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Abstract. Let AR(D) denote the set of functions belonging to the disc algebra having real

Fourier coefficients. We show that AR(D) has Bass and topological stable ranks equal to
2, which settles the conjecture made by Brett Wick in [18]. We also give a necessary and
sufficient condition for reducibility in some real algebras of functions on symmetric domains
with holes, which is a generalization of the main theorem in [18]. A sufficient topological

condition on the symmetric open set D is given for the corresponding real algebra AR(D) to
have Bass stable rank equal to 1.
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1. Introduction

The notion of stable rank of a ring (which we call Bass stable rank) was introduced by
H. Bass [2] to facilitate computations in algebraic K-theory. We recall the definition of the
Bass stable rank of a ring below.

Definition 1.1. Let A be a commutative ring with identity 1. Let n ∈ N. An element
a = (a1, . . . , an) ∈ An is called unimodular if there exists b = (b1, . . . , bn) ∈ An such that

〈b, a〉 :=

n∑

k=1

bkak = 1.

We denote by Un(A) the set of unimodular elements of An.
We say that a = (a1, . . . , an) ∈ Un(A) is reducible (in A), if there exist h1, . . . , hn−1 ∈ A

such that (a1 + h1an, . . . , an−1 + hn−1an) ∈ Un−1(A). The Bass stable rank of A, denoted by
bsr A, is the least integer n such that every a ∈ Un+1(A) is reducible (and it is infinite if no
such integer n exists).

The Bass stable rank is a purely algebraic notion, but when studying commutative Banach
algebras of functions, analysis also plays a role. In [13], M. Rieffel introduced the notion of
topological stable rank, analogous to the concept of Bass stable rank:

Definition 1.2. Let A denote a commutative unital Banach algebra. The topological stable
rank of A, denoted by tsr A, is the minimum integer n such that Un(A) is dense in An (and
it is infinite if no such integer exists).
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Jones, Marshall and Wolff [9] showed that the Bass stable rank of the complex disc algebra
A(D) is equal to 1, and Rieffel [13] showed that its topological stable rank is equal to 2. Recall
that the complex disc algebra A(D) is the Banach algebra of all complex-valued functions
defined on the closed unit disc D that are holomorphic in the open unit disc D and continuous
on D, endowed with the supremum norm: ‖f‖∞ = supz∈D

|f(z)|.
In this article, we study the Bass/topological stable ranks, and also consider reducibility

of corona pairs, in some real Banach algebras of “real symmetric” functions. We define these
below. Throughout this article, we use z∗ to denote the complex conjugate of z, and we use
Ω to denote the closure of the set Ω ⊂ C.

Definition 1.3. The real disc algebra, denoted by AR(D), is the set of all functions of A(D)
having real Fourier coefficients. Equivalently,

AR(D) = {f ∈ A(D) | ∀z ∈ D, f(z) = (f(z∗))∗}.

The real disc algebra AR(D) is a real Banach algebra with the supremum norm ‖ · ‖∞.
More generally, if D is an open set in C, then by A(D) we mean the set of functions

holomorphic in D that are continuous and bounded on D. If D is real symmetric (that is,
z ∈ D if and only if z∗ ∈ D), then we use the symbol AR(D) to denote the set of functions f
belonging to A(D) that are real symmetric, that is, f(z) = (f(z∗))∗ (z ∈ D).

If D is a real symmetric open set, then CR(D) denotes the set of complex-valued, bounded,
continuous functions f defined on D, that satisfy f(z) = (f(z∗))∗ (z ∈ D).

Brett Wick conjectured [18] that the Bass stable rank of AR(D) is equal to 2, and we prove
this in Section 2, by first showing that the topological stable rank of AR(D) is 2. In Section 4
we extend the main result of B. Wick [18] to the case of subalgebras of AR(D). We also
completely characterize reducible elements in algebras AR(D) of real symmetric functions on
domains with holes (under mild assumptions) in Theorem 6.4. This generalizes the main
result in [18] from the case of the disc to more general domains. Finally, in Theorem 6.6, we
give a sufficient topological condition on the open set D for AR(D) to have Bass stable rank
equal to 1.

2. Bass and topological stable rank of AR(D)

In this section we prove that bsr AR(D) = tsr AR(D) = 2.
We begin by making the observation that the polynomials with real coefficients are dense

in AR(D). Indeed, given f ∈ AR(D), f has real Fourier coefficients, which are the same as the
coefficients in the Taylor expansion of the analytic function f about the point 0 in D. Since
f is continuous on the circle, and its negative Fourier coefficients vanish, the Cesàro means
of the Fourier series for f are trigonometric polynomials with real coefficients which converge
uniformly to f . The corresponding polynomials in z give the desired sequence converging
uniformly to f in AR(D).

Theorem 2.1. The topological stable rank of AR(D) is 2.

