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Abstract

We show that the No Trumps combinatorial property (NT), intro-
duced for the study of the foundations of regular variation in [BOst1],
permits a natural extension of the de�nition of the class of functions of
regular variation, including the measurable/Baire functions to which
the classical theory restricts itself. The �generic functions of regular
variation�de�ned here characterize the maximal class of functions to
which the three fundamental theorems of regular variation (Uniform
Convergence, Representation and Characterization Theorems) apply.
The proof uses combinatorial variants of the Steinhaus and Ostrowski
Theorems deduced from NT in [BOst3].
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1 Introduction

The theory of regular variation was initiated by Karamata in 1930 (see
[BGT]) for continuous functions, but began to achieve its modern form only
in 1949 in the work of Korevaar et al. [KvAEdB], where it is extended to
(Lebesgue) measurable functions. It may also be developed for functions
which have the property of Baire (brie�y, Baire functions). We refer to
[BGT] for an exposition of this classical theory, in the measurable and Baire
cases, and to [Oxt] for duality between measure and category. We point out
that regular variation is motivated, not only by its intrinsic mathematical
interest, but by two major areas of application �Tauberian theory, for which
we refer to [Kor], Ch. IV, and probability theory, for which see e.g. [BGT],
Ch. 8. We point out also that the classical theory is in one dimension, but
that much interest currently attaches to the multi-dimensional case, see e.g.
[HLMS].
The three foundation stones of the theory of regular variation are the

Uniform Convergence Theorem (UCT), the (Karamata) Representation The-
orem and the Characterization Theorem, which identi�es the crucial concept
of the index of regular variation (denoted here by �). In [BOst1] we in-
troduced a combinatorial property, called No Trumps or NT (see [BOst1],
[BOst3] for the origin of this name, traced there to an analogy with Jensens�s
� and Ostaszewski�s |), which gave the UCT for slowly varying functions
in a maximally general context, thus including both measurability and the
Baire property as special cases. Here we extend the UCT from slow to regu-
lar variation �for which we need a strengthening of No Trumps to Strong No
Trumps or SNT �and also obtain the Representation and Characterization
Theorems in this new setting.
We use combinatorial versions of the classical Steinhaus and Ostrowski

theorems, recently obtained in [BOst3]. We call our new setting generic, by
analogy with usage in two areas: in analysis, as it includes the measurable
and Baire contexts �see e.g. [AlpPras-1], [AlpPras-2] �and in mathematical
logic, where certain model-theoretic extensions are said to be generic �see
e.g. [Jech1], [Jech2], where the two canonical extensions �Cohen generic and
Solovay generic �have respectively category and measure connections. We
mention in passing that, if we restrict from slow to �very slow�variation, one
can dispense with assumptions such as measurability or the Baire property
altogether, as demonstrated by [BOst2]. We restrict attention here to one
dimension, for convenience and brevity; for a glimpse of what our generic

2



approach brings to the higher-dimensional case, we refer to [BOst3], Section
5.
The theory of regular variation, or of regularly varying functions, explores

the consequences of a relationship of the form

f(�x)=f(x)! g(�) (x!1) 8� > 0; (RV )

for functions de�ned on R+: The limit function g must satisfy the Cauchy
functional equation

g(��) = g(�)g(�) 8�; � > 0: (CFE)

Subject to a mild regularity condition, (CFE) forces g to be a power:

g(�) = �� 8� > 0: (�)

Then f is said to be regularly varying with index �, written f 2 R�.
The case � = 0 is basic. A function f 2 R0 is called slowly varying;

slowly varying functions are often written ` (for lente, or langsam). Here

`(�x)=`(x)! 1 8� > 0 as x!1:

While regular variation is usually used in the multiplicative formulation
above, for proofs in the subject it is usually more convenient to use an additive
formulation. Writing h(x) := log f(ex) (or log `(ex) as the case may be),
k(u) := log g(eu), the relations above become

h(x+ u)� h(x)! k(u) (x!1) 8u 2 R; (1)

h(x+ u)� h(x)! 0 (x!1) 8u 2 R; (2)

k(u+ v) = k(u) + k(v) 8u; v 2 R: (3)

Subject to some mild regularity asumptions classically based on measurabil-
ity or the Baire property, one proves the characterisation theorem, that

k(t) = �t 8� > 0: (4)

Evidently it follows that
h0(t) = h(t)� �t
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is slowly varying, and so in the measurable/Baire case obeys the UCT. Thus
the classical functions of regular variation take the form

h(t) = �t+ h0(t): (5)

