commutes with S iff T is the multiplication map Λ_g (that is, $f \mapsto \Lambda_g(h) = gh$, $h \in H^2_E$) for some $g \in H^{\infty}_{\mathcal{L}(E)}$. Moreover, in this case $\|T\|_{\mathcal{L}(H^2_E)} = \|g\|_{\infty}$.

Proof of Theorem 2.2. We prove that given $f \in GL(H^{\infty}_{\mathcal{L}(E)})$, there exists a continuous $\varphi : [0,1] \to GL(H^{\infty}_{\mathcal{L}(E)})$ such that $\varphi(0) = I$ and $\varphi(1) = f$.

Given $g \in H^{\infty}_{\mathcal{L}(E)}$, let $\Lambda_g \in \mathcal{L}(H^2_E)$ denote the multiplication map by g. Then Λ_g commutes with the shift operator S on H^2_E .

By [12, Theorem 12.35.(a)], it follows that the invertible operator $\Lambda_f \in \mathcal{L}(H_E^2)$ has a unique polar decomposition T = UP, where P is the invertible positive square root of $\Lambda_f^* \Lambda_f$, and $U = \Lambda_f P^{-1}$ is an invertible unitary operator. Also P commutes with every operator that Λ_f commutes with (see for example [12, Section 12.24]), and in particular, P commutes with the shift operator S. Hence U also commutes with S.

Since $\sigma(P) \subset (0, \infty)$, log is a continuous real function on $\sigma(P)$. It follows from the symbolic calculus [12, Section 12.24] that there is a self-adjoint $X \in \mathcal{L}(H_E^2)$ such that $P = e^X$. Moreover, by [12, Section 12.24] it follows that X also commutes with S. Since U is unitary, $\sigma(U)$ lies on the unit circle, so that there is a real bounded Borel function ψ on $\sigma(U)$ that satisfies $e^{i\psi(\lambda)} = \lambda$, $\lambda \in \sigma(U)$. Put $Y = \psi(U)$. Then $Y \in \mathcal{L}(H_E^2)$ is self-adjoint, $U = e^{iY}$, and Y commutes with S. Thus $\Lambda_f = UP = e^{iY}e^X$. Now define $T : [0,1] \to \mathcal{L}(H_E^2)$ by $T(t) = e^{itY}e^{tX}$. Since X and Y commute with S, so does T(t). Moreover, T(t) is invertible in $\mathcal{L}(H_E^2)$ for each $t: T(t)^{-1} = e^{-tX}e^{-itY}$. By Theorem 2.4, it follows that for each $t \in [0, 1]$, there exists a $\varphi(t) \in H^{\infty}_{\mathcal{L}(E)}$ such that $T(t) = \Lambda_{\varphi(t)}$, and $||T(t)||_{\mathcal{L}(H^2_E)} = ||\varphi(t)||_{\infty}$. Since T(t) is invertible, it can be seen that $\varphi(t) \in GL(H^{\infty}_{\mathcal{L}(E)})$. Since $\varphi(0) = I$ and $\varphi(1) = f$, we conclude that φ can be taken as the desired path.

Theorem 2.5. Let $n \in \mathbb{N}$. Then $GL_n(H^{\infty}_{\mathcal{L}(E)})$ is connected.

Proof. The set of matrices of size $n \times n$ with entries in $H^{\infty}_{\mathcal{L}(E)}$ is isomorphic to $H^{\infty}(\mathcal{L}(E^n))$ as a Banach algebra, and so $GL_n(H^{\infty}_{\mathcal{L}(E)})$, being homeomorphic to $GL(H^{\infty}(\mathcal{L}(E^n)))$, is connected by Theorem 2.2 above.

Theorem 2.6. Let \mathcal{A} be a Banach algebra with identity e.

- (1) $GL(\mathcal{A})$ is a closed subset of $U_1(\mathcal{A})$.
- (2) $U_1(\mathcal{A}^n)$ is homeomorphic to $(U_1(\mathcal{A}))^n$.