Proof. First of all we note that U1(AR(D)) is not dense in AR(D). Indeed, U1(AR(D)) is the
set of units in AR(D), and f is invertible as an element in AR(D) only if it has no zero in D.
But the uniform limit of a sequence of functions from the disc algebra which are never zero
in D is either identically zero or has no zeros in D; see [1, Theorem 2, p. 178]. So taking any
function with finitely many zeros in D, say z, we have a contradiction. So tsr AR(D) > 1.
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Next we show that U2(AR(D)) is dense in AR(D)2. Take (f, g) ∈ AR(D)2 and approximate
f, g by polynomials p, q, respectively, having real coefficients. Since p ∈ R[z], we have the
following product representation for p:

p(z) = C
∏

(z − rj)
∏

(z2 + sjz + tj),

where C, rj , sj, tj are real numbers. If p and q have a common root in D, then we replace
rj , sj, tj by rj + ǫ, sj + ǫ, tj + ǫ with a sufficiently small real ǫ so that the new polynomial

p̃ has no common root with q in D, and so (p̃, q) ∈ U2(AR(D)) is near (f, g). Consequently
tsr AR(D) ≤ 2. �

We recall the following result [4, Theorem 3, p. 293]:

Proposition 2.2. Let A be a commutative unital real (or complex) Banach algebra. If Un(A)
is a dense subset of An, then bsr A ≤ n.

Theorem 2.3. The Bass stable rank of AR(D) is 2.

Proof. First we show that bsr AR(D) > 1. Consider a := (z, 1− z2) ∈ AR(D)2. The element a
is unimodular, since with b := (z, 1) ∈ AR(D)2, we have 〈b, a〉 = 1. However a is not reducible.
Indeed, otherwise there exists an element h ∈ AR(D) such that with f(z) := z + h(z)(1− z2),
z ∈ D, f is an invertible element of AR(D). However, f(−1) = −1 and f(1) = 1, and so by
the intermediate value theorem f(c) = 0 for some c ∈ (−1, 1), contradicting the invertibility
of f .

From Theorem 2.1 it follows that U2(AR(D)) is dense in AR(D)2, and so by Proposition 2.2,
we obtain that bsr AR(D) ≤ 2. This completes the proof. �

Remark 2.4.

(1) Brett Wick conjectured in [18] that the Bass stable rank of AR(D) is equal to 2; the
above result settles this conjecture.

(2) Bass and topological stable ranks of AR(D) play an important role in control theory
in the problem of stabilization of linear systems. We refer the reader to [12] and [17]
for background on the connection between stable rank and control theory.

3. Preliminaries

3.1. Reducibility in general real Banach algebras. We adapt the definition from [14,
Definition 1.1] to the case of real Banach algebras as follows:

Definition 3.1. Let A be a real commutative Banach algebra with unit element denoted by
1. Suppose that (f, g) ∈ A2 and λ, µ ∈ R. The real numbers λ, µ are called equivalent if there
exists elements h, k ∈ A such that

f − λ + hg = (f − µ) exp(k)

It is not hard to see that for fixed (f, g) this indeed gives an equivalence relation. We denote
the equivalence class of λ by [λ].

Theorem 3.2. If (f − µ, g) ∈ U2(A), then [µ] is open in R.

The proof is the same as that of [14, Proposition 1.2], but all numbers have to be real.
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Theorem 3.3. Let (f, g) ∈ U2(A) and suppose that for some positive ǫ the interval (−∞, ǫ)
belongs to the real inversion set

IR(f, g) := {λ ∈ R | (f − λ, g) ∈ U2(A)}.

Then (f, g) is reducible in A.

The proof is similar to that of [14, Proposition 1.3]: Take a real number M such that
M > ‖f‖. Then there exists l ∈ A such that f−(−M) = exp(l). Then (f−(−M), g) ∈ U2(A)
and, by assumption, −M and 0 belong to the same connected component of IR(f, g). But
then Theorem 3.2 implies that µ = −M and λ = 0 are equivalent. (Otherwise the open
connected set (−∞, ǫ) would split into disjoint open sets, namely certain equivalence classes.)
Thus there exist h, k ∈ A such that f + hg = (f − (−M)) exp(k) = exp(k + l).

3.2. Some notation and terminology. When we consider domains with holes in sections
5 and 6, the following notation will be convenient.

Notation 3.4. Let D denote a bounded symmetric domain in C with n holes, having a
boundary that is a union of pairwise disjoint Jordan curves. The outer boundary curve
is denoted by Γn+1. From these n holes, bounded by pairwise disjoint Jordan curves Γj ,
we have r holes intersecting R and 2m which do not intersect R. Here n = r + 2m. For
notational reasons the Jordan curves Γj belonging to the upper half plane are indexed by
j = r + 1, . . . , r + m, while the Jordan curves belonging to the lower half plane are indexed
by j = r + m + 1, . . . , r + 2m. These curves Γr+m+j are the reflection of Γr+j. Let Cj be a
hole of D (j = 1, . . . , r, r +1, . . . , r +2m). Choose for each j ∈ {1, . . . , r} a point xj ∈ R∩Cj,
and for j ∈ {r + 1, · · · r + m} let zj ∈ Cj. Finally let S = {x1, . . . , xr, z1, . . . , zm, z∗1 , . . . , z∗m}.
See Figure 1. To ensure that the domain D is always to the left of the orientation, we assume
that the Jordan curves Γ1, . . . ,Γn surrounding the holes are negatively oriented, whereas the
outer boundary curve Γn+1 is positively oriented.

