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Abstract

Given a poset P = (X,≺), a partition X1, . . . ,Xk of X is called
an ordered partition of P if, whenever x ∈ Xi and y ∈ Xj with x ≺ y,
then i ≤ j. In this paper, we show that for every poset P = (X,≺)
and every integer k ≥ 2, there exists an ordered partition of P into
k parts such that the total number of comparable pairs within the
parts is at most (m− 1)/k, where m ≥ 1 is the total number of edges
in the comparability graph of P . We show that this bound is best
possible for k = 2, but we give an improved bound, m/k − c(k)

√
m,

for k ≥ 3, where c(k) is a constant depending only on k. We also show
that, given a poset P = (X,≺), we can find an ordered partition of P
that minimises the total number of comparable pairs within parts in
polynomial time. We prove more general, weighted versions of these
results.

1 Introduction

In this paper, we consider an analogue of the graph theoretic max-cut prob-
lem, for posets. Given a finite poset, we look for partitions of the ground set
respecting the order and maximising the number of comparable pairs between
parts. The extremal problem has some similarities to and some differences
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from the graph case, while the algorithmic problem is quite different as there
is a polynomial time algorithm to find the best partition.

We shall be concerned only with finite partially ordered sets. Let P =
(X,≺) be a poset. The comparability graph of P , denoted by C(P ), is an
undirected graph on the vertex set X, such that for a, b ∈ X, ab is an edge
of C(P ) if and only if a and b are comparable in P .

For A ⊆ X, let eP (A) be the number of edges in the graph induced by
C(P ) on A. For A, B a partition of X, let eP (A, B) be the number of edges
in C(P ) that have one end in A and the other in B. We drop the superscript
when it is obvious which poset is being referred to.

For P = (X,≺), a partition of X into k disjoint parts, X1, . . . , Xk, is
called an ordered partition of P if, whenever x ≺ y with x ∈ Xi and y ∈ Xj,
we have i ≤ j. If k = 2, this means that X1 is a down-set and X2 is an upset.

Given a poset P = (X,≺) and positive real numbers a1, . . . , ak, define

f(P ; a1, . . . , ak) = min
(

k
∑

i=1

aie
P (Xi)

)

,

where the minimum is taken over all ordered partitions X1, . . . , Xk of P .
Define

f(m; a1, . . . , ak) = max(f(P ; a1, . . . , ak)),

where the maximum is taken over all posets P = (X,≺), for which eP (X) =
m.

The case where a1 = · · · = ak = 1 is the most interesting, and arises
naturally from a well studied problem in graph theory. We study the more
general weighted case, which turns out to be crucial to our proof techniques.

In Sections 2 and 3, we consider the problem of bounding f(m). In
Section 2, we prove the following theorem.

Theorem 1.1 Let k be a positive integer. For positive real numbers a1, . . . , ak,
and a positive integer m, we have that

f(m; a1, . . . , ak) ≤
(

k
∑

i=1

a−1
i

)

−1

m.

Let us compare a few special cases of this result with analogous ones for
graphs. Consider first the case when a1 = · · · = ak = 1. Then (

∑k
i=1 a−1

i )−1 =
1
k
, and Theorem 1.1 tells us that every poset P = (X,≺) has an ordered par-

tition X1, . . . , Xk such that

eP (X1) + · · · + eP (Xk) ≤
1

k
eP (X).
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Looking more specifically at the case when k = 2 and a1 = a2 = 1, Theo-
rem 1.1 tells us that every poset P = (X,≺) has an ordered partition X1, X2,
such that eP (X1) + eP (X2) ≤ 1

2
eP (X), or equivalently, that eP (X1, X2) ≥

1
2
eP (X). If we drop the condition that the partition should be ordered, then

this result is easy to prove; indeed, we are asking for a cut in C(P ) contain-
ing at least half the edges of C(P ). It is well known and easy to show that
such a cut exists for every graph (see [10] for more on graph cuts). An easy
extension of this is the following result, which has presumably been proven
before, but we give a proof here for convenience.

Given a graph G = (V, E), for U ⊆ V , we define EG(U) = {ab ∈ E :
a, b ∈ U}, and eG(U) = |EG(U)|.

Theorem 1.2 Given positive real numbers, a1, . . . , ak, and a graph G =
(V, E), there exists a partition of V into sets V1, . . . , Vk such that

k
∑

i=1

aie
G(Vi) ≤

(

k
∑

i=1

a−1
i

)

−1

|E|.

Thus Theorem 1.1 is an analogue of Theorem 1.2 for posets. Of course, for
graphs, there is no restriction on the way we partition the vertices. Although
Theorem 1.2 is a natural bound, it can be sharpened, something which we
discuss later for the case k = 2. Let us see first why Theorem 1.2 is true.

Proof We partition V into sets V1, . . . , Vk by assigning each vertex indepen-
dently at random to one of V1, . . . , Vk, where

Pr(v ∈ Vj) =
a−1

j
∑k

i=1 a−1
i

.

These probabilities are chosen optimally for the argument that follows. Given
an edge e = ab ∈ E, we have that Pr(e ∈ EG(Vj)) = a−2

j /(
∑k

i=1 a−1
i )2, and

so

E(

k
∑

j=1

aje
G(Vj)) =

k
∑

j=1

aj

∑

e∈E

Pr(e ∈ EG(Vj)) =

k
∑

j=1

aj

∑

e∈E

a−2
j

(
∑k

i=1 a−1
i )2

=
∑

e∈E

1
∑k

i=1 a−1
i

=
(

k
∑

i=1

a−1
i

)

−1

|E|.

There must be some partition V ′

1 , . . . , V
′

k of V for which
∑k

i=1 aie
G(Vi) is at

most its expected value, proving the theorem. �
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We cannot use a probabilistic argument like the one above to prove The-
orem 1.1 because we know of no easy way of randomly picking ordered par-
titions of a poset in a way that would allow us to compute an expectation.

Let us return to the case k = 2 with a1 = a2 = 1. In the case of
graphs, Edwards [1, 2] showed that for every graph G = (V, E), there exists
a partition of V into sets V1 and V2 such that

eG(V1) + eG(V2) ≤
1

2
m −

(

√

m

8
+

1

64
− 1

8

)

=
1

2
m − Θ(

√
m),

where m = |E|. This bound is achieved by complete graphs of odd order.
However, this bound does not carry over to ordered partitions of posets.

We show in Section 3, that for every positive integer m, we have

f(m; 1, 1) =
⌊m − 1

2

⌋

.

