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Abstract. Let E be an infinite-dimensional Hilbert space, and let H∞
L(E) denote the Banach

algebra of all functions f : D → L(E) that are holomorphic and bounded, equipped with
the supremum norm ‖f‖∞ := supz∈D

‖f(z)‖L(E), f ∈ H∞
L(E). We show that the Bass and

topological stable ranks of H∞
L(E) are infinite. If S is an open subset of T, then let AS

L(E)

denote the subalgebra of H∞
L(E) of all functions that have a continuous extension to S. We

also prove that AS

L(E) has infinite Bass and topological stable ranks.
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1. Introduction

In this paper, we prove that the Bass and topological stable ranks of the Banach algebras
H∞

L(E) and AS
L(E) (Definition 1.3) are all infinite when E is infinite-dimensional.

The notions of Bass/topological stable ranks play important roles in algebraic/topological
K-theory (see [1] and [10]), but they also have applications in the control-theoretic problem
of stabilization via a factorization approach (see [18], [5], [9]). We recall the definition of Bass
stable rank and topological stable rank below.

Definition 1.1. Let A be a ring with identity e and n ∈ N. An element a = (a1, . . . , an) ∈ An

is called (left) unimodular if there exists b = (b1, . . . , bn) ∈ An such that

(1.1)
n

∑

k=1

bkak = e.

We denote the set of unimodular elements of An by Un(A).
An element a ∈ Un+1(A) is called (left) reducible if there exists x = (x1, . . . , xn) ∈ An such

that

(1.2) (a1 + x1an+1, . . . , an + xnan+1) ∈ Un(A).

The (left) Bass stable rank of A, denoted by bsr A, is the least integer n ≥ 1 such that
every a ∈ Un+1(A) is reducible, and it is infinite if no such integer n exists.

Now let A denote a Banach algebra1. The (left) topological stable rank of A, denoted by
tsr A, is the least integer n ≥ 1 such that Un(A) is dense in An, and it is infinite if no such
integer exists.
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Remark 1.2. Analogously one can define a right Bass/topological stable rank, by changing
the multiplication order in (1.1).

It turns out that for any ring A the left Bass stable rank is always equal to the right stable
rank (see [19]).

Moreover, it is known (see [10, Proposition 1.6]) that the left and right tsr’s are equal
whenever one has a Banach algebra with a continuous involution ⋆, and so in this case one
can unambiguously talk about the tsr. In our case of H∞

L(E) and AL(E), we use the involution
·⋆ defined as follows: f⋆ = (f(·))∗, and ·∗ denotes the adjoint.

In this article we will study the Bass and topological stable ranks of the Banach algebras
AS

L(E), which we define below. We will denote the unit disc {z ∈ C | |z| < 1} by D, the closed

unit disk {z ∈ C | |z| ≤ 1} by D, and the unit circle {z ∈ C | |z| = 1} by T. Throughout
this article, unless otherwise stated, E is an infinite-dimensional complex Hilbert space. We
use the notation L(X,Y ) for the complex Banach space of bounded linear operators between
Hilbert spaces X to Y , equipped with the operator norm.

Definition 1.3. Let H∞
L(E) denote the Banach algebra of functions f : D → L(E) that are

holomorphic and bounded, equipped with the supremum norm ‖f‖∞ := supz∈D ‖f(z)‖L(E).
The Banach algebra AL(E) is defined as the subalgebra of H∞

L(E) of all functions f ∈ H∞
L(E)

that have a continuous extension to T.
More generally, let S be an open subset of T. The Banach algebra AS

L(E) is defined as the
subalgebra of H∞

L(E) of all functions f ∈ H∞
L(E) that have a continuous extension to S.

If E = C, then we denote H∞
L(E), AL(E), simply by H∞, A, respectively.

Sergei Treil proved that bsr H∞ = 1 [16], and Daniel Suárez showed that tsr H∞ = 2 [15].
The Bass stable rank of the ring of all finite square matrices of size n with entries from the
ring A is related to the Bass stable rank of A [17, Theorem 3]:

(1.3) bsr An×n = ⌊−(bsr A− 1)/n⌋ + 1.