In this paper we study the maximal possible family of functions to which the
theory of regular variation could conceivably apply �the functions h of the
form (5) with h0 satisfying UCT. We prove a characterization theorem for
this family by reference to a purely combinatorial property of functions (the
SNT-functions, for �Strong No Trumps�) shared also by the slowly varying
functions. As both the measurable functions and the Baire functions have
this combinatorial property (this being the content of what we call the Strong
No Trumps Theorem), the theorems of the extended theory demonstrably
imply their classical counterparts as special cases. It is thus appropriate to
dub the functions in the maximal family generically regularly varying,
or GRV.
The Karamata Representation Theorem �for which see Section 3 below

�decomposes a slowly varying function h0 into a sum of an integral term and
a term converging to a constant, c say. The integral term may be made to
behave as well as desired �e.g. to be C1; to have all its derivatives tending
to 0; etc. �by use of a de Bruijn molli�er ([dB]; [BGT] Th. 1.3.3; see also
the Smooth Variation Theorem, [BGT] Section 1.8). By contrast, the term
converging to a constant may be made to do so as badly as desired. It may
be taken as pathological as the Axiom of Choice allows. For many purposes
in analysis the distinction between a function tending to c and the constant c
is immaterial �in which case, one may restrict oneself to functions which are
smooth and well-behaved. By contrast, from the point of view of building
a theory of regular variation in maximal generality, it is just here that the
main di¢ culty, and so interest, lies. For background see e.g. [BGT] Section
3.2.2, esp. p. 145, and the Character Theorems of [BOst16], Section 3.

2 De�nitions and assumed background

This section is devoted to basic de�nitions and theorems on which this paper
relies.
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2.1 De�nitions of NT principles

We recall the de�nition from [BOst1]. It is convenient to amend the notation
in the light of our present needs. We follow the set-theorists and denote the
set of natural numbers by ! = f0; 1; 2; ::g.

De�nition 1. For fTk : k 2 !g a family of subsets of R, NT(fTk : k 2
!g) means that, for every bounded/convergent sequence fung in R; some Tk
contains a translate of a subsequence of fung; i.e. there are k 2 !; an in�nite
M � !; and t 2 R such that

ft+ un : n 2Mg � Tk:

In the de�nitions below, the subscripts A;F and L are meant to suggest
�almost all�, �in full�and �localized�.

De�nition 2. For fTk : k 2 !g a family of subsets of R, NTA(fTk :
k 2 !g) means that, for every convergent sequence fung; some Tk contains
almost all of a translate of fung; i.e. there are k;M; t such that

ft+ un : n > Mg � Tk:

De�nition 3. For fTk : k 2 !g a family of subsets of R, NTF (fTk : k 2
!g) means that, for every convergent sequence fung; some Tk contains all of
fung; i.e. there is k such that

fun : n 2 !g � Tk:

De�nition 4 (Strong No Trumps, SNT). For fTk : k 2 !g a family
of subsets of R, NTL(fTk : k 2 !g) means that, for every convergent se-
quence fung ! t 2

S
k2! Tk; some Tk contains a �neighbouring�translate of

a subsequence of fung; i.e. for all " > 0; there are k 2 !; an in�nite M � !
and z 2 (t� "; t+ ") such that

fz + un : n 2Mg � Tk:

For the function h : R! R, the (symmetric) level sets of h are de�ned
by

Hr; or Hr(h); := ft : jh(t)j < rg:
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The di¤erence function hx(t) is de�ned by hx(t) = h(x+ t)� h(x): It is
a central tool; it may be helpful to think of it as a di¤erential operator. Its
level sets are to be denoted

Hr
x; or H

r(hx); := ft : jh(t+ x)� h(x)j < rg:

The function h : R ! R is slowly varying if it satis�es (2) above, i.e.
its di¤erence function tends to zero:

hx(t) = h(x+ t)� h(x)! 0; (x!1) 8t 2 R:

For x = fxng a sequence, in R!, tending to in�nity, we will write x!1:
The x-stabilized sets, or just the �stabilized sets�, of h are de�ned to be

T rk ; or T
r
k (x); :=

\
n�k

Hr
x(n) =

\
n�k

ft : jh(xn + t)� h(xn)j < rg;

with xn and x(n) synonymous. They are of necessity instrumental in our
analysis of the limiting behaviour of hx (cf. Proposition 2 below). Note that

T r0 (x) � T r1 (x) � T r2 (x) � ::: and T rk (x) � T sk (x) whenever r < s:

For x!1 and any " > 0, if h is slowly varying, then

R =
S
k2!
T "k (x): (6)

The function h : R ! R is additive if it satis�es the Cauchy functional
equation (3) of Section 1. In this case

Hr
x = H

r = ft : jh(t)j < rg;

which is independent of x: Thus the stabilized sets T rk coincide with the sets
Hr in this case. Note that, if h is additive, then t 2 H jh(t)j and so

R =
[
k2!