We show further that for m a fixed odd positive integer, there is a unique
poset Pr = (Xr,≺) (Figure 1 below), for which f(Pr; 1, 1) = f(m; 1, 1) (here
r = (m − 1)/2). Describing Pr in words, we have the ground set Xr =
{y1, y2, x1, . . . , xr}, with {x1, . . . , xr} an antichain, and y1 ≺ xi ≺ y2 for
i = 1, . . . , r (and the transitive relation y1 ≺ y2).

y2

y1

x1 x2 x3 xr. . .

Figure 1: Hasse diagram of Pr

We can see immediately that to minimise ePr(X1) + ePr(X2) (over all
ordered partitions X1, X2 of P ), we must have y1 ∈ X1 and y2 ∈ X2. Then,
no matter how we place each xi, exactly one of the edges y1xi and xiy2 lies
inside a part. This gives us that f(Pr; 1, 1) = r = (m − 1)/2, where m is
the number of comparable pairs in Pr. (If we drop the condition that X1, X2

should be ordered, then the optimal partition of C(Pr) is one with only a
single edge inside parts.)

Thus we see that when k = 2, with a1 = a2 = 1, we cannot improve
the bound given in Theorem 1.1 by more than a constant (independent of
m), and we show in Section 3.1 that this is the case for general rational
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a1, a2, using examples similar to Pr. However, for k ≥ 3, we find that we can
improve the bound in Theorem 1.1 by at least c

√
m, where c is a constant

independent of m. These results are summarised in the next theorem.

Theorem 1.3 (a) For fixed positive real numbers, a1 and a2, where a2/a1 is
rational, we have

f(m; a1, a2) =
( 1

a1

+
1

a2

)

−1

m − Θ(1).

(b) For a fixed integer k ≥ 3, and fixed positive real numbers a1, . . . , ak, we
have

f(m; a1, . . . , ak) =
(

k
∑

i=1

a−1
i

)

−1

m − Θ(
√

m).

Note that we do not allow arbitrary real values for a1 and a2 in the
statement of Theorem 1.3(a). In Section 3.2, we show by giving an explicit
example, that Theorem 1.3(a) does not hold in general for real values of a1

and a2. We show that when a1 = 1 and a2 = (1 +
√

5)/2, we have

f(m; a1, a2) =
( 1

a1
+

1

a2

)

−1

m − Ω(log m).

For general real values of a1 and a2, we know only that

f(m; a1, a2) =
( 1

a1
+

1

a2

)

−1

m − O(
√

m).

The example of the chain, Cn, on n elements gives the bound above
and shows that the error term in Theorem 1.3(b) is of the correct order of
magnitude. For

(

n
2

)

≤ m ≤
(

n+1
2

)

, an easy calculation, which we give at the
end of Section 3.3, shows that

f(m; a1, . . . , ak) ≥ f(Cn; a1, . . . , ak) =
(

k
∑

i=1

a−1
i

)

−1

m − Θ(
√

m),

where k ≥ 2 and a1, . . . , ak are real numbers.
Finally, in Section 4, we show that, given positive rational numbers

a1, . . . , ak, and a poset P , we can find f(P ; a1, . . . , ak) and a correspond-
ing ordered partition in strongly polynomial time. Note the contrast with
the situation for graphs, where finding a cut of maximum size in a graph is
known to be NP-complete (see [3]).
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2 Good Partitions

In this section, we prove Theorem 1.1. The key step is to prove the result for
the case k = 2; the full result will then follow via a straightforward induction
argument. We begin with some notation.

Let P = (X,≺) be a poset. For A ⊆ X, we write maxP (A) (resp.
minP (A)) for the maximal (resp. minimal) elements of the poset induced by
P on A.

For x ∈ X, let

UP (x) = {y ∈ X : y � x} with uP (x) = |UP (x)|,
and DP (x) = {y ∈ X : y ≺ x} with dP (x) = |DP (x)|.

Given positive real numbers, a1 and a2, define the function hP
a1,a2

: X → R

by
hP

a1,a2
(x) = a2u

P (x) − a1d
P (x).

Again, we drop subscripts and/or superscripts when it is clear what these
are. Observe that hP

a1,a2
is a strictly decreasing function, that is, for x, y ∈ X

with x ≺ y, we have hP
a1,a2

(y) < hP
a1,a2

(x).
A partition of X into parts X1 and X2 is called an (a1, a2)-good partition

of P if hP
a1,a2

(x) ≥ 0 for all x ∈ X1 and hP
a1,a2

(x) ≤ 0 for all x ∈ X2 (thus
an (a1, a2)-good partition of P is uniquely defined except that any element x
with h(x) = 0 can be in either X1 or X2). It is clear that every (a1, a2)-good
partition of P is an ordered partition of P , since h respects the order of P .

We have the following lemma, which is the case k = 2 of Theorem 1.1.

Lemma 2.1 Fix positive real numbers a1 and a2. For P = (X,≺) a poset,
let X1, X2 be an (a1, a2)-good partition of P . Then

a1e(X1) + a2e(X2) ≤
a1a2

a1 + a2

e(X) =
( 1

a1

+
1

a2

)

−1

e(X).

Proof The proof is by induction on |X|. The lemma is trivially true when
|X| = 1.

Define r : X → R by

r(x) =

{

a1d
P (x) if x ∈ X1;

a2u
P (x) if x ∈ X2.

Choose x∗ to be any element of X that maximises r. Let B = maxP (X1) ∪
minP (X2). It is clear that x∗ ∈ B. We assume that x∗ ∈ maxP (X1); the case
x∗ ∈ minP (X2) follows in a similar way.
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Let X ′ = X\{x∗}, P ′ = (X ′,≺), X ′

1 = X1\{x∗}, and X ′

2 = X2\{x∗}. We
claim that X ′

1, X
′

2 is an (a1, a2)-good partition of P ′. Let us assume that the
claim is true and continue with the proof. We have

eP (X1) = eP ′

(X ′

1) + dP (x∗),

eP (X2) = eP ′

(X ′

2),

and eP (X) = eP ′

(X ′) + uP (x∗) + dP (x∗).

Putting this together, we have

a1a2

a1 + a2
eP (X) − a1e

P (X1) − a2e
P (X2) =

a1a2

a1 + a2
eP ′

(X ′) − a1e
P ′

(X ′

1)

−a2e
P ′

(X ′

2) + uP (x∗)
a1a2

a1 + a2
+ dP (x∗)

( a1a2

a1 + a2
− a1

)

=
a1a2

a1 + a2
eP ′

(X ′) − a1e
P ′

(X ′

1) − a2e
P ′

(X ′

2) +
a1

a1 + a2
hP (x∗) ≥ 0,

where the last inequality follows by induction and the fact that hP (x∗) ≥ 0
(since x∗ ∈ X1).