Γr+1 Γr+m
z1

zm

Γ1

x1
xr

Γr

Γr+m+1

z∗1

z∗m

Γr+2m

R

Figure 1. The domain D with n = r + 2m holes.

Definition 3.5. If D denotes an open subset of C, then we say the corona theorem holds for
A (⊂ AR(D)) if the following is true for all n ∈ N:

(f1, . . . , fn) ∈ Un(A) if and only if there exists δ > 0 such that
∑n

j=1 |fj(z)| ≥ δ (z ∈ D),

that is, if and only if the functions f1, . . . , fn have no common zero in D.
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Definition 3.6. For functions g ∈ AR(D) the zero set Zg of g is

Zg := {z ∈ D | g(z) = 0},

and for δ > 0 the level set Z(δ) is

Z(δ) := {z ∈ D | |g(z)| ≤ δ}.

Of course the inclusion Zg ⊂ Z(δ) holds.

Following B. Wick [18], we will use the following terminology:

Definition 3.7. Let f, g ∈ AR(D). The function f is said to be positive on real zeros of g
(abbreviated as f is POZ of g), if f has the same sign at all real zeros of g.

For example, consider (f, g) := (z, 1 − z2) ∈ AR(D)2. Then f is not POZ of g.

3.3. Technical lemmata. In this subsection, we will prove two technical lemmata which
will be used in the sequel. The first one is well-known among the workers in the field. For
the sake of completeness we include a proof.

Lemma 3.8. For every function g ∈ AR(D), the complement C \ Z(δ) of the level set Z(δ)
is connected. Moreover, the complement C \ Zg of the zero set Zg is also connected.

Proof. For constant functions g the assertions are trivially true. So we may assume that g is
non constant. By the very definition C \ D ⊂ C \ Z(δ), and so if C \ Z(δ) is not connected,
there exists a bounded component G ⊂ D. Being in the complement of the level set, we must
have |g(z)| ≥ δ for all z ∈ ∂G ⊂ D. On the other hand, |g(z)| ≤ δ for all z ∈ ∂G ⊂ D,
because ∂G ⊂ ∂(C \ Z(δ)) = ∂Z(δ) ⊂ Z(δ). This gives |g(z)| = δ for all z ∈ ∂G, forcing g to
be a constant by the maximum modulus theorem, a contradiction. Hence no such bounded
component of the complement of Z(δ) can exist. That C \ Zg is connected follows from

C \ Zg =
⋃

δ>0

(C \ Z(δ))

and the fact that
⋂

δ>0(C \ Z(δ)) 6= ∅ (indeed, C \ D ⊂ C \ Z(δ) for every δ > 0). �

In order to facilitate handling zero sets, we prove the following result, in which we enclose
the zero set by finitely many closed sets.

Lemma 3.9. Let g ∈ AR(D) be such that it has at least one zero in D, but it does not vanish
identically. Then for all δ > 0, there exist finitely many closed sets H1, . . . ,HN ⊂ D, lying
symmetrically with respect to the real axis, that is, Hj = H∗

k for certain j, k, with the following
properties:

(1) Zg ⊂ ∪N
j=1Hj ⊂ Z(δ).

(2) Hj ∩ Hk = ∅ (j 6= k).
(3) 1◦ If no real zero of g belongs to Hj, then Hj ∩ R = ∅, Hj belongs entirely to the

upper (respectively lower) half plane, and Hj = H∗

k for some j 6= k.
2◦ If at least one real zero x0 of g belongs to Hj (that is, x0 ∈ Zg ∩ Hj ∩ R), then

Hj = H∗

j holds and Hj is connected.

Proof. The zero set Zg is compact, hence finitely many components Kj , j = 1, . . . ,M , of the

relatively open set H := {z ∈ D | |g(z)| < δ} will suffice to cover Zg. Since H is symmetric
with respect to the real axis, its components are symmetric as well. Unfortunately, the



6 R. RUPP AND A. SASANE

closures Kj need not be disjoint. However, we may take the closed connected components of⋃N
j=1 Kj; at most there are M such components. These components are symmetric as well.

To ensure all the three assertions hold, we must eventually truncate the closed sets Kj :

1◦ If no real zero of g is in Kj , then |g(z)| ≥ ρj > 0 for all z ∈ (Kj ∩R)× (|Im(z)| ≤ δj).

Hence no zero of g belongs to z ∈ (Kj ∩ R) × (|Im(z)| ≤ δj). We truncate as follows:

Hj := Kj ∩ (|Im(z)| ≥ δj). The closed set Kj splits in two closed sets belonging
entirely to the upper (respectively lower) half plane.

