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Abstract

In 1998  Luczak, Rödl and Szemerédi [3] proved, by means of the Regularity Lemma,
that there exists n0 such that, for any n ≥ n0 and two-edge-colouring of Kn, there exists
a pair of vertex disjoint monochromatic cycles of opposite colours covering the vertices
of Kn. In this paper we make use of an alternative method of finding useful structure
in a graph, leading to a proof of the same result with a much smaller value of n0. The
proof gives a polynomial time algorithm for finding the two cycles.

1 Introduction

Throughout this paper G will be a complete graph on n vertices, whose edges are coloured
either red or blue.

We are interested in monochromatic cycles, i.e., sets of vertices of G given a cyclic
order such that all edges between successive vertices possess the same colour. Note that in
particular we do allow cycles to have length one (a single vertex) or two (an edge)

If the vertices of G can be partitioned into two sets Cr and Cb, with Cr possessing a red
Hamilton cycle and Cb a blue Hamilton cycle, we say that G has a two-cycle partition.
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Lehel conjectured that, for any n and G, we can find a two-cycle partition of G.

Gyárfás [2] proved the following theorem.

Theorem 1. For any two-coloured complete graph G we can find within G a red cycle and
a blue cycle which together cover the vertices of G and have at most one vertex in common.

More recently, in 1998  Luczak, Rödl and Szemerédi [3] showed that there exists n0 such
that for any n ≥ n0 there is a two-cycle partition of G. Their proof makes use of the
Szemerédi Regularity Lemma [4], and as a result their n0 is given by a tower of 2s of height
10300.

In this paper we prove, by a different method, that Lehel’s conjecture holds for all n > n0;
we do not make use of the Regularity Lemma, and so our result gives a much smaller value
of n0.

Theorem 2. For all n ≥ 218000 and all 2-coloured graphs G on n vertices, there exists a
two-cycle partition of G.

The argument of  Luczak, Rödl and Szemerédi and this paper both follow a similar pattern.

First, dispose of a pathological case: when there exists a very large complete bipartite
subgraph.

Second, partition the vertices of G into many sets in a way which locates useful structure.

Third, use this partition to find good candidates for the red-cycle and blue-cycle parts of
G, together with a relatively small number of problem vertices.

Fourth, find an algorithm to incorporate the problem vertices into the candidate cycle-
parts and appeal to the useful structure to construct the actual red and blue cycles.

The argument of  Luczak, Rödl and Szemerédi uses the Regularity Lemma to partition
V (G) into a very large but fixed number of parts, finding many ε-regular pairs of parts whose
red- or blue-density is significantly greater than zero. In light of the Blow-up Lemma, this
structure is essentially as strong as having complete red or blue bipartite graphs between
many pairs of parts.

In this paper, we apply instead Ramsey’s theorem to find a partition of V (G) into many
small cliques of bounded size; we deal with the red and blue cliques separately and eventually
find that two red cliques are joined either by a few red edges or by a blue complete bipartite
graph. This structure is not so strong as that obtained from the Regularity Lemma (although
it does allow us to make our constructions explicitly rather than by appealing to technical
results such as the Blow-up Lemma) and as a result the algorithm we use to incorporate our
problem vertices into cycles requires a little more care.

2 Large complete bipartite subgraphs

We make use of two theorems from the paper of  Luczak, Rödl and Szemerédi [3].
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Theorem 3. If there exists a partition V (G) = V1 ⊔ V2 ⊔ V3, such that min(|V1|, |V2|) ≥
5 + 2|V3| and V1, V2 form the parts of a blue complete bipartite graph, then there is a two-
cycle partition of G.

The second theorem is a variant on ‘Fact 4.3’ from the same paper, adapted to give us
greater control over the relatively small number of paths we will need to claim exist.

Theorem 4. For every k ≥ 2 and n ≥ 63k, the following holds. Either V (G) may be
partitioned into three sets satisfying the conditions of Theorem 3, or given disjoint subsets
A, B and C of V (G), where |A|, |B| ≥ n

2k
and |C| ≤ n

5k
, there exists a red path of length

at most 100k whose initial vertex is in A, whose final vertex is in B, and whose interior
vertices are in V (G) − (A ∪ B ∪ C).

Proof. Let R be the graph whose edges are the red edges of G on the vertex set V (G) − C.
Let Nr be the set of vertices at distance exactly r from the set A, and N ′

r be the set of
vertices at distance exactly r from the set B.

If both
∑

50k

r=1
|Nr| > n

2
and

∑

50k

r=1
|N ′

r| > n
2
, then there must be a path of length at most

100k from A to B within R as desired.

If there does not exist any such path, then we may assume without loss of generality that
∑

50k

r=1
|Nr| ≤

n
2
, and so there must be r0, 1 ≤ r0 ≤ 50k, such that |Nr0

| ≤ n
100k

.