It remains only to show that X ′

1, X
′

2 is an (a1, a2)-good partition of P ′,
that is, we must show that

hP ′

(x)

{

≥ 0 ∀x ∈ X ′

1;

≤ 0 ∀x ∈ X ′

2.

Observe that hP ′

(x) = hP (x) if x and x∗ are incomparable in P and so the
above holds for such elements x.

If x ≺ x∗ in P , then x ∈ X1 and

hP ′

(x) = a2u
P ′

(x) − a1d
P ′

(x)

≥ a2u
P (x∗) − a1(d

P (x∗) − 1)

= hP (x∗) + a1

≥ 0.

If x � x∗ then x ∈ X2 and

hP ′

(x) = a2u
P ′

(x) − a1d
P ′

(x)

≤ a2u
P (x) − a1d

P (x∗)

≤ 0 (by our choice of x∗).

This completes the proof. �
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We make a couple of remarks, which we shall make use of later.
Lemma 2.1 says that f(P ; a1, a2) ≥ (a−1

1 + a−1
2 )−1eP (X) for all posets P .

Analysing the proof of Lemma 2.1, we see that we make a gain on this bound
every time we remove a vertex x∗ (in the induction) for which |h(x∗)| > 0.
Hence, one way to construct a poset P for which f(P ; a1, a2) is close to our
bound, would be to include many vertices x for which h(x) = 0. In fact, this
is necessary in light of Lemma 3.2, which we prove in the next section.

We note also that we have strict inequality in Lemma 2.1 if eP (X) ≥ 1.
This is because, as we inductively remove vertices from our poset P , we will
eventually be left with a poset of height 2. For such a poset, Lemma 2.1 holds
with strict inequality. Then, working backwards through the induction, we
find that Lemma 2.1 holds with strict inequality for P .

We now prove Theorem 1.1 via an easy induction argument, using Lemma 2.1
as the induction step.

Proof (of Theorem 1.1) Given a1, . . . , ak, it is sufficient to show that for
every poset P = (X,≺), there exists an ordered partition of P into sets
X1, . . . , Xk such that

k
∑

i=1

aie(Xi) ≤
(

k
∑

i=1

a−1
i

)

−1

e(X).

We use induction on k. The above is trivially true for k = 1. Assume it is
true for k − 1.

Let b1 = (
∑k−1

i=1 a−1
i )−1 and b2 = ak. By Lemma 2.1, there exists an

ordered partition of P into parts Y1 and Y2 such that

b1e(Y1) + b2e(Y2) ≤
( 1

b1
+

1

b2

)

−1

e(X) =
(

k
∑

i=1

a−1
i

)

−1

e(X).

By the induction hypothesis, there exists an ordered partition of Y1 into parts
X1, . . . , Xk−1 such that

k−1
∑

i=1

aie(Xi) ≤
(

k−1
∑

i=1

a−1
i

)

−1

e(Y1) = b1e(Y1).

Setting Xk = Y2 gives the desired ordered partition of P . �

3 Better Partitions

3.1 Rational Weights in Bipartitions

Our first task is to prove Theorem 1.3(a), which says that, for the case
k = 2, Theorem 1.1 is close to best possible. We do this, as the remark after
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Lemma 2.1 suggests, by constructing posets that include a large number of
vertices x for which hP

a1,a2
(x) = 0.

Proof (of Theorem 1.3(a)) In light of Lemma 2.1, it is sufficient to prove
the lower bound

f(m; a1, a2) ≥
a1a2

a1 + a2

m − Θ(1).

Let us assume for the moment that a1 and a2 are integers. For an integer
t ≥ 0, let P (t) = P (a1, a2, t) be the complete three-layer poset with a1

elements in the top layer A1, a2 elements in the bottom layer A2, and t
elements in the middle layer T (so, A1, T , and A2 are antichains and every
element in T is below every element in A1 and above every element in A2).

Let X ′

1, X
′

2 be an ordered partition that minimises a1e
P (t)(X1)+a2e

P (t)(X2)
over all ordered partitions X1, X2 of P (t). A little thought should convince
the reader that it is necessary to have A2 ⊆ X ′

1 and A1 ⊆ X ′

2. A little further
thought should convince the reader that this is in fact, sufficient. Therefore,
we can assume that X ′

1 = A2 ∪ T and X ′

2 = A1. Noting also that P (t) has
m(t) = (a1 + a2)t + a1a2 comparable pairs, we have that

min(a1e
P (t)(X1) + a2e

P (t)(X2)) = a1e
P (t)(X ′

1) + a2e
P (t)(X ′

2)

= a1a2t

=
a1a2

a1 + a2

(m(t) − a1a2)

=
a1a2

a1 + a2
m(t) − d(a1, a2)

for all t, where d(a1, a2) is a constant independent of m(t). Given m, we
choose t so that m(t) ≤ m < m(t + 1), so that m− m(t) < a1 + a2. Now we
have

f(m; a1, a2) ≥ f(m(t); a1, a2) ≥ f(P (t); a1, a2)

=
a1a2

a1 + a2

m(t) − d(a1, a2)

=
a1a2

a1 + a2
m − Θ(1).

The above is also true for rational values of a1 and a2, and more generally
when a1/a2 is rational, since

f(m;
a1

r
,
a2

r
) =

1

r
f(m; a1, a2),

for any real r > 0. �

9



3.2 Irrational Weights in Bipartitions

Next, we give an example to show that Theorem 1.3(a) does not hold in
general for real values of a1 and a2. We shall make use of some elementary
results in the theory of continued fractions and Diophantine approximation,
all of which can be found in, for example, [6].

Theorem 3.1 For a1 = 1 and a2 = (1 +
√

5)/2 we have that

f(m; a1, a2) =
( 1

a1

+
1

a2

)

−1

m − Ω(log m).

Proof We start with some preliminaries. We make use of the result that
φ = (1 +

√
5)/2, the golden ratio, has best rational approximation given by

ratios of successive Fibonacci numbers. Let us go into more detail. We define
the Fibonacci sequence Fn by the recursive relation Fn = Fn−1 + Fn−2, with
the initial conditions that F0 = 0 and F1 = 1. We have

Fn =
1√
5
(φn+1 + φ̂n+1),

where φ̂ = (1−
√

5)/2. Note that φ + φ̂ = 1, φφ̂ = −1, and |φ̂| < 1; we shall
use these in later calculations.