2◦ If at least one real zero of g belongs to Kj , then we don’t truncate, that is, Hj := Kj .

By symmetry we have Hj = H∗

j , and Hj = Kj is connected, because Kj is.

By construction all the zeros of g belong to exactly one closed set Hj, j = 1, . . . ,N . �

4. Reducibility in real symmetric algebras on the disc

In this section we generalize the main result of B. Wick [18] to subalgebras A of AR(D).
In real algebras A ⊂ AR(D) where the corona theorem holds, the real inversion set from

Theorem 3.3 is given by

IR(f, g) = R \ f(Zg).

That the corona theorem holds for AR(D) follows easily from the corona theorem for the
complex algebra A(D) by symmetrization of the solution. We refer the reader to [10] for a
constructive proof (not using any Gelfand theory nor Banach algebra theory) of the corona
theorem for certain subalgebras of A(D) and certain domains D ( including, of course, D).

Theorem 4.1 (Units). Let A denote one of the algebras AR(D), CR(D) respectively. For any
unit u ∈ A−1 either u or −u can be expressed as

u = exp(h),

where h ∈ A.

Proof. First of all we prove the theorem in case A = CR(D). Choose a small closed disc
U ⊃ D, so small that a continuous extension of u to U has no zeros in U . Using a theorem
of Borsuk [3, Corollary 4.33], there exists a continuous logarithm h on U ⊃ D. However, this
function h need not be symmetric. Because the unit u is symmetric we derive

u(z) = exp(h(z)) = exp((h(z∗))∗), z ∈ D.

Because D is connected and h is continuous in D, there exists an integer k such that

h(z) = (h(z∗))∗ + 2kπi.

Restricting to the interval [−1, 1] gives Im h(x) = kπ. Since u is a unit, u(z) is either a
positive or negative real number when z ∈ [−1, 1].

1◦ If u(x) > 0, then we have u(x) = exp h(x) > 0, that is, the integer k is even. But
then h − kπi is a symmetric continuous logarithm of u.

2◦ If u(x) < 0, then we just look at the unit −u.

Hence there exists h ∈ CR(D) such that u = exp(h).
The remaining case A = AR(D) now follows from the first case and the implicit function

theorem. �
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Theorem 4.2. Let A denote a subalgebra of AR(D) containing all real polynomials such
that the corona theorem holds for A. The following are equivalent for any unimodular pair
(f, g) ∈ U2(A):

(1) There exists a continuous and zero free extension F of f from the zero set Zg to

F ∈ CR(D)−1.
(2) (f, g) is reducible in A, that is, there exists a unit u ∈ A−1 and there exists a h ∈ A

such that f + hg = u.

Proof. The implication (2)⇒(1) is obvious: indeed if there exist h ∈ A and a unit u ∈ A−1

such that f + hg = u, then u serves as the desired zero free extension of f from the zero set
Zg to u ∈ CR(D)−1.

(1)⇒(2): Using Theorem 4.1 for units in CR(D), we write either F or −F as

F = exp(K),

where K ∈ CR(D). For either f or −f this gives

f(z) = exp(K(z)) (z ∈ Zg),

and so f (respectively −f) is in fact an exponential on the zero set Zg.
If g is the zero function then f must be invertible in A, because the pair (f, 0) was assumed

to be unimodular. So (f, 0) is reducible in A, and the unit u is just the function f . Hence we
may assume that g is not the zero function, and so the interior of the zero set Zg is empty
by the identity theorem. By Lemma 3.8 the complement C \ Zg of the zero set is connected.
Using Mergelyan’s theorem there exist polynomials qn converging uniformly on Zg to K.
Because K is symmetric, we can also approximate by the symmetrization of qn, that is, the
real polynomials q̃n given by

q̃n(z) :=
qn(z) + (qn(z∗))∗

2
converge uniformly to K too. Pick a real polynomial q such that

Re (f(z) exp(−q(z))) > 1/2 (z ∈ Zg).

Using the corona theorem, all pairs (f exp(−q)−λ, g) are unimodular for λ ∈ (−∞, 1/2). For
the real inversion set from Theorem 3.3 this gives the inclusion

IR(f exp(−q), g) = R \ (f exp(−q))(Zg) ⊃ (−∞, 1/2).

Again Theorem 3.3 shows that (f exp(−q), g) is reducible in AR(D), hence (f, g), that is, there
exists a unit U ∈ AR(D)−1 and H ∈ AR(D) such that

f + Hg = U.

U being a unit, we must have

|U(z)| > δ > 0 (z ∈ D).

Now the real polynomials are dense in AR(D). Take real polynomials h ∈ A near H such that
|U(z) − (H(z) − h(z))g(z)| > δ/2 > 0 (z ∈ D). We conclude that

f + hg = U − (H − h)g

belongs to the algebra A and has no zeros in D and so it is invertible, proving the reducibility
of (f, g) in A. �
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Theorem 4.3. Let A denote a subalgebra of AR(D) containing all real polynomials such that
the corona theorem holds for A. The following assertions are equivalent for any unimodular
pair (f, g) ∈ A2:

(1) (f, g) is reducible in A.
(2) f is POZ of g.