Now let V1 = A ∪
⋃r0−1

r=1
Nr, V3 = Nr0

∪ C and V2 = V (G) − (V1 ∪ V3). We have

|V1| ≥ |A| ≥
n

2k
≥ 5 + 2

( n

5k
+

n

100k

)

≥ 5 + 2|V3| ,

and similarly |V2| ≥ 5 + 2|V3|. By definition of the Ni and N ′
i , all the edges between V1 and

V2 must be blue, satisfying the conditions of Theorem 3.

With these theorems in mind, we shall henceforth assume that G does not possess any
large complete bipartite graph of either colour, so that we can apply Theorem 4 with either
colour.

3 Clique-cycles

Throughout this section and the rest of the paper, when U = (U1, . . . , Uu) is a list and we
refer to an element Ui, i > u we mean the element Ui mod u.

Suppose that U = (U1, . . . , Uu), u ≥ 3, is a list of disjoint red cliques within V (G).
Suppose further that there are specified disjoint red linking paths ui,i+1 mod u between each
pair Ui and Ui+1 whose interior vertices are not in any Uj . We call this structure an on-colour
red clique-cycle. In general the linking paths will be paths on only two vertices (i.e., single
red edges), and never on more than four.
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Suppose that V = (V1, . . . , Vv), v ≥ 3, is a list of disjoint blue cliques within V (G), with
each pair Vi, Vi+1 spanning a red complete bipartite subgraph of G. We will call this an
off-colour red clique-cycle.

If the Ui and the Vj are disjoint, and furthermore there exist disjoint red paths P1 and
P2 between U1 and V1, each of length at most 18000 + u + v, neither of which meet either
u1,2 or uu,1, and whose interior vertices are not in any of the Ui or Vj, we call (U , P1, P2,V)
a red clique-cycle pair (see Figure 1(iii) ). We do permit one or both of the sets U and V to
be empty, in which case we require that the paths P1 and P2 are empty.

Given a red clique-cycle pair, it is trivial to see that there exists a red cycle which passes
through every vertex of the on-colour red clique-cycle, both paths P1 and P2, and mini |Vi|
vertices of each of the Vi.

We define similarly blue on-colour and off-colour clique-cycles and a blue clique-cycle
pair.

The purpose of this section is to establish the following lemma.

Lemma 5. When n ≥ 218000 there exists a partition of the vertices of G into the following
three parts:

a red clique-cycle pair (U , P1, P2,V),

a blue clique-cycle pair (X , Q1, Q2,Y), and

a ‘leftover set’ L1.

The leftover set has size at most 217990 + n
80

+6(v+y) (where v = |V| and y = |Y|), and all
of the cliques in the off-colour clique-cycles have size between 8981 and 8989. Furthermore,
when two of the clique-cycles are not empty we have |L1| ≤ 217990 + n

120
+ 6(v + y).

Proof. By Ramsey’s Theorem, we can guarantee that any set of 48995 vertices of G contains
either a red or a blue clique of size 8995.

Thus we can find a partition of V (G) into a collection R = R1, . . . of red cliques each of
size 8995, a collection B = B1, . . . of blue cliques each of size 8995, and a set L0 of size at
most 217990 < n

1000
.

We say that two red cliques are red-adjacent if there exists a red matching of size at
least four between them, and blue-adjacent otherwise. This defines a two-coloured complete
graph with vertex set R.

By Theorem 1 (Gyárfás’ result), there exist red and blue cycles Cr and Cb within this
graph which cover R and which intersect in at most one member of R (Figure 1(i) ).

We let U ′ = Cr − Cb. Note that Cr and Cb may intersect in at most one clique. If they
do intersect in a clique (Cb)j , so that Cr = (. . . , U ′

s, (Cb)j, U
′
s+1, . . .), then there is a red path

us,s+1 on either three or four vertices from U ′
s to U ′

s+1 through (Cb)j. Since every other pair of
sets U ′

i , U ′
i+1 has a red matching of size four between them, we can construct all the desired

disjoint red paths ui,i+1 mod u as single red edges from the matchings. With these paths, the
list U ′ becomes an on-colour red clique-cycle.
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We let Y ′ be the cliques in Cb, with the exception that if Cr ∩ Cb = {(Cb)j} we replace
(Cb)j with (Cb)j − us,s+1.

Now since there is no red matching of size four between any pair Y ′
j , Y ′

j+1 we can remove
six vertices from each Y ′

j to obtain Y ′′
j such that each pair Y ′′

j , Y ′′
j+1 spans a blue complete

bipartite graph. The list Y ′′ is an off-colour blue clique-cycle; each clique in it has size
between 8987 and 8989. The two clique-cycles U ′ and Y ′′ are disjoint, as in Figure 1(ii).

(iii)(ii)(i)

U ′

Y ′′

U

V

Figure 1: (i) The red cliques covered by a red and a blue cycle,
(ii) The clique-cycles U ′ and Y ′′ obtained, and
(iii) A red clique-cycle pair.

Similarly we say that two blue cliques are blue-adjacent if there exists a blue matching
of size at least four between them, and red-adjacent otherwise. By applying the theorem
of Gyárfás in the same way to B we obtain the disjoint on-colour blue clique-cycle X ′ and
off-colour red clique-cycle V ′′.