A consequence of what is sometimes referred to as the law of best approx-
imation (Theorem 182 in [6]) is the following. For any natural numbers r, s
where s ≤ Fn, we have that

|sφ − r| ≥ |Fnφ − Fn+1|.

We prove that for every poset P = (X,≺), where |X| = n, there exists
an ordered partition X1, X2, such that

a1e
P (X1) + a2e

P (X2) = (a−1
1 + a−1

2 )−1eP (X) − Ω(log n).

This then proves the theorem, since log n > log
√

m = 1
2
log m.

Note that every poset P = (X,≺) without isolated elements has a unique
(a1, a2)-good partition for our choice of a1 and a2, since hP

a1,a2
(x) is an integral

linear function of φ, and so is non-zero for all x ∈ X.
Now fix P = (X,≺) with |X| = n. Define the sequence of posets Pi =

(Xi,≺), i = 0, . . . , n − 1 as follows. Let P0 = P . Given Pi = (Xi,≺),
let X i

1, X
i
2 be the (a1, a2)-good partition of Pi. We know from the proof

of Lemma 2.1 that there exists some x∗

i ∈ Xi such that, defining Xi+1 =
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Xi\{x∗

i }, Pi+1 = (Xi+1,≺), X i+1
1 = X i

1\{x∗

i }, and X i+1
2 = X i

2\{x∗

i }, we have
that X i+1

1 , X i+1
2 is the (a1, a2)-good partition of Pi+1. Furthermore

(a−1
1 + a−1

2 )−1ePi(Xi) − a1e
Pi(X i

1) − a2e
Pi(X i

2) = (a−1
1 + a−1

2 )−1ePi+1(Xi+1)

− a1e
Pi+1(X i+1

1 ) − a2e
Pi+1(X i+1

2 ) + c|hPi(x∗

i )|,

where c is either a1(a
−1
1 + a−1

2 )−1 or a2(a
−1
1 + a−1

2 )−1 depending on whether
x∗

i is in X i
1 or X i

2. Thus the above gives us that

(a−1
1 + a−1

2 )−1eP (Xi) − a1e
P (X1) − a2e

P (X2) = Θ
(

n−1
∑

i=0

|hPi(x∗

i )|
)

,

and it remains for us to show that
∑n−1

i=0 |hPi(x∗

i )| = Ω(log n).
Note that Pn−i has i elements. Let k(i) be the smallest integer so that

Fk(i) ≥ i. Observe that k(i) = Θ(log i). Then we have that

|hPn−i(x∗

n−i)| = |φuPn−i(x∗

n−i) − dPn−i(x∗

n−i)| ≥ |Fk(i)φ − Fk(i)+1|

=
1√
5

∣

∣

∣
(φk(i)+1 + φ̂k(i)+1)φ − (φk(i)+2 + φ̂k(i)+2)

∣

∣

∣
= |φ̂k(i)+1|.

Now we have that

n−1
∑

i=0

|hPi(x∗

i )| =

n
∑

i=1

|hPn−i(x∗

n−i)| ≥
n

∑

i=1

|φ̂k(i)+1| ≥
k(n)−1
∑

j=1

|φ̂j+1|(Fj − Fj−1).

Also

|φ̂j+1|(Fj − Fj−1) = |φ̂j+1|Fj−2 =
1√
5
|φ̂j+1(φj−2 + φ̂j−2)|

=
1√
5
|φ̂3(−1)j−2 + φ̂2j−1| ≥ 1√

5
(|φ̂3| − |φ̂2j−1|),

where the last inequality holds for j ≥ 2. Finally, we have that

n−1
∑

i=0

|hPi(x∗

i )| ≥
1√
5

( k(n)−1
∑

j=3

|φ̂3| −
k(n)−1
∑

j=3

|φ̂2j−1|
)

= Θ(k(n)) = Θ(log n),

as required. �

It is unclear if the bound in Theorem 3.1 gives the correct asymptotic
value for f(m; 1, (1 +

√
5)/2). More generally, it seems that the growth of

(a−1
1 +a−1

2 )−1m−f(m; a1, a2) depends on how well we can approximate a2/a1

by rationals.
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3.3 Weighted k-partitions

Our next lemma will be the key step in proving the upper bound for Theo-
rem 1.3(b). It will also enable us to prove the uniqueness of certain extremal
posets in the next section. First we introduce the notion of a balanced ele-
ment.

Fix positive real numbers a1 and a2 and let P = (X,≺) be a poset. For
t a positive real number, define

BalPa1,a2
(t) = {x ∈ X : |hP

a1,a2
(x)| ≤ t}

and let balPa1,a2
(t) = |BalPa1,a2

(t)|. We refer to elements in BalPa1,a2
(t) as bal-

anced elements. Once again, subscripts and superscripts may be dropped.
Here is the aforementioned lemma, which gives us an upper bound on

f(P ; a1, a2) that takes into account the number of balanced elements in P .

Lemma 3.2 Fix positive real numbers a1 and a2, and let P = (X,≺) be a
poset, with X1, X2 an (a1, a2)-good partition of P . For 0 ≤ t < 1

2
min(a1, a2),

we have

a1e
P (X1) + a2e

P (X2) ≤
a1a2

a1 + a2
eP (X) − t

min(a1, a2)

2(a1 + a2)
(|X| − balPa1,a2

(t)).

Furthermore, if a1 = a2, then the above inequality holds under the weaker
condition, 0 ≤ t < min(a1, a2).

We concentrate on the proof of the first part of the lemma. The second part
has almost the same proof; we make remarks where the proofs differ.

Proof The proof is again by induction on |X|. The lemma is true for |X| =
1, since an isolated element is balanced. Assume it is true for all posets with
fewer than |X| elements.

Let x∗ be as in the proof of Lemma 2.1, and as before, let X ′ = X\{x∗},
P ′ = (X ′,≺), X ′

1 = X1\{x∗}, and X ′

2 = X2\{x∗}. We know from the
proof of Lemma 2.1 that X ′

1, X
′

2 is an (a1, a2)-good partition of P ′. We
shall assume that x∗ ∈ maxP (X1) so that hP (x∗) ≥ 0; a similar argument
holds if x∗ ∈ minP (X2). We must consider the two cases |hP (x∗)| ≤ t and
|hP (x∗)| > t separately.