Hk: (7)

The connection between results derived from No Trumps assumptions and
classical measure/category considerations is given by the following theorem.
For the cognoscenti, the intuition for this may be gleaned from forcing proofs
due to Miller; see the cycle of papers [Mil1], [Mil2], [Mil3]. The following
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result is due in this form in the measure case to Borwein and Ditor [BoDi],
but was already known much earlier albeit in somewhat weaker form by
Kestelman ([Kes] Th. 3), and rediscovered by Trautner [Trau] (see [BGT] p.
xix and footnote p. 10). Much more may in fact be said �see [BOst9] and
[BOst10].

Theorem (Kestelman-Borwein-Ditor Theorem). Let fzng ! 0 be
a null sequence of reals. If T is measurable and non-null (resp. non-meagre),
then, for almost all (resp. for quasi-all) t 2 T; there is an in�nite set Mt

such that
ft+ zm : m 2Mtg � T:

For the proof see [BOst3]. We will need the following result, which is
contained in [CsEr] implicitly.

Strong No Trumps Theorem (Csiszár and Erdös) If T is an interval
and T =

S
k2! Tk with each Tk measurable/Baire, then NTL(fTk : k 2 !g)

holds. Indeed, for every convergent sequence fung ! u0 2 T; any neighbour-
hood of the limit u0 contains a point s for which there exist K = K(s) 2 !
and an in�nite set M =M(s) � ! such that

z + um 2 TK for m 2M:

Proof 1. Suppose un converges to u0. Consider an interval I = (u0 �
�; u0+�) � T; for some � > 0: For some K 2 !; the set TK \ I is measurable
and non-null (resp. Baire non-meagre). Let zn := un � u: Then zn ! 0
and so by the Kestelman-Borwein-Ditor Theorem for almost all (resp. for
quasi-all) t 2 TK \ I; there is an in�nite set Mt such that

ft+ zm : m 2Mtg � TK \ I:

For any such t put s = t� u: Then writing M =M(s) for Mt we have

fs+ um : m 2Mtg � TK : �

Proof 2. As an alternative, the following direct argument is an adapta-
tion of the proof in [BGT] of Theorem 2.0.1.
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Let fung converge to u0: Let � > 0: We assume that jun � u0j � � for all
n: Put

[�� + u0; u0 + �] =
[
k

Ik; where Ik = [�� + u0; u0 + �] \ Tk:

By assumption, each Ik is measurable [Baire], so there is K such that IK has
positive measure [is non-meagre]. Let

ZK = u(IK) :=

1\
j=1

1[
n=j

(IK � un) :

We now quote almost verbatim from [BGT] p. 9. �In the measurable case all
the (IK � un) have measure jIK j; and as they are subsets of the �xed bounded
interval [u0�2�; u0+2�]; ZK is a subset of the same interval having measure

jZK j = lim
j!1

�����
1[
n=j

(IK � un)
����� � jIK j > 0:

So ZK is non-empty.
In the Baire case IK contains some set InM; where I = (t � �; t + �) is

an open interval of length 2� > 0; with � < � and M is meagre. So each
(IK � un) contains InnMn; where In = I � un is an open interval of length
2� andMn :=Mn�un is meagre. Choosing J so large that jui�ujj < 2� for
all i; j � J; the intervals IJ ; IJ+1; ::: all overlap each other, and so

S1
n=j I

n;
for j = J; J + 1; :::; is a decreasing sequence of intervals, all of length � 2�
and all contained in the interval [u0 � 2�; u0 + 2�]; hence I0 =

T1
j=1

S1
n=j I

n

is an interval of length � �. Since ZK contains I0n
S1
n=jM

n; it follows that
ZK is non-meagre, so non-empty.�
Thus in either case, there is a point z 2 ZK � [u0 � 2�; u0 + 2�]: This

means that z 2 (IK � un) for in�nitely many n: Say that

z 2 (IK � um) for m 2M:

Without loss of generality, m 2 M implies m > K: Consider m 2 M. By
de�nition, for some y = ym; we have z = ym � um with ym 2 IK : But this
says that

z + um 2 IK for m 2M;
as required. �
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Notes. 1. This is the localized, and hence sharper and more useful,
version of the theorem needed in [BOst1], Section 3 (cf. [BOst3] Theorem
5). As noted above, it was gleaned from the proof in [BGT] of Theorem 2.0.1
as the strongest version capable of delivering all of the several uniformity
theorems in regular variation, and goes back to [BG1]; it is also meant to
motivate a forthcoming de�nition (of the SNT functions in Section 2.4).
2. The Theorem remains true if T is replaced by a non-null measurable

set or a non-meagre set with the Baire property.