We will now construct U , V, X and Y .

First, if |
⋃

U ′| ≤ n
240

then we set U = ∅ and u = 0, and similarly for V, X and Y .

For each 1 ≤ i ≤ u either ui,i+1 is a path on three or four vertices or we can identify a
red matching of size four between U ′

i and U ′
i+1 including the edge ui,i+1. We can similarly

identify blue matchings of size four between pairs in X ′. Let C1 be the union of all the
vertices in these identified matchings and the linking paths.

If both U and V are non-empty then let A1 =
⋃

U ′ − C1, and B1 =
⋃

V ′′. Now |C1| ≤
8 n

8995
< 17n

18000
, |A1|, |B1| ≥

n
360

and the sets A1, B1 and C1 are disjoint by construction. Thus
we can apply Theorem 4 with k = 180 to obtain a minimal red path P1 of length at most
18000 from A1 to B1 which does not pass through any vertices of C1.

Note that 18000 < n
18000

. We let C2 = C1 ∪ P1, A2 =
⋃

U ′ − C2 and B2 =
⋃

V ′′ − C2.
These three sets still satisfy the conditions of Theorem 4, so applying it we obtain a second
minimal red path P ′

2 of length at most 18000 between A2 and B2 which avoids the vertices
of C2.
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Continuing this, if both X and Y are non-empty we obtain blue paths Q1 and Q′
2 between

⋃

X ′−C1 and
⋃

Y ′′ which are of length at most 18000 and such that the paths P1, P
′
2, Q1, Q

′
2

are pairwise disjoint.

We renumber the lists U ′ and V ′′ if necessary such that the path P1 goes from U ′
1 to V ′′

1 .
The path P ′

2 does not necessarily go from U ′
1 to V ′′

1 . But there is a chain of sets U ′
1, . . . , U

′
p

such that P ′
2 terminates in U ′

p and such that each pair of sets U ′
i , U ′

i+1, 1 ≤ i < p, spans a
red matching of size four contained in C1 (we may assume that if there is a path ui,i+1 of
length greater than one then it comes after p). In each matching one of the four red edges
must be disjoint from the linking paths; thus we can find a red path P2 extending P ′

2 into U ′
1

and into V ′′
1 (the latter since consecutive cliques in V ′′ span red complete bipartite graphs)

such that P2 does not intersect any of P1, Q1, Q′
2 (since these avoid C1) or the linking paths.

The path P1 is of length at most 18000, while |P2| ≤ 18000 + u + v.

Similarly we can assume Q1 goes from X ′
1 to Y ′′

1 and extend Q′
2 to obtain Q2 which also

starts and ends in those sets. Again |Q1| ≤ 18000 and |Q2| ≤ 18000 + x + y.

Finally we obtain U = (U1, . . . , Uu) by letting Ui contain all the vertices in U ′
i that are

not interior vertices of any of the paths P1, P2, Q1, Q2, and V, X and Y similarly. We let L1

contain all the vertices which are not in either clique-cycle pair.

Observe that since the paths P1 and P ′
2 are of minimal length, neither path intersects

any one of the red cliques Y ′′ in more than two places, and by construction the paths Q1

and Q2 intersect each clique in at most one place. Thus for each i, |Y ′′
i | − |Yi| ≤ 6, so that

each clique in Y has size between 8981 and 8989. The same holds for the cliques V.

Since a vertex can only be in L1 if it was either in L0, or was removed from either V ′ or
Y ′, or was in a clique-cycle of size at most n

240
, we obtain the desired bounds on |L1|.

This partition fulfills the requirements of the lemma.

4 Corrected cycle pairs

Given a partition of V (G) into a red clique-cycle, a blue clique-cycle and a leftover set, as
provided by Lemma 5, we would like to say that there is a red cycle which covers the red-
clique-cycle and some of the leftover set and a disjoint blue cycle which covers everything
else. Unfortunately this is not generally true. In this section we will define a similar concept
to a red clique-cycle pair: a red corrected cycle pair. We will see that it can be covered by a
red cycle.

First we must define some terms, in each case with respect to a given partition of G into
red and blue clique-cycle pairs and a leftover set (as is provided by Lemma 5). A red pickup
path is a red path whose start and end vertices are in the same clique in one clique-cycle,
and whose interior vertices are alternately vertices within the leftover set and within other
clique-cycles. We will see that disjoint pickup paths can be constructed covering every vertex
of the leftover set.

A red balance path is a red path whose initial and final vertices are in the same clique
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in an off-colour clique-cycle; its purpose is to cover some excess vertices within off-colour
clique-cycles.

We say that a free vertex is any vertex which is not contained in any pickup or balance
path, any of the linking paths in the on-colour clique-cycles, or the paths P1, P2, Q1, Q2.

When S is a subset of V (G), we let Pick(S) be the number of pickup paths which start
and end in S, Bal(S) be the number of balance paths which start and end in S, and Free(S)
be the number of free vertices in the set S.