Suppose hP (x∗) ≤ t. (Regarding the case a1 = a2, if hP (x∗) < t ≤
min(a1, a2), then hP (x∗) = 0.) We claim that balP

′

(t) ≤ balP (t) − 1. We
prove this by showing that the removal of x∗ from P does not create any new
balanced elements in P ′. Fix x ∈ X with x 6∈ BalP (t).

If x is incomparable to x∗, then hP ′

(x) = hP (x), hence |hP ′

(x)| > t and
x 6∈ BalP

′

(t).

12



If x ≺ x∗ then

hP ′

(x) = a2u
P ′

(x) − a1d
P ′

(x)

≥ a2u
P (x∗) − a1(d

P (x∗) − 1)

= hP (x∗) + a1 > t,

so x 6∈ BalP
′

(t).
If x � x∗ then

hP ′

(x) = a2u
P ′

(x) − a1d
P ′

(x)

≤ a2(u
P (x∗) − 1) − a1(d

P (x∗))

= hP (x∗) − a2 < −t,

so x 6∈ BalP
′

(t).
We have proved our claim and we have, as in Lemma 2.1, that

a1a2

a1 + a2
eP (X) − a1e

P (X1) − a2e
P (X2)

=
a1a2

a1 + a2
eP ′

(X ′) − a1e
P ′

(X ′

1) − a2e
P ′

(X ′

2) +
a1

a1 + a2
hP (x∗)

≥ t
min(a1, a2)

2(a1 + a2)
(|X ′| − balP

′

(t)) (induction)

≥ t
min(a1, a2))

2(a1 + a2)
(|X| − balP (t)),

where the last inequality follows because |X ′| = |X| − 1 and balP
′

(t) ≤
balP (t) − 1.

Next, suppose hP (x∗) > t. We claim that

hP (x∗) ≥
{

t(balP
′

(t) − balP (t)) if balP
′

(t) > balP (t);

t if balP
′

(t) ≤ balP (t),

the second case being trivial. Again, we consider which elements in X change
from being unbalanced to balanced when x∗ is removed from X. Fix x ∈ X ′

with x 6∈ BalP (t).
If x and x∗ are incomparable, then as before hP (x) = hP ′

(x), and x 6∈
BalP

′

(t).
If x ≺ x∗, then as before

hP ′

(x) ≥ hP (x∗) + a1 > t,

and x 6∈ BalP
′

(t).

13



If x � x∗, then x may become balanced upon removal of x∗, so we must
consider all such elements. Let x1, . . . , xr be the elements of X such that for
each i, xi � x∗ and xi is balanced in P ′ but not in P . We first show that
x1, . . . , xr is an antichain in P ′. If xj � xi for some 1 ≤ i, j ≤ r, then we have
−t ≤ hP ′

(xi) ≤ 0 and hP ′

(xj) ≤ hP ′

(xi)− (a1 +a2), giving that hP ′

(xj) < −t
(by our choice of t), contradicting that xj is balanced in P ′. Thus, x1, . . . , xr

must be an antichain.
Now, we have

hP (x∗) = a2u
P (x∗) − a1d

P (x∗)

= a2

(

r +
∣

∣

∣

r
⋃

i=1

UP ′

(xi)
∣

∣

∣

)

− a1(d
P ′

(xr))

≥ a2r + hP ′

(xr)

≥ tr,

where the last inequality follows since hP ′

(xr) > −t and a2 > 2t (by our
choice of t). (Regarding the case a1 = a2, hP ′

(xr) = 0 and a2 > t (by our
choice of t).) This proves the claim since r = balP

′

(t) − balP (t). Combining
the two cases of the claim, we have the following (weaker) inequality,

hP (x∗) ≥ 1

2
t
(

1 + balP
′

(t) − balP (t)
)

.

Finally, to complete the induction, we have
a1a2

a1 + a2
eP (X) − a1e

P (X1) − a2e
P (X2)

=
a1a2

a1 + a2
eP ′

(X ′) − a1e
P ′

(X ′

1) − a2e
P ′

(X ′

2) +
a1

a1 + a2
hP (x∗)

≥ t
min(a1, a2)

2(a1 + a2)
(|X ′| − balP

′

(t)) +
min(a1, a2)

a1 + a2

hP (x∗)

≥ t
min(a1, a2)

2(a1 + a2)
(|X| − balP (t)),

where the first inequality follows by induction and the last inequality follows
from our bound on hP (x∗). �

Next, we use Lemma 3.2 to prove the following theorem, which is the
upper bound in Theorem 1.3(b).

Theorem 3.3 Given an integer k ≥ 3, and positive real numbers, a1, . . . , ak,
there exists a constant c = c(k, a1, . . . , ak) such that

f(m; a1, . . . , ak) ≤
(

k
∑

i=1

a−1
i

)

−1

m − c
√

m.
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Proof For r = 1, . . . , k−1, let br = (
∑r

i=1 a−1
i )−1 and let b′r = (

∑k
i=r+1 a−1

i )−1.
For r < s,

vr,s =

∣

∣

∣

∣

∣

b′rb
−1
r − b′sb

−1
s

b−1
r + b−1

s

∣

∣

∣

∣

∣

and wr,s =

∣

∣

∣

∣

∣

brb
′−1
r − bsb

′−1
s

b′−1
r + b′−1

s

∣

∣

∣

∣

∣

.

Let tr,s = 1
2
min(vr,s, wr,s, br, b

′

rbs, b
′

s) and let t = minr<s tr,s. Finally, let

c = c(k, a1, . . . , ak) =
(

min
i=1,...,k−1

min(bi, b
′

i)

2(bi + b′i)

)

t
(

1 − 1

k − 1

)

.

Note that c > 0 since k ≥ 3.
Let P = (X,≺) be a poset, which, we may assume, has no isolated

elements. It is sufficient to show that there exists an ordered partition
X1, . . . , Xk of P such that

k
∑

i=1

aie
P (Xi) ≤

(

k
∑

i=1

a−1
i

)

−1

eP (X) − c
√

m.

We show first that our choice of t ensures that for x ∈ X, there can be
at most one value of r for which x ∈ BalPbr ,b′r

(t). Suppose not. Then there
exists 1 ≤ r < s ≤ k − 1 such that

|hbr ,b′r(x)| = |bru(x) − b′rd(x)| ≤ t

and |hbs,b′s(x)| = |bsu(x) − b′sd(x)| ≤ t.

Dividing the first equation by br and the second by bs and subtracting the
resulting equations, we obtain

|b′rb−1
r − b′sb

−1
s |d(x) ≤

∣

∣

∣
|u(x)− b′rb

−1
r d(x)| − |u(x)− b′sb

−1
s d(x)|

∣

∣

∣
≤ (b−1

r + b−1
s )t.