Proof. (1)⇒(2): Suppose that (f, g) is reducible in A. Then there exist h, u ∈ A, u ∈ A−1

such that

f + h · g = u.

By Theorem 4.1 either u or −u can be written as

u = exp(k),

for a function k ∈ AR(D). We arrive at f + h · g = exp(k), respectively the same equation
with − exp(k) instead of exp(k). Hence the function f is POZ of g.

(2)⇒(1): Now assume that f is POZ of g. If g has no zero at all in D, then we have
|g(z)| ≥ ρ > 0 for all z ∈ D. But then M := (1 + ‖f‖

∞
)/ρ gives

|f(z) + Mg(z)| > 1 + ‖f‖
∞

− ‖f‖
∞

= 1,

and so f + Mg is invertible in A; hence the pair (f, g) is reducible. We may also assume that
g is not the zero function. Otherwise f itself is invertible and again the pair (f, g) would be
reducible. So our assumption is: g has at least one zero in D but is not identically zero. In
order to use Theorem 4.2, we must show that there exists a continuous, zero free extension
F of f from the zero set Zg to D.

Because (f, g) is unimodular there exists δ > 0 such that |f(z)| + |g(z)| ≥ δ for all z ∈ D.
By Lemma 3.9 (with δ/2 instead of δ), there exist finitely many pairwise disjoint closed sets
H1, . . . ,HN ⊂ D lying symmetrically with respect to the real axis, such that: Zg ⊂ ∪N

j=1Hj

and |g(z)| ≤ δ/2 holds there. Hence |f(z)| ≥ δ/2 in the union of this sets. Moreover, we have
a continuous logarithm of f on Z(δ/2): To prove this we quote a theorem of Borsuk, see [3,
Corollary 4.33]: Every continuous, zero-free function on Z(δ) has a continuous logarithm on
Z(δ) if and only if C \Z(δ) is connected. This is the case by Lemma 3.8. In particular, there
exist functions lj , continuous in the closed sets Hj ⊂ Z(δ), such that

f(z) = exp(lj(z)), z ∈ Hj, j = 1, . . . ,N.

By assertion (3) of Lemma 3.9, if no real zero of g belongs to Hj then Hj ∩R = ∅. Moreover,
Hj belongs entirely to the upper (respectively lower) half plane. The desired logarithm is
very easy to obtain for these sets, because they don’t intersect the real line. By symmetry
we have Hj = H∗

k for some j 6= k. So we may redefine lj(z) = (lk(z
∗))∗.

Thus only the case of a real zero x0 of g belonging to Hj remains to be discussed. In this
case Hj is connected. Since f is POZ of g, we may assume that f(x0) > 0 holds for all real
zeros of g. Because f is real symmetric we derive

f(z) = exp(lj(z)) = exp((lj(z
∗))∗) (z ∈ Hj = H∗

j ).

Since Hj is connected and lj is continuous in Hj, there exists an integer k such that

lj(z) = (lj(z
∗))∗ + 2kπi.

Restricting to the real zero x0 ∈ Hj∩R of g gives Im lj(x0) = kπ. As f(x0) = exp(lj(x0)) > 0,
the integer k must be even. Now lj−kπi is the desired symmetric logarithm of f on Hj = H∗

j .
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By Tietze’s Theorem we can find a continuous function l on D such that

l(z) = lj(z) z ∈ Hj, j = 1, . . . ,N.

The desired logarithm is now given by symmetrization in D:

L(z) :=
l(z) + (l(z∗))∗

2
.

Recall that we either have lj(z) = (lk(z
∗))∗ for Hj = H∗

k , j 6= k, or else lj(z) = (lj(z
∗))∗ and

Hj = H∗

j . We end up with F = exp(L), where we have exp(L(z)) = f(z) (z ∈ Zg). �

5. Units in AR(D) and CR(D)

We recall the notation of the winding number n(Γ; z) from [3, Definition 4.2]:
Let Γ denote a closed loop given by a continuous parametrization t 7→ ζ(t) (a ≤ t ≤ b),

and z denote a point outside Γ. Then there exists a continuous logarithm h of ζ(t) − z, that
is

ζ(t) − z = exp(h(t)), a ≤ t ≤ b.

The winding number n(Γ; z) is defined to be

n(Γ; z) :=
h(b) − h(a)

2πi
=

φ(b) − φ(a)

2π
,

where φ denotes the imaginary part of the logarithm h. From this definition the following
facts are easily seen:

(F1) Let f, g denote zero free continuous functions near the closed loop Γ. Then we can
form the closed loops f(Γ), g(Γ), (f · g)(Γ) by their parametrizations f(ζ(t)), g(ζ(t)),
(f · g)(ζ(t)), respectively. Since f and g never vanish on Γ, we conclude

n((f · g)(Γ); 0) = n(f(Γ); 0) + n(g(Γ); 0).