Proof. (1) Suppose $a_n \in GL(\mathcal{A})$ and $a_n \to a \in U_1(\mathcal{A})$. If ba = e, then $ba_n \to (ba =)e$. Since $GL(\mathcal{A})$ is open, there exists a N such that for all $n \ge N$, $ba_n \in GL(\mathcal{A})$. Thus $b = (ba_n)a_n^{-1} \in GL(\mathcal{A})$ and $a = b^{-1}(ba) \in GL(\mathcal{A})$.

(2) It is known that if \mathcal{A} is a Banach algebra with unit and X is a compact Hausdorff space, then $U_1(C(X, \mathcal{A}))$ is homeomorphic to $C(X, U_1(\mathcal{A}))$ [4, Theorem 2.4]. Here the notation C(X, Y) means the space of all continuous maps from X to the Banach space Y, equipped with the supremum norm: $||f||_{C(X,Y)} = \max_{x \in X} ||f(x)||_Y$. Taking $X = \{1, \ldots, n\}$ with the discrete topology, the result follows. \Box

Proof of Theorem 1.4. Since $GL(H^{\infty}_{\mathcal{L}(E)})$ is

- (1) a connected subset of $U_1(H^{\infty}_{\mathcal{L}(E)})$ (Theorem 2.2),
- (2) an open subset of $U_1(H^{\infty}_{\mathcal{L}(E)})$ ([12, Theorem 10.12]), and
- (3) a closed subset of $U_1(H_{\mathcal{L}(E)}^{\infty})$ (Theorem 2.6),

we conclude that $GL(H^{\infty}_{\mathcal{L}(E)})$ is a connected component of $U_1(H^{\infty}_{\mathcal{L}(E)})$.

We observe that $GL(H^{\infty}_{\mathcal{L}(E)}) \neq U_1(H^{\infty}_{\mathcal{L}(E)})$ because E is infinite-dimensional. Since we have proved above that $GL(H^{\infty}_{\mathcal{L}(E)})$ is a connected component of $U_1(H^{\infty}_{\mathcal{L}(E)})$, it follows that $U_1(H^{\infty}_{\mathcal{L}(E)})$ is disconnected. For topological spaces X_{α} , if $\prod X_{\alpha}$ is connected and nonempty, then each X_{α} is connected [8, Exercise 2, p. 151]. Consequently, $(U_1(H^{\infty}_{\mathcal{L}(E)}))^n$ is disconnected for all $n \in \mathbb{N}$.

From Theorem 2.6, we know that $(U_1(H_{\mathcal{L}(E)}^{\infty}))^n$ is homeomorphic to $U_n(H_{\mathcal{L}(E)}^{\infty})$. So from the above, $U_n(H_{\mathcal{L}(E)}^{\infty})$ is disconnected as well for all $n \in \mathbb{N}$. Now let $m \in \mathbb{N}$ and $f \in U_m(H_{\mathcal{L}(E)}^{\infty})$. Consider the map $t_f : GL_m(H_{\mathcal{L}(E)}^{\infty}) \to U_m(H_{\mathcal{L}(E)}^{\infty})$ given by $t_f(A) = Af$. Then t_f is continuous [3, Lemma 1.2.(ii)]. From Theorem 2.5, we know that $GL_m(H_{\mathcal{L}(E)}^{\infty})$ is connected. But the image of a connected space under a continuous map is connected [8, Theorem 1.5, Section 3-1], and so t_f can never be surjective. From Theorem 2.1, it follows that ber $H_{\mathcal{L}(E)}^{\infty} = \infty$. \Box

3. DISK ALGEBRA

In this section we prove that the Bass and topological stable ranks of the disc algebra $A_{\mathcal{L}(E)}$ are infinite. (Although this is a special case of the more general result in the next section, we include a separate proof here since it is simpler than the most general case.)

Theorem 3.1. If dim $E = \infty$, then $\operatorname{bsr} A_{\mathcal{L}(E)} = \infty$.