Thus we have that vr,sd(x) ≤ t, and by a similar argument, we have wr,su(x) ≤
t. Since x is not isolated, either d(x) ≥ 1 or u(x) ≥ 1, whence we have that
t ≥ min(vr,s, wr,s). But this contradicts our choice of t.

Hence, x ∈ BalPbr ,b′r
(t) for at most one value of r = 1, . . . , k − 1. Let R be

the value of r that minimises balPbr ,b′r
(t). Then we have that

balPbR,b′
R

(t) ≤ |X|
k − 1

.
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By Lemma 3.2 there exists an ordered partition Y1, Y2 of P , such that

bReP (Y1) + b′ReP (Y2)

≤ bRb′R
bR + b′R

eP (X) − t
min(bR, b′R)

2(bR + b′R)
(|X| − balPbR,b′

R

(t))

≤
(

k
∑

i=1

a−1
i

)

−1

eP (X) − t
min(bR, b′R)

2(bR + b′R)

(

1 − 1

k − 1

)

|X|

≤
(

k
∑

i=1

a−1
i

)

−1

eP (X) − c
√

m.

(Note that our choice of t is consistent with the condition in Lemma 3.2.)
By Lemma 2.1, we can find an ordered partition of Y1 into sets X1, . . . , XR

and of Y2 into sets XR+1, . . . , Xk such that

R
∑

i=1

aie
P (Xi) ≤ bReP (Y1)

and
k

∑

i=R+1

aie
P (Xi) ≤ b′ReP (Y2).

Then X1, . . . , Xk is the desired ordered partition of P . �

We end this subsection by showing that the error term in the bound given
by Theorem 3.3 is of the correct order of magnitude, that is, we complete
the proof of Theorem 1.3(b).

Proof (of Theorem 1.3(b)) We have shown the upper bound in Theorem 3.3.
For the lower bound, assuming that

(

n
2

)

≤ m <
(

n+1
2

)

and recalling that Cn

is the chain on n elements, we have

f(m; a1, . . . , ak) ≥ f
(

(

n

2

)

, a1, . . . , ak

)

≥ f(Cn; a1, . . . , ak)

Let X1, . . . , Xk be the ordered partition of Cn, where |Xi| = xi for each i and
x1 + · · · + xk = n. Then we have that

k
∑

i=1

aie
Cn(Xi) =

k
∑

i=1

ai

(

xi

2

)

≥
k

∑

i=1

1

2
ai(xi − 1)2.

For x = (x1, . . . , xk) ∈ Rk, define g(x) =
∑k

i=1
1
2
ai(xi − 1)2, so that

f(Cn; a1, . . . , ak) ≥ min
x1+···+xk=n

g(x).
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We find that the minimum occurs at y = (y1, . . . , yk) where

yi − 1 =
(

ai

k
∑

j=1

a−1
j

)

−1

(n − k).

This is because g is a convex function and g′(y) is parallel to (1, 1, . . . , 1),
which is normal to the plane x1 + · · ·+ xk = 0. Therefore

f(m; a1, . . . , ak) ≥ f(Cn; a1, . . . , ak) ≥ g(y) =
(

k
∑

i=1

a−1
i

)

−11

2
(n − k)2

=
(

k
∑

i=1

a−1
i

)

−1

m − Θ(
√

m).

�

We remark that the calculation above when k = 2 shows that for arbitrary
positive real values of a1 and a2, we have that

f(m; a1, a2) =
( 1

a1
+

1

a2

)

−1

m − O(
√

m).

3.4 Extremal Results

For the special case when k = 2 and a1 = a2 = 1, we can give the exact
values of f(m; 1, 1). We shall make use of the remarks after Lemma 2.1.

Theorem 3.4 For m a positive integer, we have that

f(m; 1, 1) =
⌊m − 1

2

⌋

.

Proof By Lemma 2.1, we have, for every poset P = (X,≺), that f(P ; 1, 1) ≤
1
2
eP (X) and that the inequality is strict if eP (X) > 0. Thus for m > 0, we

have f(m; 1, 1) < m
2

or equivalently f(m; 1, 1) ≤ b(m − 1)/2c.
Recall the poset Pr = P (1, 1, r) defined in the introduction. We saw that

for m odd, we have f(m; 1, 1) ≥ f(P(m−1)/2; 1, 1) = (m − 1)/2. For m even,
taking disjoint copies of P0 and P(m−2)/2, which we denote by P0 t P(m−2)/2,
we have that f(m; 1, 1) ≥ f(P0 t P(m−2)/2; 1, 1) = b(m − 1)/2c. This proves
that the values of f(m; 1, 1) are as stated. �

We conclude this section by showing how we can use Lemma 3.2 in proving
the uniqueness of P(m−1)/2 as the extremal poset corresponding to f(m; 1, 1)
when m is odd.
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Theorem 3.5 Fix m an odd positive integer. If P is a poset with m compa-
rable pairs and no isolated elements, and

f(P ; 1, 1) = f(m; 1, 1),

then P = P(m−1)/2.

Proof Let P be a poset as in the premise of the theorem, so that f(P ; 1, 1) =
f(m; 1, 1) = (m − 1)/2. We apply Lemma 3.2 to the poset P , where a1 =
a2 = 1, and t is any fixed number in the range 2/3 < t < 1. Thus, we have

m − 1

2
= f(P ; 1, 1) ≤ 1

2
m − 1

4
t(|X| − balP1,1(t)).

Therefore, we must have that |X|−balP1,1(t) ≤ 2/t, whence there are at most

two elements of P that are not in BalP1,1(t) (since t > 2/3). But maximal

and minimal elements of P are not in BalP1,1(t) (since t < 1), hence there are

exactly two elements, which we call y1 and y2, that are not in BalP1,1(t).

Observe that, since h1,1 is an integer function, if x ∈ BalP1,1(t) for t < 1,
then h1,1(x) = 0. Also, since h1,1 is a strictly decreasing function, then
BalP1,1(t) must be an antichain. Since the elements in BalP1,1(t) are not isolated,
they must each be (without loss of generality) above y1 and below y2 (in order
to ensure that h1,1(x) = 0 for each x ∈ BalP1,1(t)). Thus P = Pr for some r
and since P has m comparable pairs, we must have that r = (m − 1)/2. �

We end this subsection with the following conjecture about the exact
value of f when k ≥ 3.

Conjecture Let k ≥ 3 be a fixed integer, and a1 = · · · = ak = 1. For
m =

(

n
2

)

, we have

f(m; a1, . . . , ak) = f(Cn; a1, . . . , ak).