Here for r ∈ R, ⌊r⌋ denotes the largest integer less than or equal to r. So when E is finite-
dimensional, bsr H∞

L(E) = 1. There is also a similar relation relating the tsr ’s when A is a
Banach algebra with a continuous involution (see the proof of [10, Theorem 6.1]):

(1.4) tsr An×n = ⌈(tsr A− 1)/n⌉ + 1.

Here ⌈r⌉ denotes the least integer greater than r. Hence tsr H∞
L(E) = 2 when E is finite-

dimensional.
The above results are also known for the disk algebra A: bsr A = 1 [7], tsr A = 2 [10].

Using the relations (1.3) and (1.4) above, we also have bsr AL(E) = 1 and tsr AL(E) = 2 when
E is finite-dimensional.

In this article our main result is the following, which is proved in Section 2:

Theorem 1.4. If dimE = ∞, then bsr H∞
L(E) = ∞.

It is known that bsr A is less than or equal to the minimum of the left and right tsr’s of A
[10, Corollary 2.4]. So we have the following:

Corollary 1.5. If dimE = ∞, then tsr H∞
L(E) = ∞.

Analogously, we also show that bsr AS
L(E) = tsr AS

L(E) = ∞ in Section 3 (disk algebra case;
S = T) and Section 4 (general S).
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2. Proof of Theorem 1.4

In this section we will prove our main result (Theorem 1.4) that bsr H∞
L(E) = ∞ when

dimE = ∞. The proof is similar to that of [2, Corollary, p. 292] that bsr L(E) = ∞ if E is
an infinite-dimensional Hilbert space. We will use the following result [2, Theorem 2]:

Theorem 2.1. Let A be a Banach algebra with Bass stable rank not greater than n. Then
for any m ≥ n+ 1, Um(A) is connected by arcs in Am.

If a ∈ Um(A), let ta be the map ta : GLm(A) → Um(A) given by ta(σ) = σ(a), σ ∈ GLm(A).
Then the map ta is surjective.

In the above, GLm(A) denotes the group of all invertible elements in the set of all matrices
of size m×m in the ring A. If m = 1, then we will denote the set GLm(A) simply by GL(A).

We begin by showing that GL(H∞
L(E)) is path connected.

Theorem 2.2. GL(H∞
L(E)) is path connected.

In order to prove this theorem, we will use the characterization of H∞
L(E) functions as being

those bounded linear operators on H2
E that commute with the shift operator [11]. We quote

this result below, but first we recall the definition of H2
E and the shift operator:

Definition 2.3. We denote by H2
E

the Hilbert space of functions f : D → E that are
holomorphic in D such that

‖f‖2 := sup
0<r<1

(

1

2π

∫ 2π

0
‖f(reiθ)‖2

Edθ

)1/2

<∞.

The shift operator S is the bounded linear transformation on H2
E

of multiplication by z.

We recall the following result [11, Theorem B, Section 1.15]:

Theorem 2.4. A bounded linear operator T on H2
E

commutes with S iff T is the multiplication
map Λg (that is, f 7→ Λg(h) = gh, h ∈ H2

E
) for some g ∈ H∞

L(E). Moreover, in this case
‖T‖L(H2

E
) = ‖g‖∞.

Proof of Theorem 2.2. We prove that given f ∈ GL(H∞
L(E)), there exists a continuous ϕ :

[0, 1] → GL(H∞
L(E)) such that ϕ(0) = I and ϕ(1) = f .

Given g ∈ H∞
L(E), let Λg ∈ L(H2

E) denote the multiplication map by g. Then Λg commutes

with the shift operator S on H2
E.

By [12, Theorem 12.35.(a)], it follows that the invertible operator Λf ∈ L(H2
E) has a unique

polar decomposition T = UP , where P is the invertible positive square root of Λ∗
fΛf , and

U = ΛfP
−1 is an invertible unitary operator. Also P commutes with every operator that Λf

commutes with (see for example [12, Section 12.24]), and in particular, P commutes with the
shift operator S. Hence U also commutes with S.