2.2 The combinatorial Steinhaus and Ostrowski The-
orems

We will need the next two theorems which were proved in [BOst3].

Combinatorial Steinhaus Theorem. For an additive subgroup S of
R; the following are equivalent:
(i) S = R;
(ii) NTA(S);
(iii) NT(S):

The classical version is in [St] in the measurable case, [P] in the Baire
case; see [BGT] Th. 1.1.1. For the next theorem we need a de�nition (cf.
[BOst5], where this is used to study subadditivity).

De�nition (Weak NT-functions). Let h : R ! R. We will say that
h is a weak NT-function, h 2WNT, if NT(fHk : k 2 !g) holds.

Combinatorial Ostrowski Theorem. For h(x) an additive function:
h(x) is continuous and h(x) = cx for some c i¤ h(x) is a WNT-function,
i.e. NT(fHk : k 2 !g) holds.

Recall that the classical version of this result in the measurable case is in
[Ostr], the Baire case in Mehdi [Meh]; see [BGT] Theorem 1.1.8.

2.3 Uniform Convergence Theorem �UCT

The classical Uniform Convergence Theorem UCT ([BGT] Theorem 1.2.1), as
applied to measurable/Baire functions, is the �rst of the three Fundamental
Theorems on which the foundations of regular variation rest. The other two
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are the Characterisation Theorem ([BGT], Theorem 1.4.1, p. 17), and the
Representation Theorem ([BGT], Theorem 1.3.1, p. 12). Our aim is to de�ne
a wider class of functions to which all three theorems apply. Here we recall,
from [BOst1], the combinatorial material which constitutes the departure
point for this paper, a general form of the UCT. This theorem in particular
identi�es its own maximal class of functions.

Uniform Convergence Theorem. For h(x) slowly varying, the fol-
lowing are equivalent:
(i) hx(t) = h(x+t)�h(x)! 0; uniformly in t on compact sets as x!1;
(ii)x NTA(fT "k (x) : k 2 !g);whenever " > 0 and x!1,
(iii)x NTF (fT "k (x) : k 2 !g);whenever " > 0 and x!1,
(ii)NTA(fT "k (id) : k 2 !g);whenever " > 0 with x = id where id(n) = n;
(iii) NTF (fT "k (id) : k 2 !g);whenever " > 0 with x = id where id(n) =

n:

The most convenient criterion to test for uniform convergence (and on
which the generalization of UCT rests) is the following result (from [BOst1]).
We will need to invoke it several times.

Bounded Equivalence Principle. For h(x) slowly varying, the follow-
ing are equivalent:
(i) hx(t) = h(x+t)�h(x)! 0; uniformly in t on compact sets as x!1;
(ii) limn!1 jh(un + xn)� h(xn)j = 0; whenever u is a bounded sequence,

and x!1.
(iii) limn!1 jh(zn + xn)� h(xn)j = 0; whenever z is a null sequence, and

x!1.

The following simple result, whose short proof we recall, plays a crucial
role in the current paper.

Proposition on sequence containment. Suppose the UCT holds for
a function h: Let u be any bounded sequence, and let " > 0: Then, for every
sequence x tending to in�nity, the stabilized "-level set T "k (x) for some k
contains the sequence u:

Proof. If the sequence fumg lies in the compact interval [a; b] then by
the UCT, for any " > 0; there is k so large that, for any u in [a; b] and any
n � k, we have

jh(u+ xn)� h(xn)j < ":
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This means that any such u is in T "k (x); so in particular fum : m 2 !g �
T "k (x): �

2.4 Generically regularly varying functions (GRV)

De�nition (NT-functions). Let h : R! R. We will say that:
(i) h is an NT-function, h 2 NT, if, for each x ! 1 and each r > 0;

NT(fT rk (x) : k 2 !g) holds.
(ii) h is an SNT-function, h 2 SNT, if, for each x!1 and each r > 0;

NTL(fT rk (x) : k 2 !g) holds.

As its name implies the SNT (Strong No Trumps) strengthens NT (No
Trumps):

Proposition 1. A slowly varying NT-function is an SNT-function.