Examples like Pr fail to be extremal when k ≥ 3 because of the increased
freedom we have when partitioning into three or more parts. Informally, it
seems that this increased freedom, together with transitivity in posets, allows
us to create partitions where a large number of comparable edges go across
parts. Thus, in order to construct an extremal example, we also require a
large number of comparable edges within parts. Chains seem the most likely
candidates to satisfy this.
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4 Best Partitions

In this section, we give an algorithm that finds us an optimal ordered parti-
tion for any given poset P . More precisely, we have the following theorem.

Theorem 4.1 There exists a strongly polynomial time algorithm, such that
for an input (P, k, a1, . . . , ak), where P = (X,≺) is a poset, k is a positive
integer, and a1, . . . , ak are positive rationals, the algorithm outputs an ordered
partition, X1, . . . , Xk, of P for which

k
∑

i=1

aie(Xi) = f(P ; a1, . . . , ak).

Before we give the algorithm in general, we give simpler algorithms for
two special cases. We start by giving a particularly simple algorithm for the
case k = 2, where in fact, we are able to find all optimal ordered partitions
in polynomial time.

Theorem 4.2 Let a1 and a2 be positive real numbers. For a poset P together
with an ordered partition X1, X2 of P , we have that

a1e(X1) + a2e(X2) = f(P ; a1, a2)

if and only if X1, X2 is an (a1, a2)-good partition of P .

We note that if a1 and a2 are rationals, then all (a1, a2)-good partitions can
be found in strongly polynomial time.

Proof Given an ordered partition X1, X2 observe that

a1e(X1) + a2e(X2) = a2

∑

x∈X2

u(x) + a1

∑

x∈X1

d(x)

= a2

∑

x∈X

u(x) +
∑

x∈X1

(a1d(x) − a2u(x))

= a2e(X) −
∑

x∈X1

ha1,a2
(x).

This is minimised if and only if ha1,a2
(x) ≥ 0 for all x ∈ X1 and ha1,a2

(x) ≤ 0
for all x ∈ X2, that is, X1, X2 is an (a1, a2)-good partition. �
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Given that the above theorem tells us exactly which ordered partitions
are optimal, one might expect that we can use this information directly to
bound f(P ; a1, a2), rather than using an inductive proof such as Lemma 2.1.
Such an argument has eluded us.

Turning now to the case k ≥ 3, one might expect that we can apply
Theorem 4.2 repeatedly to give an optimal ordered partition into k parts.
The obstruction to this is that by performing our optimisation sequentially,
our choice of partition at one stage affects the poset we are required to
partition at subsequent stages, and so sacrificing optimality at an earlier
stage can leave us with posets better suited to partitioning at later stages.

Next we consider the case for general k, but where a1 = · · · = ak = 1. We
thank Omid Amini and Stéphan Thomassé for the argument that follows.

We find that our problem can be reduced to one of finding a maximum
sized union of k − 1 antichains in a poset P = (X,≺). This is known to be
solvable in polynomial time (see [8]). Note that A ⊆ X is a union of k − 1
antichains if and only if P induces a poset of height at most k − 1 on A.

We start with some notation and definitions. Let k, a positive integer,
and P = (X,≺), a poset be given. For an ordered partition X1, . . . , Xk of P ,
define

EP (X1, . . . , Xk) = {(a, b) : a ∈ Xi, b ∈ Xj , a ≺ b, i < j}.

Our problem is equivalent to maximising |EP (X1, . . . , Xk)|.
We say that Y ⊆ X is a maximal union of k − 1 antichains, if there is no

Z ) Y that is also a union of k − 1 antichains.
Next we define the line poset L(P ) = (EP (X),≺L(P )) of P , where

EP (X) = {(a, b) : a ≺ b},

and (a1, b1) ≺L(P ) (a2, b2) if and only if b1 � a2. It is easy to check that L(P )
is a well defined poset.

We have the following lemma.

Lemma 4.3 Given a positive integer k and a poset P = (X,≺), we have that
Y ⊆ EP (X) is a union of at most k − 1 antichains in the line poset L(P ),
if and only if Y ⊆ EP (X1, . . . , Xk) for some ordered partition X1, . . . , Xk of
P .

Thus, finding an optimal k-partition is equivalent to finding a maximum
sized union of k − 1 antichains in L(P ), where the latter can be found in
time polynomial in |P |, (since |L(P )| is polynomial in |P |).
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Proof Let X1, . . . , Xk be an ordered partition of P . Then it is clear that
if Y ⊆ EP (X1, . . . , Xk), then L(P ) induces a poset of height at most k − 1
on Y .

Conversely, let Y ⊆ EP (X) be a maximal union of k − 1 antichains in
L(P ), that is, L(P ) induces a poset of height k − 1 on Y . We prove, by
induction on k, that there exists an ordered partition X1, . . . , Xk such that
Y = EP (X1, . . . , Xk). This then proves the lemma.

When k = 1, Y has height zero, so is empty and corresponds to the
ordered partition with one part, namely the whole of X.

For general k, let Y1 = minL(P )(Y ) and let X1 = {a : ∃(a, b) ∈ Y1}. Let
Y ′ = Y \Y1 and X ′ = X\X1, and let P ′ = (X ′,≺). We claim that,

(a) X1 is a down-set of P , and
(b) Y ′ is a maximal union of k − 2 antichains in L(P ′).

Let us continue with the proof assuming the claim is true. By induc-
tion, there exists an ordered partition X2, . . . , Xk of P ′ such that Y ′ =
EP ′

(X2, . . . , Xk). Since X1 is a down-set, it is clear that X1, . . . , Xk forms an
ordered partition of P and that Y = Y1∪Y ′ ⊆ EP (X1, X

′)∪EP (X2, . . . , Xk) =
EP (X1, . . . , Xk). Since Y is maximal, we must have Y = EP (X1, . . . , Xk).

For part (a) of the claim, let a ∈ X1, with b ∈ X and b ≺ a. Since a ∈ X1,
there exists some a′ ∈ X with a ≺ a′ such that (a, a′) ∈ Y1 = minL(P )(Y ). We
show below that (b, a′) is incomparable to every element in Y1 = minL(P )(Y ),
hence (b, a′) ∈ Y1 (by the maximality of Y ), thus b ∈ X1, proving part (a) of
the claim.