Finally, when Vi is a clique in an off-colour clique-cycle V, we define Spin(Vi) by

Spin(Vi) = Free(Vi) + Pick(Vi) + Bal(Vi) (i ≥ 2 or i = 1, P1 = ∅)
Spin(V1) = Free(V1) + Pick(V1) + Bal(V1) + 1 (i = 1, P1 6= ∅).

We say that the off-colour clique-cycle V is balanced if all its cliques have the same spin.

We define a red corrected cycle pair to be a collection (U , P1, P2,V, Jr) consisting of a red
clique-cycle pair (U , P1, P2,V) together with a set Jr of red pickup and balance paths, such
that the pickup and balance paths are disjoint from each other, from the linking paths in the
on-colour clique-cycle, and from the paths P1, P2, and such that the off-colour clique-cycle
is balanced.

Lemma 6. If G possesses a red corrected cycle pair (U , P1, P2,V, Jr) then we can find a red
cycle Cr in G covering exactly the vertices of the corrected cycle pair.

Proof. We construct Cr as follows.

If neither U nor V are empty, we start at the start vertex of P2 in U1.

If this is the start vertex of a pickup or balance path we follow the path to its end vertex,
by definition also in U1. Now if there are any pickup or balance paths remaining in U1 we
move directly to the start vertex and then along each in turn. We then move to each free
vertex in U1 that we have not yet visited in succession, and eventually to the start vertex of
the path u1,2 and along it.

We now repeat the above procedure for each Ui, 2 ≤ i ≤ u. On returning to U1 along
uu,1 we move to the start vertex of P1 and along it to V1.

We now apply the following process. If the vertex in Vi we are currently at is one end of
a pickup or balance path, we follow the path until we return to Vi. We now select if possible
a vertex in Vi+1 mod v which is the start vertex of a pickup or balance path which we have
not yet visited and move to it; if this is not possible we move to any free vertex in Vi+1 mod v

which we have not yet visited.

We repeat this process until we are forced to stop. When this occurs, we are at a vertex
in some clique Vi, having travelled every pickup and balance path and visited every free
vertex in Vi+1 mod v. Thus we have been around the clique-cycle Spin(Vi+1 mod v) times.
Since the off-colour clique-cycle is balanced, we are at Vv and have been along every pickup
and balance path and through every free vertex in

⋃

V. We move directly to the end vertex
of P2 in V1 and along P2 to U1, completing the cycle Cr.
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If both U and V are empty, we set Cr = ∅. If U is empty but V is not we start at the
start vertex of a pickup or balance path in V1 if this is possible, or any free vertex in V1 if
not, and follow the above procedure until we return to the start vertex and complete the
cycle Cr. If V is empty but U is not we start at the end vertex of uu,1 in U1 and follow the
clique-cycle U as above until we return to that vertex, completing the cycle Cr.

By the definition of a corrected cycle pair, the red cycle Cr covers exactly the vertices of
the corrected cycle pair.

5 Correcting clique-cycle pairs

In this section we describe algorithms which take the partition of V (G) into a leftover set, a
red clique-cycle pair and a blue clique-cycle pair given by Lemma 5 and return the desired
two-cycle partition, by way of Lemma 6.

We will need to use different algorithms depending on the sizes of the various parts U ,
V, X and Y . In each case we will construct sequentially a set of pickup and balance paths
on the way to giving corrected cycle pairs. We will again use the functions Pick , Bal , Free
and Spin defined in the previous section; in each case with reference to the current set of
pickup and balance paths at that point in the algorithm.

We will use the following lemma to obtain a set of pickup paths through all vertices of
the leftover set.

Lemma 7. Let A1, . . . , Aa, B1, . . . , Bb, C be disjoint subsets of V (G), where the Ai are subsets
of cliques in one clique-cycle, the Bj are subsets of cliques in another, and C is a leftover
set. Suppose that 2|C| ≤ min(|A1| + · · ·+ |Aa| − 4a, |B1| + · · ·+ |Bb| − 4b). Then there exist
collections Jr and Jb of disjoint red and blue pickup paths within A1 ∪ · · · ∪Bb ∪C such that
each red path starts and ends in an Ai while each blue path starts and ends in a Bj and such
that every vertex in C is in one of the paths. Furthermore in any Ai or Bj the number of
vertices which are in none of the paths Jr or Jb (free vertices) is greater than the number of
vertices which are interior vertices of the paths Jr or Jb.

Proof. We apply the following algorithm. First we mark all vertices as active. Now for each
member c of C in succession, we proceed as follows.

If there are red edges between c and two active members x, y of some Ai then we record
into Jr the red pickup path x, c, y and mark these vertices as inactive.

If there is no such red path through c, but there are blue edges between c and two active
members x, y of some Bj then we record into Jb the blue pickup path x, c, y and mark these
vertices as inactive.

If there are neither red nor blue pickup paths, we mark c as remaining.