Proof. The proof is the same, mutatis mutandi, to the proof of Theorem 1.4, and the only key question is that of the connectedness of $GL(A_{\mathcal{L}(E)})$. This can be proved using the corresponding result for $H_{\mathcal{L}(E)}^{\infty}$ as follows. Let $f \in GL(A_{\mathcal{L}(E)})$. We want to find a path in $GL(A_{\mathcal{L}(E)})$ that joins f to I. Choose $\epsilon > 0$ such that the ball $\{g \in A_{\mathcal{L}(E)} \mid \|g - f\|_{\infty} < \epsilon\}$ is contained in $GL(A_{\mathcal{L}(E)})$ (this can be done since $GL(A_{\mathcal{L}(E)})$ is open in the Banach algebra $A_{\mathcal{L}(E)}$). It is clear that given any such g, f can be connected to g by a path in $GL(A_{\mathcal{L}(E)})$. Now we choose a special g, namely one which is holomorphic across \mathbb{T} . To do this, we simply dilate the f. First of all, if $r \in (0, 1)$, then let f_r be the dilated function defined on the dilated disk $\mathbb{D}_r := (1/r)\mathbb{D}$ by $f_r(z) = f(rz), z \in \mathbb{D}_r$. By choosing r close enough to 1, we can ensure that $\|f_r - f\|_{\infty} < \epsilon$. We take this f_r as our g. Since f_r is a dilation of f, it follows that $f_r \in GL(H_{\mathcal{L}(E)}^{\infty}(\mathbb{D}_r))$, where $H_{\mathcal{L}(E)}^{\infty}(\mathbb{D}_r)$ denotes the the set of all $\mathcal{L}(E)$ -valued bounded and holomorphic functions defined on \mathbb{D}_r . The path connectedness of $GL(H_{\mathcal{L}(E)}^{\infty}(\mathbb{D}_r))$ follows from the path connectedness of $GL(H_{\mathcal{L}(E)}^{\infty}(\mathbb{D}_r))$. But this path is then also a path in $GL(A_{\mathcal{L}(E)})$.

Corollary 3.2. If dim $E = \infty$, then $\operatorname{tsr} A_{\mathcal{L}(E)} = \infty$.

4. General S open in $\mathbb T$

We will need the following approximation result can be found in Stray [14] and Gamelin and Garnett [6] for the case of complex valued functions; the operator-valued case was shown in [13, Lemma 2.1].

Lemma 4.1. Let S be an open subset of \mathbb{T} , and $f \in A^{S}_{\mathcal{L}(E)}$. For all $\epsilon > 0$, there exists an open set O in \mathbb{C} that contains S and a holomorphic function $F : \mathbb{D} \cup O \to \mathcal{L}(E)$ such that $\|F\|_{\mathbb{D}} - f\| \leq \epsilon$.

Theorem 4.2. Let S be an open subset of \mathbb{T} . If dim $E = \infty$, then by $A^{S}_{\mathcal{L}(E)} = \infty$.

Proof. The proof is similar to the proof of Theorem 3.1, except that instead of using a dilation for the approximation, we use the approximation result from Lemma 4.1.

Let $f \in GL(A_{\mathcal{L}(E)}^{S})$. We want to find a path in $GL(A_{\mathcal{L}(E)}^{S})$ that joins f to I. Choose $\epsilon > 0$ such that the ball $\{g \in A_{\mathcal{L}(E)}^{S} \mid ||g - f||_{\infty} < \epsilon\}$ is contained in $GL(A_{\mathcal{L}(E)}^{S})$. It is clear that given any such g, f can be connected to g by a path in $GL(A_{\mathcal{L}(E)}^{S})$. Now by Lemma 4.1, we can choose a g = F, where F is holomorphic across S. We can also shrink the set O in Lemma 4.1 so that $\Omega := O \cup \mathbb{D}$ is simply connected, and F belongs to $GL(H_{\mathcal{L}(E)}^{\infty}(\Omega))$. (Here $H_{\mathcal{L}(E)}^{\infty}(\Omega)$ denotes the the set of all $\mathcal{L}(E)$ -valued bounded and holomorphic functions defined on Ω .) The path connectedness of $GL(H_{\mathcal{L}(E)}^{\infty}(\Omega))$ follows from the path connectedness of $GL(H_{\mathcal{L}(E)}^{\infty}(\Omega))$. But this path is then also a path in $GL(A_{\mathcal{L}(E)}^{S})$.