In order to show that (b, a′) is incomparable to every element in Y1 sup-
pose (a1, a2) ∈ Y1. Then we cannot have (a1, a2) ≺L(P ) (b, a′), otherwise
we have (a1, a2) ≺L(P ) (a, a′) contradicting that (a, a′) ∈ Y1. We cannot
have (b, a′) ≺L(P ) (a1, a2), otherwise (a, a′) ≺L(P ) (a1, a2), contradicting that
(a1, a2) ∈ Y1.

For part (b) of the claim, it is clear that Y ′ ⊆ EP ′

(X ′). It is also clear
that Y ′ = Y \minL(P )(Y ) is a maximal union of k − 2 antichains, since Y is
a maximal union of k − 1 antichains. This completes the proof. �

We now turn to the proof for the general weighted case, Theorem 4.1,
which relies on the fact that a submodular function on a lattice family can
be minimised in strongly polynomial time. This result was originally due
to Grötschel, Lovász, and Schrijver [4, 5] and was refined most notably by
Iwata, Fleischer, and Fujishige [7] and Schrijver [9]. We begin with some
preliminaries.
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Given a set V , a set L of subsets of V (with the inclusion order) is called
a lattice family if, whenever A, B ∈ L, we have A ∩ B ∈ L and A ∪ B ∈ L.
For example, the set of down-sets of a poset P on V , which we denote by
D(P ), forms a lattice family.

A function g : L → R is called submodular if

g(A) + g(B) ≥ g(A ∩ B) + g(A ∪ B)

for all A, B ∈ L.
We have the following special case of a result of Schrijver [9].

Theorem 4.4 Let D(P ) be the set of down-sets of some partial order on
P = (V,≺). Let g be a submodular function on D(P ). Given a value-giving
oracle for g, a set U ∈ D(P ) that minimises g can be found by an algorithm
using a number of calls to the oracle and a number of arithmetic steps that
are both polynomial in |V |.

The value-giving oracle is able to access values of g in polynomial time. It
is required because we would like an algorithm polynomial in |V |, so we do
not wish to input all values of g, since this would require |D(P )| operations,
where |D(P )| is potentially exponential in |V |.

We are now ready to prove Theorem 4.1.

Proof (of Theorem 4.1) A poset P = (X,≺), a positive integer k, and
positive rational numbers a1, . . . , ak are given. Let |X| = n. For X1, . . . , Xk

an ordered partition of P , we define the partition function of X1, . . . , Xk to
be the function ω : X → [k] where ω(x) = i if and only if x ∈ Xi. Let Ω be
the set of all partition functions corresponding to the ordered partitions of
P . (A partition function ω defines a partition, and so we sometimes refer to
ω as a partition, and to Ω as the set of all ordered partitions.1)

We start by showing that Ω has a natural lattice structure of the form
given in Theorem 4.4.

Let X = {x1, . . . , xn}. Define P (k − 1) = (Y,≺∗), where Y = Y1 ∪ · · · ∪
Yk−1, Yi = {yi1, . . . yin} for i = 1, . . . , k− 1, and yir ≺∗ yjs if and only if i ≥ j
and xr � xs (assuming yir and yjs are distinct). Recall that D(P (k − 1)) is
the set of down-sets of P (k− 1). We give a bijection from Ω to D(P (k− 1)).

For ω an ordered partition of P (into k parts), define D(ω) to be the
subset of Y such that yij ∈ D(ω) if and only if i ≥ ω(xj). It is easy to
check that D(ω) is a down-set of P (k) and that ω 7→ D(ω) is a bijection
from Ω to D(P (k − 1)). We note that if ω1 7→ D1 and ω2 7→ D2, then
min(ω1, ω2) 7→ D1 ∪ D2 and max(ω1, ω2) 7→ D1 ∩ D2, where min(ω1, ω2)

1Ω is often called the set of order-preserving maps from P to [k].
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(resp. max(ω1, ω2)) is the pointwise minimum (resp. maximum) of ω1 and
ω2.

We define g : Ω → R, where g(ω) =
∑k

i=1 aie
P (Xi) and ω is the partition

function of X1, . . . , Xk. We note that, given any partition ω, we can compute
g(ω) in time polynomial in n and the lengths of the rationals ai.

Invoking Theorem 4.4, we see that if g is submodular, then we can min-
imise g over Ω in time polynomial in |P (k)| = kn ≤ n2 and the lengths of the
rationals ai. That is, we can minimise g in strongly-polynomial time, thus
proving the theorem.

It remains only to show that g is submodular, that is, we wish to show
that if ω and φ are ordered partitions, then

g(ω) + g(φ) ≥ g(max(ω, φ)) + g(min(ω, φ)).

Noting that the sum of submodular functions is submodular, we write g
as a sum of indicator functions and show that each indicator function is
submodular.

Define Ix,y,i : Ω → {0, 1}, where

Ix,y,i(ω) =

{

1 if ω(x) = ω(y) = i;

0 otherwise .

Then we have that

g =

k
∑

i=1

ai

∑

x≺y

Ix,y,i.

We now carry out an easy case analysis to show that if x ≺ y, then Ix,y,i

is submodular. We wish to show for every pair of ordered partitions ω and φ,
that

Ix,y,i(ω) + Ix,y,i(φ) ≥ Ix,y,i(max(ω, φ)) + Ix,y,i(min(ω, φ)). (1)

Since x ≺ y, we have that ω(x) ≤ ω(y) and φ(x) ≤ φ(y). Henceforth, we
drop the subscripts on I.

Suppose I(max(ω, φ)) + I(min(ω, φ)) = 2. Then

max(ω, φ)(x) = min(ω, φ)(x) = max(ω, φ)(y) = min(ω, φ)(y) = i,

so ω(x) = ω(y) = φ(x) = φ(y) = i,

hence I(ω) + I(φ) = 2.

Suppose I(max(ω, φ))+I(min(ω, φ)) = 1. Then without loss of generality,
we have max(ω, φ)(x) = max(ω, φ)(y) = i. Without loss of generality, φ(x) ≤
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ω(x) = i. Now we have one of the following two possibilities:

(a) φ(y) ≤ ω(y) = i,

or (b) ω(y) ≤ φ(y) = i.

For case (a), we have that ω(x) = ω(y) = i, so that I(ω)+I(φ) ≥ 1. For case
(b) we have ω(y) ≤ ω(x) = i, but we know that ω(x) ≤ ω(y) (since x ≺ y).
Hence ω(x) = ω(y) = i and I(ω) + I(φ) ≥ 1.

If I(max(ω, φ))+I(min(ω, φ)) = 0 then (1) trivially holds. Thus (1) holds
in all cases and the proof is complete. �
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