We let the eventual set of remaining vertices be R. If it is empty, we are done. If not,
then each r ∈ R is red-adjacent to at most one active vertex in each Ai, and blue-adjacent
to at most one active vertex in each Bj.
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Observe that there must exist at least one pair of sets Aα and Bβ which each contain
at least five active vertices. Since any two-edge-colouring of K5,5 has either a red or a blue
matching of size three, we are guaranteed such between the active vertices of Aα and Bβ.
We assume without loss of generality that the former holds.

If R = {r1}, then r1 is blue-adjacent to at most one of the vertices of the red matching
in Bβ, so there is a red path on five vertices from Aα through r1 and returning to Aα. We
record this pickup path into Jr and are done.

If |R| ≥ 2, then let R = {r1, . . . , rr}. Since we have a red matching of size three between
Aα and Bβ we can choose active vertices a1, b1, br+1, a2 such that a1, b1, r1 and rr, br+1, a2

are both red paths from Aα to r1 and rr respectively. We mark these vertices as interior-
inactive. By the original condition on |C| there remain at least 2|R| + 4b− 2 active vertices
in B1 ∪ · · · ∪ Bb.

Now for each 1 ≤ i ≤ r − 1 in succession, since there must be at least 2|R| + 4b − 1 − i

active vertices in B1 ∪ · · · ∪ Bb (one is made interior-inactive at each step) we can find an
active vertex bi+1 in a set with at least four more active vertices than interior-inactive vertices
which is red-adjacent to both ri and ri+1, and mark it as interior-inactive.

Finally we record the red pickup path a1, b1, r1, b2, . . . , br, rr, br+1, a2 which passes through
all of R into Jr. This path is the only path which has interior vertices in any of the Ai or
Bj , and by its construction each of the Ai and Bj contains more active vertices (in none of
the Jr or Jb) than interior-inactive vertices.

We now give the various algorithms for constructing two-cycle partitions.

Lemma 8. If n ≥ 218000 and G has a partition as in Lemma 5 in which both |
⋃

U|, |
⋃

X | ≥
n
20

, then G has a two-cycle partition.

Proof. First we modify the off-colour clique-cycles V, Y (if these are not empty) by removing
vertices from each clique in these clique-cycles until |V1| = |Y1| = 8981 and all the other
cliques have size 8980, to obtain V ′ and Y ′. If either clique-cycle is empty we do nothing to it.
We create a new leftover set L2 as the union of L1 and the at most 9(v+y) vertices removed.
The modified off-colour clique-cycles are balanced. Observe that |L2| ≤ 217790+ n

120
+15(v+y).

Now we let Ai be the set of free vertices in Ui for each i, Bj be the set of free vertices in
Xj for each j, and C = L2.

Observe that |L2| ≤ 217790 + n
120

+ 15 n
8995

< 23n
2000

. Furthermore the number of free vertices
in U is at least |

⋃

U| − 2u − 2 > 90n
2000

+ 4u, and similarly the number of free vertices in X
is at least 90n

2000
+ 4x. Thus the sets Ai, Bj and C satisfy the conditions of Lemma 7, and we

can apply this lemma to obtain disjoint sets Jr and Jb consisting of pickup paths which are
disjoint from each other, from the linking edges and paths in U and X , and from the paths
P1, P2, Q1, Q2. Every vertex in L2 is in one of these paths. We modify U by removing every
vertex in Jb to obtain U ′, and we modify X similarly to obtain X ′.

Now (U ′, P1, P2,V
′, Jr) forms a red corrected cycle pair, which is disjoint from the blue

corrected cycle pair (X ′, Q1, Q2,Y
′, Jb). The two corrected cycle pairs cover V (G). By

Lemma 6 their vertices form the desired two-cycle partition.
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This construction was made easier by the fact that we could simply remove a small
number of vertices from the off-colour clique-cycles to force them to be balanced. In the
remaining cases we have to do more work to ensure this. We require the following trivial
lemma.

Lemma 9. If A and B are disjoint subsets of V (G) each of size at least three, then either
there exists a vertex in A red-adjacent to two vertices in B, or there exists a vertex in B

blue-adjacent to two vertices in A.

This lemma allows us to construct a balance path and so reduce the spin of the cliques
containing A and B by one.

Lemma 10. If n ≥ 218000 and both |
⋃

U|, |
⋃

Y| ≥ n
20

then we can find a two-cycle partition
of G.

Proof. We modify the off-colour clique-cycle V (if it is not empty) by removing vertices until
each clique has size 8980, except for V1 which has size 8981, to obtain V ′. We create a
new leftover set L2 consisting of L1 together with the removed vertices. We observe that
|L2| ≤

n
1024

+ n
120

+ 15v + 6y < 23n
2000

.

Since |
⋃

U| ≥ n
20

we see that there are certainly at least 4|L2|+130u free vertices in
⋃

U .

Now choose the largest m ≤ 8980 such that |
⋃

Y| − my ≥ 2|L2| + 4y. Observe that
m ≥ 4480. We apply a similar algorithm to that in the previous lemma. From each clique
Yj we choose a subset Bj consisting of |Yj| − m of the free vertices. Observe that

|B1 ∪ · · · ∪ By| = |
⋃

Y| − my ∈ [2|L2| + 4y, 2|L2| + 5y) .