Also n(exp(f)(Γ); 0) = 0.
(F2) The curves Γr+m+j are the reflection of Γr+j with reversed orientation, and so

n(f(Γr+m+j); 0) = n(f(Γr+j); 0)

holds for all continuous symmetric functions, zero free near Γr+j.

Theorem 5.1 (Product theorem for units). Let the notations be as in Notation 3.4. Let
A denote one of the algebras AR(D), CR(D). For any unit u ∈ A−1 there exist integers
n1, . . . , nr, nr+1, . . . , nr+m and a function h ∈ A such that the following structure theorem
holds: Either u or −u can be factored as

u = p · exp(h),

where p ∈ A−1, h ∈ A and the unit p is given by

p(z) =

r∏

j=1

(z − xj)
nj ·

m∏

j=1

(z2 − 2(Re(zj))z + |zj |
2)nr+j .

Proof. Choose a small compact neighborhood U ⊃ D, so small that a continuous extension of
u to U has no zeros in U . Each hole of U belongs to exactly one hole of D. The factorization
for u in U follows then from [3, Theorem 4.59]. To be precise:

u = p · exp(h),
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where p ∈ A−1, h is analytic in U ⊃ D, and the unit p is given by

p(z) =

r∏

j=1

(z − xj)
nj

m∏

j=1

(z − zj)
nr+j

m∏

j=1

(z − z∗j )
nr+m+j .

With these products and the facts above we can compute the integers nk (k = 1, . . . , r +2m):

n(u(Γk); 0) =
r∑

j=1

nj ·n(Γk;xj)+
m∑

j=1

nr+j ·n(Γk; zj)+
m∑

j=1

nr+m+j ·n(Γk; z
∗

j )+n(exp(h)(Γk); 0),

that is, n(u(Γk); 0) = nk (k = 1, . . . , r+2m). Recall that the curves Γr+m+j are the reflection
of Γr+j. Observe that reflection has reversed orientation. Using the fact F2 and the symmetric
choice of our points, we derive

nr+m+j = n(u(Γr+m+j); 0) = n(u(Γr+j); 0) = nr+j (j = 1, . . . ,m).

We conclude that
(
z − z∗j

)nr+m+j · (z − zj)
nr+j = (z2 − 2 · Re(zj) · z + |zj |

2)nr+j (j = 1, . . . ,m).

This proves the product representation. We now show that the logarithm h can be chosen to
be symmetric. Using the symmetry of the functions u and p, we conclude that

exp(h(z∗)∗) = exp(h(z))

holds in the connected set D. Thus there is an integer k such that h(z) = (h(z∗))∗ + 2kπi.
Hence Im(h(x)) = kπ (x ∈ R∩D). Take a point x0 ∈ R∩D, such that x0 > max{x1, . . . , xr}.
Then p(x0) > 0, and we consider the two cases:

1◦ If u(x0) > 0, then we have exp h(x0) = u(x0)/p(x0) > 0. Since Im(h(x0)) = kπ it
follows that k is even. But then h − kπi is a symmetric logarithm of u/p.

2◦ If u(x0) < 0, then we just look at the unit −u.

�

6. Reducibility in algebras of real symmetric functions

In this section we generalize our technical lemmata to the case of certain finitely connected
domains.

Lemma 6.1. Let D denote a domain as described in Notation 3.4. For every non constant
function g ∈ AR(D), the complement C \ Z(δ) of the level set Z(δ) is connected for all
sufficiently small δ > 0. Moreover, the complement C\Zg of the zero set Zg is also connected.

Proof. We will first prove that the complement C \ Zg of the zero set is connected. If g is

not identically zero, then by [15, Theorem 3.1], the zero set Zg ⊂ D is totally disconnected,
and so its covering dimension is zero. Hence its open complement C \Zg is connected, see [8,
Theorem IV.4].

Now we prove that C\Z(δ) is connected. We connect each hole Cj by pairwise disjoint cross-

cuts Qj ⊂ D, j = 1, . . . , n, connecting Γj to Γj+1 such that g(z) 6= 0 for all z ∈
⋃n

j=1 Qj.(This

can best be done mapping D homeomorphically onto the closure of a circular domain, see for
example [11]. Note that even in this situation, the zero set remains totally disconnected.)
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Assume that δ is sufficiently small, that is δ < δ0/2, where

δ0 := min

{
|g(z)|, z ∈

n⋃

j=1

Qj

}
.

From Topology we know that D\
⋃n

j=1(Qj∪Cj) is a simply connected domain. The restriction
to the choice δ gives

Z(δ) ⊂ D \
n⋃

j=1

(Qj ∪ Cj).