Proof. Immediate from the Proposition on sequence containment (where
no translation is required), since a slowly varying NT-function satis�es the
UCT. �

With these de�nitions and Proposition 1 the main result from [BOst1]
is that, for h slowly varying, the Uniform Convergence Theorem holds for h
i¤ h is a NT-function i¤ h is an SNT-function. It is in the SNT property
that the key to identifying our maximal extension for the theory of regular
variation lies.

Two important examples.
(i) If h(t) ! c; as t ! 1; then h is a slowly varying NT-function. But

(as in Section 1) note that there are no restrictions on the character of h
here; qualitatively, h could be as pathological as the Axiom of Choice allows.
(ii) Let e : R! R be continuous. If e(t)! 0; as t!1; de�ne

h(t) =

Z t

0

e(s)ds:

Then

hx(t) =

Z x+t

x

e(s)ds;
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and so h is a slowly varying NT-function. In fact given " > 0, for x large
enough, we have

jhx(t)j=t � ": (8)

Proposition 2. Let h 2 NT. Assume that

h�(t) = lim
x!1

[h(t+ x)� h(x)]

exists (possibly as �1) for all t 2 R. Then h� 2WNT.

Proof. Note that jh�(t)j < r i¤

j lim
n
(h(t+ n)� h(n))j < r;

i¤ for some k we have

jh(t+ n)� h(n)j < r for n � k:

Thus

Hr(h�) = ft : jh�(t)j < rg =
[
k

\
n�k

fy : jh(t+ n)� h(n)j < rg;

or
Hr(h�) =

[
k

T rk : (9)

Given fung; if NT(fT rk : k 2 !g) holds, then, for some k; z and an in�nite
M, we have fz + un : n 2Mg � T rk � Hr(h�): �

Notes.
1. In [BOst16] Section 3, the Second Character Theorem, referring to

the descriptive character of functions, asserts that if h 2 �1
2 then h

� 2 �1
2

(assuming h� exists). Interest there was focussed on automatically having
a slowly varying function h be in NT, by virtue of set-theoretic, axiomatic,
assumptions. In this connection see Theorem 5 at the end of the paper.
2. In view of the Strong No Trumps Theorem, we may regard WNT-

functions as also having some �uniformity�features common to measurable
functions and functions having the Baire property. This viewpoint is ev-
idently also supported by the equivalence result in our sharp form of Os-
trowski�s Theorem (in Section 2.2 above).
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De�nition. Let h : R ! R be in SNT. Say that h is generically
regularly varying (or, h 2 GRV+) if the limit

h�(t) = lim
x!1

[h(t+ x)� h(x)]

exists (possibly as �1) for all t 2 R.
Evidently h�(0) = 0: The important example is h(x) = �x; here h�(t) =

�t:

Notes. 1. The above is the additive formulation, whence the superscript
+. As in Section 1, for applications it is the multiplicative formulation that
is used, and there we write f; or ` 2GRV� �or, just as a product a � b
is elided to ab; f; or ` 2GRV, as in Section 2.5 below. This then directly
extends the classical usage (for which see [BGT]), where one writes RV in
the measurable case, or BRV in the Baire case.
2. The quali�er �generic� borrows from the usage in analysis whereby

�behaviour is generic�when it occurs on a set large in the measure or category
sense. Our context includes both the measurable and the Baire functions.
3. We will see in the Characterization Theorem that, under the �mild�

additional condition h 2 SNT (see the comment below), h�(t) is the linear
function �t for some constant �. To aid the intuition, one may think of the
function h� as the �derivative�of h, at in�nity.
4. Comment on the SNT condition. When h 2 SNT, by (9); we

assert that if t satis�es jh�(t)j < r; and un ! 0; then, for each " > 0; there
are k 2 !; an in�nite M � ! and z 2 R with jt� zj < "; such that

fz + un : n 2Mg �
\
n�k

fy : jh(t+ n)� h(n)j < rg:

For the important case h(x) = �x; where h�(t) = �t (to which all other
cases of interest reduce), the displayed condition simpli�es considerably. The
hypothesis, jh�(t)j < r means j�tj < r: The SNT condition then requires that
there are k 2 !; an in�nite M � ! and z 2 R with jt� zj < "; such that

fz + un : n 2Mg � Hr = (�r=j�j; r=j�j):

In the cases of interest, this is indeed a very mild restriction on h:
5. Notice that the SNT condition relates only to the local behaviour of h�

at the origin (recall h�(0) = 0). This should come as no surprise: we have said
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that the existence of h� may be regarded as �a condition of di¤erentiability
at in�nity�, and as such naturally restricts attention to approximations for
small increments t.
6. In the classical context when h is measurable, according to Littlewood�s

2nd Principle, h is �nearly continuous�(see [Lit], Section 4 or [Roy] Section
3.6 p.72). In this case, the Strong No Trump Theorem con�rms the h 2
SNT condition.