We let Ai be the set of free vertices in Ui for each i. We let C = L2, and apply Lemma 7 to
obtain sets Jr, Jb of pickup paths covering L2.

By the definition of the spin of a clique Yj , when a pickup path is constructed which starts
and ends in Yj (using two vertices of Yj) it decreases the spin of the clique by one, while
from Lemma 7 the number of vertices of Yj which are interior vertices of any pickup path is
exceeded by the number of vertices which are in no pickup path. It follows that the use of
Lemma 7 to create a set of pickup paths causes the spin of the clique Yj to decrease by at

most
|Bj |

2
≤ 8981−m

2
. Thus at this point each clique Yj has spin at least b =

⌊

8980+m
2

⌋

≥ 6730.

We now say that a clique Yj is balanced if Spin(Yj) = b, and unbalanced otherwise.
We note that an unbalanced clique must have spin greater than b. We call the difference
Spin(Yj) − b the excess spin of the clique Yj.

Since |
⋃

U| ≥ n
20

and not more than 2|L2| vertices in U can be in any of the paths Jr ∪Jb

we observe that the number of free vertices in
⋃

U is still at least 2|L2| + 130u.

From the definitions of m and b the sum of the excess spins of all the cliques in Y cannot
exceed

|
⋃

Y| − my

2
≤

2|L2| + 5y

2
≤ |L2| + 3y < |L2| + 60u .

10



We construct J ′
r and J ′

b by adding new balance paths sequentially to Jr and Jb as follows.

If Yj is an unbalanced clique, then Spin(Yj) > 6730, so Free(Yj) + Pick(Yj) + Bal(Yj) ≥
6730. But each pickup or balance path contributing to Pick(Yj) or Bal(Yj) uses two vertices
from Yj, and |Yj| ≤ 8981. Thus certainly Free(Yj) ≥ 3. Since |

⋃

U| ≥ 4|L2| + 130u there
must be a clique Ui with Free(Ui) ≥ 3. By Lemma 9 there exists either a red balance path
from the free vertices of Ui to a free vertex in Vj or a blue balance path from the free vertices
of Vj to a free vertex in Ui. We record the red balance path into J ′

r if it exists, otherwise the
blue balance path into J ′

b. This procedure causes Spin(Yj) to decrease by one. We repeat
this until every clique Yi is balanced.

Finally we modify U by removing all vertices in J ′
b to obtain U ′ and Y by removing all

vertices in J ′
r to obtain the balanced off-colour clique-cycle Y ′.

Now (U ′, P1, P2,V
′, J ′

r) and (X , Q1, Q2,Y
′, J ′

b) are disjoint corrected cycle pairs covering
V (G), and the result follows by Lemma 6.

In the next case we have to balance simultaneously two off-colour clique-cycles; this case
requires the most care.

Lemma 11. If n ≥ 218000 and both |
⋃

V|, |
⋃

Y| ≥ n
20

then there exists a two-cycle partition
of G.

Proof. We begin similarly to the previous lemma. Choose the largest mr, mb ≤ 8980 such
that |

⋃

V| − mrv ≥ 2|L1| + 4v and |
⋃

Y| − mby ≥ 2|L1| + 4y. Note that mr, mb ≥ 5300.

For each i, choose a set Ai consisting of |Vi| − mr of the free vertices of Vi; for each j

choose a set Bj of free vertices of Yj of size |Yj| − mb. Let C = L1, and apply Lemma 7 to
obtain sets Jr, Jb of pickup paths covering every vertex in L1. By an identical argument to
that in the previous lemma, the spin of any clique Vi has decreased by at most 8989−mr

2
so

is at least 8980+mr

2
≥ 7100. Similarly each clique Yj now has spin at least 8980+mb

2
≥ 7100.

There remain at least 2|L1| + 45y free vertices in V, and at least 2|L1| + 45v free vertices
in Y .

Now we must balance both off-colour clique-cycles. We must choose the parameters br

and bb which will be the spins of cliques in the red and blue off-colour clique-cycles in our
eventual corrected cycle pairs.

We define the excess spin of the clique-cycle V by

Excess(V, br) =

v
∑

k=1

(Spin(Vk) − br) .

Since the cliques V1 and Y1 each have at least three free vertices, we can identify either
a red or a blue matching between them of size two. Assume without loss of generality that
it is a red matching (α, β), (γ, δ) ∈ V1 × Y1.

Let br, bb ≤ 7097 be the largest values such that

Excess(Y , bb) + 10 ≤ Excess(V, br) ≤ Excess(Y , bb) + v + 20 .

11



Since 20v ≥ y ≥ v
20

we are guaranteed to find that one of br and bb is between 7077 and
7097.

Since Excess(Y , 7097) cannot exceed |L1| we are guaranteed to find also that br ≥ 5000,
and similarly for bb. We say that a clique in V is balanced if its spin is br, and similarly for
Y . Observe that an unbalanced clique must have at least three free vertices; at this point
every clique in V has spin at least br + 3, and similarly for Y .