If C \ Z(δ) is not connected, then there exists a bounded component G. In contrast to the
simply connected case D, we may have two cases:

1◦ G ⊂ D or
2◦ G∩(C\D) 6= ∅, that is, there exists z0 ∈ G belonging to a hole, say C: so z0 ∈ C. But

then the hole C is contained in G. Using our cross-cuts we can find a path in C\Z(δ)
connecting C to the outer boundary Γn+1 of D and beyond. So the starting point of
this path belongs to G, whereas the endpoint does not. Hence there exists a boundary
point w ∈ ∂G belonging to

⋃n
j=1 Qj ⊂ D. Since ∂G ⊂ ∂(C \ Z(δ)) = ∂Z(δ) ⊂ Z(δ)

we must have |g(w)| ≤ δ, contradicting the choice of δ < δ0
2

= 1
2
min{|g(z)|, z ∈⋃n

j=1 Qj}.

Thus only the first case G ⊂ D remains to be dealt with. But this is done exactly as in
the proof of Lemma 3.8. Hence no such bounded component of the complement of Z(δ) can
exist. �

Lemma 6.2. Let D denote a domain as described in Notation 3.4 and let g ∈ AR(D) be such
that it has at least one zero in D, but it does not vanish identically. Then for all δ > 0, there
exist finitely many closed sets H1, . . . ,HN ⊂ D, lying symmetrically with respect to the real
axis, that is, Hj = H∗

k for certain j, k, with the following properties:

(1) Zg ⊂ ∪N
j=1Hj ⊂ Z(δ).

(2) Hj ∩ Hk = ∅ (j 6= k).
(3) 1◦ If no real zero of g belongs to Hj, then Hj ∩ R = ∅, Hj belongs entirely to the

upper (respectively lower) half plane, and Hj = H∗

k for some j 6= k.
2◦ If at least one real zero x0 of g belongs to Hj (that is, x0 ∈ Zg ∩ Hj ∩ R), then

Hj = H∗

j holds and Hj is connected.

Proof. The proof proceeds exactly as in the proof of Lemma 3.9. We just replace the use of
Lemma 3.8 by Lemma 6.1. �

Theorem 6.3. Let the notations be as in 3.4 above. Let A denote a subalgebra of AR(D)
containing all real polynomials such that the corona theorem holds for A. Let (f, g) ∈ A2 be
a unimodular pair. Then the following assertions are equivalent:

(1) There exists a continuous and zero free extension F of f from the zero set Zg to

F ∈ CR(D)−1.
(2) (f, g) is reducible in A, that is, there exists a unit u ∈ A−1 and h ∈ A such that

f + hg = u.

Proof. The implication (2)⇒(1) is obvious: indeed if there exist h ∈ A and a unit u ∈ A−1

such that f + hg = u, then u serves as the desired zero free extension of f from the zero set
Zg to u ∈ CR(D)−1.
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(1)⇒(2): Using the factorization theorem 5.1 for units in CR(D), we can factor either F or
−F as

F = p · exp(K),

where p ∈ A−1 (because A contains all polynomials and the corona theorem holds) and
K ∈ CR(D). For either f or −f this gives

f(z)

p(z)
= exp(K(z)) (z ∈ Zg),

and so the fraction is in fact an exponential on the zero set Zg. The rest of the proof is now
entirely analogous to the corresponding case in the proof of Theorem 4.2. �

Recall the Notation 3.4: Let D denote a symmetric domain in C with n holes. From these
n holes, bounded by pairwise disjoint Jordan curves, we have r holes intersecting R and 2m
which do not intersect R. Here n = r + 2m.

Let Cj be a hole of D (j = 1, . . . , r, r + 1, . . . , r + 2m). Choose for each j ∈ {1, . . . , r} a
point xj ∈ R ∩ Cj, and for j ∈ {r + 1, · · · r + m} let zj ∈ Cj.

Finally let S = {x1, . . . , xr, z1, . . . , zm, z∗1 , . . . , z∗m}. See Figure 1. For such domains we
associate the following family of 2r polynomials:

(1) P :=

{
p(z) :=

r∏

j=1

(z − xj)
mj

∣∣∣∣ mj ∈ {0, 1}

}
.

As an example, consider an annulus with center at the origin, and let us choose x1 = 0. Then
P has only two polynomials, namely p1(z) := 1 and p2(z) := z.

In [18], Brett Wick showed that a unimodular pair (f, g) in AR(D)2 is reducible in AR(D)
if and only if f is POZ of g. We generalize this result from the case of D to our domains D.

Theorem 6.4. As in Notation 3.4, let D denote a symmetric domain with n holes, bounded
by pairwise disjoint Jordan curves, and let P denote the associated family of 2r polynomials
(1). Let A denote a subalgebra of AR(D) containing all real polynomials such that the corona
theorem holds for A. The following assertions are equivalent for a unimodular pair (f, g) ∈ A2:

(1) (f, g) is reducible in A.
(2) For at least one polynomial p ∈ P the product p · f is POZ of g.

Proof. (1)⇒(2): Suppose that (f, g) is reducible in A. Then there exist h, u ∈ A, u ∈ A−1

such that

f + h · g = u.