Corollary 4.3. Let S be an open subset of \mathbb{T} . If dim $E = \infty$, then the left/right topological stable rank of $A^{S}_{\mathcal{L}(E)}$ is infinite.

References

- [1] H. Bass. K-theory and stable algebra. Publications Mathématiques de L'I.H.É.S., 22:5-60, 1964.
- [2] G. Corach and A.R. Larotonda. Stable range in Banach algebras. Journal of Pure and Applied Algebra, 32:289-300, 1984.
- [3] G. Corach and A.R. Larotonda. Unimodular matrices in Banach algebra theory. Proceedings of the American Mathematical Society, no. 3, 96:473-477, 1986.

AMOL SASANE

- [4] G. Corach and F.D. Suárez. Continuous selections and stable rank of Banach algebras. Topology and its Applications, 43:237-248, 1992.
- [5] A. Feintuch. The strong stabilization problem for linear time-varying systems. Problem 6.2 in Unsolved problems in mathematical systems and control theory, Edited by Vincent D. Blondel and Alexandre Megretski, Princeton University Press, Princeton, NJ, 2004.
- [6] T.W. Gamelin and J. Garnett. Uniform approximation to bounded analytic functions. Revista de la Unión Matemática Argentina, 25:87-94, 1970.
- [7] P.W. Jones, D. Marshall and T. Wolff. Stable rank of the disc algebra. Proceedings of the American Mathematical Society, 96:603-604, 1986.
- [8] J.R. Munkres. Topology. A First Course. Prentice-Hall of India, New Delhi, 1988.
- [9] A. Quadrat. On a general structure of the stabilizing controllers based on stable range. SIAM Journal on Control and Optimization, no. 6, 42:2264-2285, 2004.
- [10] M.A. Rieffel. Dimension and stable rank in the K-theory of C*-algebras. Proceedings of the London Mathematical Society, no. 2, 46:301-333, 1983.
- [11] M. Rosenblum and J. Rovnyak. Hardy Classes and Operator Theory. Dover, 1985.
- [12] W. Rudin. Functional Analysis. 2nd edition. McGraw-Hill, 1991.
- [13] A.J. Sasane. An operator corona theorem for some subspaces of H^{∞} . Preprint, 2006.
- [14] A. Stray. An approximation theorem for subalgebras of H^{∞} . Pacific Journal of Mathematics, 35:511-515, 1970.
- [15] F.D. Suárez. Trivial Gleason parts and the topological stable rank of H[∞]. American Journal of Mathematics, no. 4, 118:879-904, 1996.
- [16] S.R. Treil. The stable rank of the algebra H^{∞} equals 1. Journal of Functional Analysis, 109:130-154, 1992.
- [17] L.N. Vaserštein. The stable range of rings and the dimension of topological spaces. (Russian) Akademija Nauk SSSR. Funkcional. Analiz i ego Priloženija., no. 2, 5:17-27, 1971. English translation in [Functional Anal. Appl., 5:102-110, 1971].
- [18] M. Vidyasagar. Control System Synthesis: a Factorization Approach. MIT Press, 1985.
- [19] R.B. Warfield, Jr. Cancellation of modules and groups and stable range of endomorphism rings. Pacific Journal of Mathematics, no. 2, 91:457-485, 1980.

DEPARTMENT OF MATHEMATICS, LONDON SCHOOL OF ECONOMICS, HOUGHTON STREET, LONDON WC2A 2AE, UNITED KINGDOM.

E-mail address: A.J.Sasane@lse.ac.uk