2.5 Generic regular variation with index �

Our initial de�nition of a �hierarchy�of classes for the functions of generic
regular variation is motivated by technical concerns. We are led to identify
�rst the regularly-varying NT-functions. The payo¤ is a transparent
argument leading to a Characterisation Theorem, which describes the more
natural classes of (SNT) functions of �generic regular variation�.
The two de�nitions follow, starting with the more natural one. The su-

perscript + in the de�nitions is to suggest the additive formulation of regular
variation theory, and similarly � is to suggest the multiplicative formulation.
Once introduced, the latter will su¤er the natural elision associated with the
dot of multiplication.

De�nition (GRV�). A function h 2 SNT such that

h�(t) = lim
n
jh(t+ n)� h(n)j = �t

is said to be of generic regular variation with index � (in the additive
sense), h 2 GRV+

� .
The corresponding function f with h(x) = log f(ex) is then said to be of

generic regular variation with index � (in the multiplicative sense), h 2
GRV�

� :
A function h 2 GRV+

0 is just generic-slowly varying (in the additive
sense), meaning that h satis�es the UCT.
The corresponding f is generic-slowly varying (in the multiplicative

sense).

De�nition (NT-regular variation �additive formulation).
(i) For h0 slowly varying, we will say that h0 is NT-slowly varying (in

the additive sense) if h0 2 NT.
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Recall that by UCT, for h0 slowly varying, h0 2 SNT i¤ h0 2 NT, so
this agrees with generic slow variation.
(ii) We will say that h is NTR+

� ; or NT-regularly-varying function
with index � (in the additive sense), if

h(x) = �x+ h0(x) with h0 slowly varying in NT:

Thus the case � = 0 reduces to the NT-slowly varying functions. So we may
summarize the � = 0 case above as

NTR+
0 = NT:

(Note that the symbol NT applies only to the additive formulation.)

De�nition (NT-regular variation �multiplicative formulation).
(i)0 We will say that f(x) is NTR�

0 ; or NT-slowly-varying (in the
multiplicative sense), if h(x) = log f(ex) is in NT.
(ii)0 We will say that f(x) is NTR�

� ; or NT-regularly-varying func-
tion of index � (in the multiplicative sense), if

h(x) = log f(ex) 2 NTR+
� :

This case reduces to (i)0 when � = 0:

To sum up: our objective is to show that generic regular variation with
index � is the same as NT-regular-variation with index �; i.e. GRV� =
NTR�: This will be the content of Theorem 3 in Section 3.

Proposition 3. If h0; k0 are NT-slowly varying, then so is h0+k0, and

if h 2 NTR+
� and k 2 NTR+

� ; then h+ k 2 NTR+
�+�:

Proof. Plainly h0+ k0 is slowly varying. By the UCT for slowly varying
functions, as h0; k0 satisfy bounded equivalence (see Section 2.2), so does
h0 + k0; and so h0 + k0 is NT-slowly varying. The conclusion follows by the
de�nition of NTR+

� . �

We may now generalize the Uniform Convergence Theorem to a form
which applies to functions of regular variation with index �:We will see later
(after we have proved the Equivalence Theorem) that there is an alternative
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formulation replacingNTR+
� byGRV

+
� : Our result is most conveniently for-

mulated as a �local uniformity�(which, via compactness, implies uniformity
on compact sets).

Theorem 1 (UCT-� : Uniform Convergence Theorem for regular
variation).
We have h 2 NTR+

� i¤ the following uniformity condition holds:

lim
�!0+

lim sup
x!1

sup
juj��

jh(t+ u+m)� h(m)� �tj = 0:

Proof. For the direct implication, we may take � 6= 0, as the case � = 0
has already been proved in [BOst1]. Suppose h 2 NTR+

� ; i.e. that for some
h0 2 NT

h(t) = �t+ h0(t):

Suppose not. Then there are " > 0; un ! 0; mn !1 so that

jh(t+ un +mn)� h(mn)� �tj > 4":

By UCT, since h0 2 SNT there are z with j�(z � t)j < "; k 2 !; and an
in�nite M such that

fz + un : n 2Mg � T "k (fmng) =
\
n�k

fy : jh0(y +mn)� h0(mn)j < "g:

So for large enough n in M,

jh0(z + un +mn)� h0(mn)j < ":

Also since h0 is slowly varying, reference to the pointwise limits at t and at
z � t shows that for all n large enough

jh0(t+ (z � t) + un +mn)� h0((z � t) + un +mn)j < ";

and
jh0((z � t) + un +mn)� h0(mn)j < ";

by the bounded equivalence principle. Now we may write

h(z + un +mn)� h(mn)� �t
= [�(z + un +mn) + h0(z + un +mn)]� [�mn + h0(mn)]� �t
= �(z � t) + �un + [h0(t+ (z � t) + un +mn)� h0((z � t) + un +mn)]

+[h0((z � t) + un +mn)� h0(mn)]:
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But, for all n large enough j�unj < "; so for large enough n in M

jh(z + un +mn)� h(mn)� �tj
� j�(z � t)j+ j�unj

+jh0(t+ (z � t) + un +mn)� h0((z � t) + un +mn)j
+jh0((z � t) + un +mn)� h0(mn)j

< 4";

a contradiction.
For the converse, assume the uniformity condition holds. Then h�(t) = �t:

De�ne h0(t) = h(t)� �t: The condition may now be rewritten thus:

0 = lim
�!0+

lim sup
x!1

sup
juj��

jh0(t+ u+m)� h0(m)� �uj

= lim
�!0+

lim sup
x!1

sup
juj��

jh0(t+ u+m)� h0(m)j:

Thus h0 is slowly varying and by the bounded equivalence principle we have
h0 in NT. This establishes the converse. �

Corollary. Let h 2 SNT: Suppose that h�(t) = limx!1[h(t+ x)� h(x)]
exists with h�(t) = �t: Then h0(t) = h(t)� �t is in SNT.

Proof. Taking h0(t) = h(t)� �t we obtain

lim
�!0+

lim sup
x!1

sup
juj��

jh0(t+ u+m)� h0(m)j = 0;

so by the bounded equivalence principle h0 satis�es any one of the clauses in
the UCT, and especially the NTF version: some Tk contains the sequence
fung (�in full�). We conclude from this, or directly from the proposition on
sequence containment, that h0 2 SNT. �

3 Characterisation and Represention

In this section we generalize, to a combinatorial form, the other two of the
three fundamental theorems of the classical theory of regular variation: the
Characterisation Theorem ([BGT], Th. 1.4.1, p. 17), and then the Rep-
resentation Theorem ([BGT], Th. 1.3.1, p. 12 especially formula 1.3.2 ),
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which for us is a corollary of the Characterisation result. As a �rst step,
we prove Theorem 2, in which only the inclusion GRV+

� �NT+� is asserted.
The reverse inclusion forms the substance of Theorem 3.

Theorem 2 (Characterisation Theorem for GRV). Let h 2 GRV,
i.e. h is an SNT -function and

h�(t) = lim
x!1

(h(t+ x)� h(x))

is assumed to exists (possibly as �1) for all t. Then:
(i) h�(t) is �nite for all t,
(ii) for some constant �; h�(t) � �t and h 2GRV+

� ;
(iii) Thus:

GRV+ =
S
�

GRV+
� and GRV

+
� � NT+� :

Comment. To place this in context: this result says, for any " > 0 and
all z large enough, that

�t� " � h(t+ z)� h(z) � �t+ ":

Put h(z) = log f(ez); � = et; x = ez and � = e" � 1: Then

(1� �)�� � f(�x)/ f(x) � e�te" = (1 + �)��;

for all large enough x: This justi�es the de�nitions in Section 22.5 above.
We shall see later that the asserted inclusion in (iii) may be improved to

an equality.

Proof of Theorem 2. Let

S = ft : jh�(t)j <1g =
[
k2!

ft : jh�(t)j < kg =
[
k

Hk:

For s; t 2 S we have that

h�(s+ t) = lim
n
([h(s+ t+ n)� h(t+ n)] + [h(t+ n)� h(n)])

= lim
n
([h(s+ t+ n)� h(t+ n)] + lim

n
[h(t+ n)� h(n)])

= h�(s) + h�(t):
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Thus h� is additive on S; and so S is a subgroup of R: By Proposition 2,
since h 2NT, h� 2WNT, i.e. NT(Hk) holds for each k > 0; and soNT(S)
holds. Hence S = R by the Combinatorial Steinhaus Theorem. Thus by the
Combinatorial Ostrowski Theorem we see that for some � we have

h�(t) = �t:

Now put h0(t) = h(t)� �t; then evidently

h�0(t) = lim
n!1

[h0(t+ x)� h0(x)]

= lim
n!1

[h(t+ x)� h(x)� �t] = 0:

So h0 is slowly-varying. By the Corollary to the UCT of Section 2.5, we
deduce that h0 is NT. So h(t) = �t+ h0(t) 2 NT+� : �

As a corollary we now have the following result.