By the factorization theorem for units (Theorem 5.1) in AR(D), there exists an invertible
polynomial P ∈ A such that either u or −u can be factored as

u = P · exp(k),

for a function k ∈ AR(D). We arrive at f + h · g = P · exp(k), respectively the same equation
with −P instead of P . Hence the function P · f is POZ of g. But the sign of P (x) depends
only on the exponents modulo 2 of its linear factors x − xj . So we can find a polynomial
p ∈ P such that p · f is POZ of g.

(2)⇒(1): Now assume that for a polynomial p ∈ P the product p·f is POZ of g. Since p ∈ A−1,

it is enough to show that the corona pair (f̃ , g) is reducible, where f̃ := f/p. The rest of the
proof is entirely analogous to the corresponding case in the proof of Theorem 4.3. �
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Remark 6.5. The family P obviously depends on the choice of points in the associated set
S, hence so does the second assertion in Theorem 6.4, whereas the question of reducibility is
independent of the particular choice of S. This mystery can be cleared by Eilenberg’s theorem
[3, Exercise 4.36, p. 100]:

For any two points a, b belonging to the same hole of D there exists a continuous logarithm
log z−a

z−b
which we think of as extended continuously to C. Thus the product representation

of the unit in the proof of Theorem 6.4 won’t change much as long as both points belong to
the same hole.

The proof of Theorem 2.1 can be generalized to the real Banach algebras AR(D), where
D is as in Notation 3.4. By Mergelyan’s theorem, (real) rational functions are dense in this
Banach algebra, and so the proof alters only slightly. So we conclude that the Bass stable
rank of these algebras is less than or equal 2. However, our domains D contain an open
interval (a, b) ⊂ R. Consider the unimodular pair (z − a+b

2
, (z − a)(z − b)). The necessary

condition that f is POZ of g is violated, and so this pair is not reducible, hence the stable
rank of AR(D) is 2. Are there situations where the stable rank of the real algebras is one?
Obviously we must allow open sets instead of domains, since there are no symmetric domains
such that D ∩ R = ∅.

Question: For which bounded symmetric open sets D ⊂ C do we have bsr AR(D) = 1?

If the stable rank of AR(D) is 1, then the open set D necessarily must fulfill the following
requirement: D ∩ R is either empty or totally disconnected.

If D ∩ R is not empty and not totally disconnected, then it contains an open interval
(a, b) ⊂ R. The unimodular pair (z − a+b

2
, (z − a)(z − b)) is again not reducible by the

intermediate value theorem.

Theorem 6.6. Let D ⊂ C be a bounded symmetric open set such that D+ := D∩{Im(z) > 0}
is a finitely connected domain and D∩R is either empty or a totally disconnected set of linear
measure zero. Then the Bass stable rank of AR(D) is 1.

Proof. Using [5, Theorem 3.11], we see that the complex Banach algebra A(D+) has Bass

stable rank one, because by Mergelyan’s theorem the rational functions with poles off D+

are dense in A(D+). Again the corona theorem holds in A(D) by Arens’s theorem, hence in
AR(D), see for example [6, Theorem 1.9, p. 31]. Let (f, g) be a unimodular pair in AR(D). If

D ∩ R = ∅, we proceed as follows: the unimodular pair (f, g) is reducible in A(D+), that is,

there exist u, h ∈ A(D+), u invertible in A(D+) such that f +hg = u . Now we reflect u, h to
the lower half plane. Since D ∩ R = ∅ this reflection is well-defined, hence (f, g) is reducible
in AR(D).

So we may assume that D ∩ R is not empty and is a totally disconnected set of linear
measure zero.

1◦ f(x) 6= 0 for all x ∈ D ∩ R.
Take a peak-function p in the upper half plane for the totally disconnected set

D ∩ R of linear measure zero. The existence of such a peak function follows from
Rudin’s theorem (see for instance [7, p. 81]) by conformally mapping the unit disc

onto the upper half plane. Then the function q := 1 − p ∈ A(D+) vanishes at z0 if

and only if z0 ∈ D ∩ R. The corona theorem for A(D+) and 1◦ now implies that the

pair (f, q · g) is unimodular in A(D+), and so it is reducible in A(D+). Thus there
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exists h ∈ A(D+) such that f + h · (qg) has no zeros in D+. We define the function

H ∈ AR(D) by reflection: H(z) := h(z)q(z) in case z ∈ D+ and H(z) := (h(z∗)q(z∗))∗

in case z ∈ D\D+. Since q vanishes identically on D∩R this reflection is well-defined.
We conclude that f + H · g has no zeros in D and so it is invertible by the corona
theorem. Therefore the pair (f, g) is reducible in AR(D).

2◦ f(x) = 0 for some x ∈ D ∩ R.
We approximate f uniformly by real rational functions fn on D, and again use

Mergelyan’s theorem and symmetry. We perturb the finitely many zeros of fn slightly
(respecting symmetry) such that fn has no zeros in D ∩ R. Using 1◦ we see that
the pairs (fn, g) are reducible in AR(D), and so (f, g) is reducible in AR(D), see for
example [5, Lemma 3.7].

�
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