If Excess(V, br) − Excess(Y , bb) = s is even, choose a free vertex ǫ in Y1 not in the red
matching of size two. Note that v + 20 < 2v − 4, so that s < 2v − 4 and 2 + s

2
< v.

Now choose from each clique V2, . . . , V2+⌊ s
2
⌋ two free vertices, and let B be a red balance

path which starts and ends in the chosen vertices in V2+⌊ s
2
⌋ and whose interior vertices are

the other chosen vertices, α, β, γ, δ and if s is even ǫ. We record this red balance path along
with the paths Jr to create J ′

r.

Now the spin of any clique (with respect to the new sets J ′
r, Jb) has decreased by at most

three, so each clique in V has spin at least br and each clique in Y has spin at least bb. The
creation of B has decreased Excess(Y , bb) by either two or three, depending on whether s is
odd or even (the vertices β, δ and, if s is even, ǫ in Y1 are no longer free). The creation of B

has also decreased Excess(V, br) by either s+2 or s+3, again depending on whether s is odd
or even (two vertices in each clique V1, . . . , V2+⌊ s

2
⌋ are no longer free and one balance path

has been created in V2+⌊ s
2
⌋). Thus the creation of B gives us Excess(Y , bb) = Excess(V, br).

We apply Lemma 9 repeatedly to construct balance paths on three vertices between the
free vertices of unbalanced pairs of cliques Vi and Yj, each decreasing the spin of both Vi and
Yj by one. Eventually every clique in both off-colour clique-cycles is balanced. We let J ′′

r be
the union of J ′

r and the red balance paths just constructed, and J ′
b be the union of Jb and

the blue balance paths just constructed. We modify V and Y to obtain the balanced clique-
cycles V ′ and Y ′ by removing all vertices in J ′

b and J ′′
r respectively. Now (U , P1, P2,V

′, J ′′
r ) and

(X , Q1, Q2,Y
′, J ′

b) are disjoint corrected cycle pairs covering V (G), and the result follows.

Finally we consider the possibility that one of the two clique-cycle pairs is small.

Lemma 12. If n ≥ 218000 and |
⋃

X |, |
⋃

Y| ≤ n
20

then we have a two-cycle partition of G.

Proof. We let L2 = L1 ∪
⋃

X ∪
⋃

Y ∪ Q1 ∪ Q2. Observe that

|L2| ≤ 217990 +
n

80
+ 6(v + y) +

2n

20
+ 2(18000 + x + y) ≤

12n

100
.

Now either |
⋃

U| ≥ 42n
100

or |
⋃

V| ≥ 42n
100

.

In the former case, we create L3 by removing at most 8v vertices from V to obtain a
balanced clique-cycle V ′. Then, for each ℓ ∈ L3 sequentially, we apply the following process
to obtain a set J of pickup paths.

If ℓ is red-adjacent to two free vertices j1, j2 in any clique Ui then record into J the
pickup path j1, ℓ, j2. Otherwise mark ℓ as remaining.
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Let the set of remaining vertices be R = {r1, . . . , rr}. Each vertex is red-adjacent to at
most one free vertex in any clique Ui. Since |

⋃

U| ≥ 42n
100

and each vertex in L3−R has given
a path in J which uses up two vertices from

⋃

U , the number of free vertices remaining in
⋃

U exceeds |R| + 3u. We can follow the same logic as in Lemma 7 to greedily construct a
blue cycle Cb whose vertices are alternately the members of R and free vertices from

⋃

U .

We modify U by removing all the vertices in Cb to obtain U ′. Then (U ′, P1, P2,V
′, J) is a

red corrected cycle pair which covers exactly the vertices of V (G) not in Cb, so by Lemma 6
it is covered by a red cycle Cr.

In the latter case, let m ≤ 8981 be the greatest number such that

v
∑

i=1

(Spin(Vi) − m − 5) ≥ |L2| .

Since |L2| ≤
12n
100

and |
⋃

V| ≥ 42n
100

we certainly have that m > 5000. Thus any clique
with spin greater than m must have at least 100 free vertices. For each ℓ ∈ L2 we apply the
following process.

If ℓ is red-adjacent to two free members j1, j2 of a clique Vi with Spin(Vi) ≥ m + 5 then
we record the red pickup path j1, ℓ, j2. If not, we mark ℓ as remaining.

Let the set of remaining vertices be R. Let

Excess(V) =

v
∑

i=1

(Spin(Vi) − m) .

Now every clique Vi has spin at least m + 4, and Excess(V) ≥ |R|. We say that a clique
is balanced if it has spin m, and unbalanced otherwise.

We construct red balance paths on three vertices between the free vertices of pairs of
unbalanced cliques Vi, Vj (i, j 6= 1) until either |R| ≤ Excess(V) ≤ |R| + 1 or there remain
no red balance paths on three vertices between free vertices of pairs of unbalanced cliques.
Observe that each balance path constructed reduces Excess(V) by two.