Since σ(P ) ⊂ (0,∞), log is a continuous real function on σ(P ). It follows from the sym-
bolic calculus [12, Section 12.24] that there is a self-adjoint X ∈ L(H2

E) such that P = eX .
Moreover, by [12, Section 12.24] it follows that X also commutes with S. Since U is unitary,
σ(U) lies on the unit circle, so that there is a real bounded Borel function ψ on σ(U) that

satisfies eiψ(λ) = λ, λ ∈ σ(U). Put Y = ψ(U). Then Y ∈ L(H2
E) is self-adjoint, U = eiY ,

and Y commutes with S. Thus Λf = UP = eiY eX . Now define T : [0, 1] → L(H2
E) by

T (t) = eitY etX . Since X and Y commute with S, so does T (t). Moreover, T (t) is invertible
in L(H2

E
) for each t: T (t)−1 = e−tXe−itY . By Theorem 2.4, it follows that for each t ∈ [0, 1],
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there exists a ϕ(t) ∈ H∞
L(E) such that T (t) = Λϕ(t), and ‖T (t)‖L(H2

E
) = ‖ϕ(t)‖∞. Since T (t) is

invertible, it can be seen that ϕ(t) ∈ GL(H∞
L(E)). Since ϕ(0) = I and ϕ(1) = f , we conclude

that ϕ can be taken as the desired path. �

Theorem 2.5. Let n ∈ N. Then GLn(H
∞
L(E)) is connected.

Proof. The set of matrices of size n×n with entries in H∞
L(E) is isomorphic to H∞(L(En)) as a

Banach algebra, and so GLn(H
∞
L(E)), being homeomorphic to GL(H∞(L(En))), is connected

by Theorem 2.2 above. �

Theorem 2.6. Let A be a Banach algebra with identity e.

(1) GL(A) is a closed subset of U1(A).
(2) U1(A

n) is homeomorphic to (U1(A))n.

Proof. (1) Suppose an ∈ GL(A) and an → a ∈ U1(A). If ba = e, then ban → (ba =)e. Since
GL(A) is open, there exists a N such that for all n ≥ N , ban ∈ GL(A). Thus b = (ban)a

−1
n ∈

GL(A) and a = b−1(ba) ∈ GL(A).
(2) It is known that if A is a Banach algebra with unit and X is a compact Hausdorff space,

then U1(C(X,A)) is homeomorphic to C(X,U1(A)) [4, Theorem 2.4]. Here the notation
C(X,Y ) means the space of all continuous maps from X to the Banach space Y , equipped
with the supremum norm: ‖f‖C(X,Y ) = maxx∈X ‖f(x)‖Y . Taking X = {1, . . . , n} with the
discrete topology, the result follows. �

Proof of Theorem 1.4. Since GL(H∞
L(E)) is

(1) a connected subset of U1(H
∞
L(E)) (Theorem 2.2),

(2) an open subset of U1(H
∞
L(E)) ([12, Theorem 10.12]), and

(3) a closed subset of U1(H
∞
L(E)) (Theorem 2.6),

we conclude that GL(H∞
L(E)) is a connected component of U1(H

∞
L(E)).

We observe that GL(H∞
L(E)) 6= U1(H

∞
L(E)) because E is infinite-dimensional. Since we have

proved above that GL(H∞
L(E)) is a connected component of U1(H

∞
L(E)), it follows that U1(H

∞
L(E))

is disconnected. For topological spaces Xα, if
∏

Xα is connected and nonempty, then each
Xα is connected [8, Exercise 2, p. 151]. Consequently, (U1(H

∞
L(E)))

n is disconnected for all
n ∈ N.