In the first case, since the spin of V1 is at least m+4 we have |R| ≥ 3 and we can greedily
construct a blue cycle Cb passing through all members of R and either |R| (by choosing
vertices alternately from R and V) or |R|+1 (by having an extra edge in V1 in the cycle) free
vertices in the unbalanced cliques of V, as appropriate. Then we construct V ′ by removing
all vertices of Cb from V; this is a balanced clique-cycle.

In the second case, we have a collection of unbalanced cliques V1, Vr1
, . . . such that any

pair Vri
, Vrj

do not have any red balance path between their free vertices. Since each clique
has at least 100 free vertices, certainly there are blue edges between the free vertices of any
such pair.

If |R| ≤ 1 then we can find further red balance paths between the free vertices of V1 and
of the Vri

until either all the cliques are balanced or any pair of our remaining unbalanced
cliques have blue edges between their free vertices. In either case we can find a blue cycle Cb

13



which passes through Spin(Vi) − m of the free vertices of each such Vi; if |R| = 0 it passes
through no other vertices, while if |R| = 1 it passes through the vertex in R also.

If |R| ≥ 2 then we can find a blue cycle Cb covering exactly Spin(Vi)−m free vertices of
each unbalanced clique; between one free vertex in an unbalanced clique and the next along
the cycle we may either have a blue edge or a blue path of length two passing through a
member of R, as appropriate to cover all the members of R and to guarantee being able to
pass from V1 to the Vri

.

In either case, we let J be the set of red balance paths we constructed and modify V by
removing all vertices in Cb to obtain the balanced clique-cycle V ′. Then (U , P1, P2,V

′, J) is
a corrected clique-cycle which must be covered by a red cycle Cr, and Cb covers exactly the
vertices of G not in it.

6 Proof of Theorem 2

Let n ≥ 218000. Suppose that G is a two-edge-coloured complete graph on n vertices.

If G possesses a large bipartite subgraph satisfying the conditions of Theorem 3 then it
possesses a two-cycle partition.

If G does not possess such a large bipartite subgraph then we may apply Lemma 5 to
obtain a partition of V (G) into disjoint red clique-cycle pair (U , P1, P2,V), blue clique-cycle
pair (X , Q1, Q2,Y) and a leftover set.

At least one of U , V, X and Y must cover at least n
20

vertices, since the leftover set is not
larger than 217790 + n

120
+ 6(v + y) < n

100
by choice of n. Without loss of generality, assume

that one of U or V covers at least n
20

vertices. If also either X or Y covers at least n
20

vertices
then we may apply one of Lemmas 8, 10 (which of course also gives a result when X and
V are large) or 11 to find that there exists a two-cycle partition of G. If on the other hand
neither X nor Y covers n

20
vertices then we may apply Lemma 12 to discover a two-cycle

partition of V (G). �

7 Further thoughts

It is not hard to find minor improvements to the proof above, which we do not give in the
interests of a shorter and more readable proof. In particular, we can define red-adjacency
in Lemma 5 with a matching of size only three; we can argue that the leftover set should
always be much smaller, and so on. However even making the most optimistic assumptions
– that there is some way to pick up vertices from the leftover set in long paths rather than
one at a time, that the correct exponent in Ramsey’s Theorem should be 2 and so on, it
seems impossible that this method could be made work with cliques of size smaller than 10
(and so with graphs of around 1000 vertices). On the other hand, it is already out of the
question to check by brute force computation graphs on even 100 vertices, so while Lehel’s
conjecture certainly seems reasonable this method will not prove it in full.

14



The proof of Gyárfás’ Theorem 1 is a linear time algorithm. We can read the proof of
Theorem 4 as an algorithm which either produces the desired path on at most 18000 vertices
(in quadratic time) or returns the large complete bipartite graph required for Theorem 3. The
proof by  Luczak, Rödl and Szemerédi of that theorem is again a polynomial time algorithm
finding the red and blue cycles explicitly, and it is easy to check that all our proofs amount
to polynomial time algorithms, so that we have a polynomial time algorithm which returns
the two-cycle partition of G (if it exists).

It seems reasonable that there should exist an extension of this result for larger numbers
of colours: if the edges of Kn are k-coloured then we can find a partition of its vertices into
k differently coloured monochromatic cycles. This is a slight strengthening of a conjecture
of Erdős, Gyárfás and Pyber [1]: if the edges of Kn are k-coloured then we can find a
partition of its vertices into k monochromatic cycles. However the methods in this paper do
not seem to be easily extended to dealing with even three colours. We can certainly apply
Ramsey’s theorem in a similar way to obtain a partition into small monochromatic cliques
and a leftover set, and then describe two red cliques as red-adjacent if joined by a small red
matching. But we would then have to define blue- and green-adjacency between two red
cliques; and the obvious way to do this (colouring by the majority colour of edges) does not
even allow us to construct blue paths along blue-adjacent paths of red cliques.
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[4] Endre Szemerédi, On sets of integers containing no k elements in arithmetic progression,
Acta Arithmetica 27 (1975), 199–245

15