From Theorem 2.6, we know that (U1(H
∞
L(E)))

n is homeomorphic to Un(H
∞
L(E)). So from the

above, Un(H
∞
L(E)) is disconnected as well for all n ∈ N. Now let m ∈ N and f ∈ Um(H∞

L(E)).
Consider the map tf : GLm(H∞

L(E)) → Um(H∞
L(E)) given by tf (A) = Af . Then tf is continuous

[3, Lemma 1.2.(ii)]. From Theorem 2.5, we know that GLm(H∞
L(E)) is connected. But the

image of a connected space under a continuous map is connected [8, Theorem 1.5, Section
3-1], and so tf can never be surjective. From Theorem 2.1, it follows that bsr H∞

L(E) = ∞. �

3. Disk algebra

In this section we prove that the Bass and topological stable ranks of the disc algebra AL(E)

are infinite. (Although this is a special case of the more general result in the next section, we
include a separate proof here since it is simpler than the most general case.)

Theorem 3.1. If dimE = ∞, then bsrAL(E) = ∞.
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Proof. The proof is the same, mutatis mutandi, to the proof of Theorem 1.4, and the only key
question is that of the connectedness of GL(AL(E)). This can be proved using the correspond-
ing result for H∞

L(E) as follows. Let f ∈ GL(AL(E)). We want to find a path in GL(AL(E))
that joins f to I. Choose ǫ > 0 such that the ball {g ∈ AL(E) | ‖g − f‖∞ < ǫ} is contained in
GL(AL(E)) (this can be done since GL(AL(E)) is open in the Banach algebra AL(E)). It is clear
that given any such g, f can be connected to g by a path in GL(AL(E)). Now we choose a
special g, namely one which is holomorphic across T. To do this, we simply dilate the f . First
of all, if r ∈ (0, 1), then let fr be the dilated function defined on the dilated disk Dr := (1/r)D
by fr(z) = f(rz), z ∈ Dr. By choosing r close enough to 1, we can ensure that ‖fr−f‖∞ < ǫ.
We take this fr as our g. Since fr is a dilation of f , it follows that fr ∈ GL(H∞

L(E)(Dr)), where
H∞

L(E)(Dr) denotes the the set of all L(E)-valued bounded and holomorphic functions defined
on Dr. The path connectedness of GL(H∞

L(E)(Dr)) follows from the path connectedness of
GL(H∞

L(E)). So fr can be connected to I by a path in GL(H∞
L(E)(Dr)). But this path is then

also a path in GL(AL(E)). �

Corollary 3.2. If dimE = ∞, then tsrAL(E) = ∞.

4. General S open in T

We will need the following approximation result can be found in Stray [14] and Gamelin
and Garnett [6] for the case of complex valued functions; the operator-valued case was shown
in [13, Lemma 2.1].

Lemma 4.1. Let S be an open subset of T, and f ∈ AS
L(E). For all ǫ > 0, there exists an

open set O in C that contains S and a holomorphic function F : D ∪ O → L(E) such that
‖F |D − f‖ ≤ ǫ.

Theorem 4.2. Let S be an open subset of T. If dimE = ∞, then bsr AS
L(E) = ∞.

Proof. The proof is similar to the proof of Theorem 3.1, except that instead of using a dilation
for the approximation, we use the approximation result from Lemma 4.1.

Let f ∈ GL(AS
L(E)). We want to find a path in GL(AS

L(E)) that joins f to I. Choose ǫ > 0
such that the ball {g ∈ AS

L(E) | ‖g−f‖∞ < ǫ} is contained in GL(AS
L(E)). It is clear that given

any such g, f can be connected to g by a path in GL(AS
L(E)). Now by Lemma 4.1, we can

choose a g = F , where F is holomorphic across S. We can also shrink the set O in Lemma
4.1 so that Ω := O ∪D is simply connected, and F belongs to GL(H∞

L(E)(Ω)). (Here H∞
L(E)(Ω)

denotes the the set of all L(E)-valued bounded and holomorphic functions defined on Ω.)
The path connectedness of GL(H∞

L(E)(Ω)) follows from the path connectedness of GL(H∞
L(E))

and the Riemann mapping theorem. So g can be connected to I by a path in GL(H∞
L(E)(Ω)).

But this path is then also a path in GL(AS
L(E)). �

Corollary 4.3. Let S be an open subset of T. If dimE = ∞, then the left/right topological
stable rank of AS

L(E) is infinite.
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