Theorem 3 (Equivalence Theorem). The functions of generic regular
variation with index � coincide with their NT-counterparts, i.e.

GRV+
� = NTR

+
� ; GRV� = NTR�:

Proof of Theorem 3. We know from the last theorem that functions
of generic regular variation with index � are in NT+� :
Now if h is in NT+� , put

h(t) = �t+ h0(t);

with h0 NT-slowly varying. We are to show that h is in SNT and that

h�(t) = lim
x!1

[h(t+ x)� h(x)] = �t:

Evidently

h�(t) = lim
x
[h(t+ x)� h(x)] = lim

x
[�t+ h0(t+ x)� h0(x)]

= �t+ lim
x
[h0(t+ x)� h0(x)] = �t:
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To show that h is in SNT, we are to show, that given t with jh�(t)j < r; and
u! 0; x!1; and " > 0; there are z with jz� tj < "; k 2 !; and an in�nite
M such that

fz + un : n 2Mg � T rk =
\
n�k

fy : jh(y + xn)� h(xn)j < rg:

To understand the proof consider �rst the case h0 = 0: In this case we are to
show that

fz + un : n 2Mg � T rk =
\
n�k

fy : j�yj < rg = (�r=j�j; r=j�j):

For some M we have

fun : n > Mg � (�r=j�j; r=j�j):

The requirement may thus be met i¤ t 2 (�r=j�j; r=j�j):

For general slowly varying h0 in NT, we have

jh(t+ xn)� h(xn)j = j�t+ h0(t+ xn)� h0(xn)j:

Here again we show the same result for a �xed t under the hypothesis that
j�tj < r: In this case r � j�tj > 0; so we restrict attention to " with 0 < " <
r � j�tj:
Now, since h0 is in SNT there are k 2 !; an in�nite M � ! and z 2 R

with jt� zj < "; such that j�(z � t)j < "=3 and

fz + un : n 2Mg � T rk =
\
n�k

fy : jh0(y + xn)� h0(xn)j < "=3g: (10)

We may assume that for n 2M we have n > k; and that k is so large that

j�unj < "=3:

For such n; by (10), we have

jh0(z + un + xn)� h0(xn)j < "=3:
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Hence, for n 2M, we have

jh(z + un + xn)� h(xn)j
= j�z + �un + h0(z + un + xn)� h0(xn)j
= j�(z � t) + �t+ �un + h0(z + un + xn)� h0(xn)j
� j�(z � t)j+ j�unj+ j�tj+ jh0(z + un + xn)� h0(xn)j
� "+ j�tj < r:

Thus

fz + un : n 2Mg � T rk =
\
n�k

fy : jh(y + xn)� h(xn)j < rg;

that is, h is in SNT. This completes the proof. �

Theorem 4 (Karamata Representation Theorem for GRV). A
function h : R ! R is of generic regular variation i¤, for some constants �
c;

h(t) = �t+ hc(t) +

Z t

0

e(x)dx; (11)

where hc(t)! c; so is NT, and e(x)! 0 in C1(R) as x!1:

Proof of Theorem 4. By Theorem 3, one readily checks that any
function with this representation is generic of regular variation with index
� (see the two important examples in Section 2.4). For the other direction:
by the Characterization theorem h(t) = �t + h0(t); for some constant � and
slowly varying h0 in NT. After de Bruijn [dB] (see [BGT] theorem 1.3.3 p.
14) we will apply (as molli�er) any p(x) in C1[0; 1] which is a probability
density on [0; 1]: Put

e(x) = (h0([x] + 1)� h0([x])p(x� [x]);

where the �rst factor is constant in any interval n � x < n + 1 with n an
integer. This is a molli�cation of h; as e is actually C1 ([BGT] ibid.). Now
write

h1(t) = h0(0) +

Z t

0

e(x)dx:
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Noting that

h1(t) = h0(0) + [h0(1)� h0(0)] +
Z t

1

e(x)dx

= ::: = h0([t]) +

Z t

[t]

e(x)dx;

we have, by the Bounded Equivalence Principle, as h0 is slowly varying and
in NT, that

�h0(t) := h0(t)� h1(t) = h0(t)� h0([t])�
Z t

[t]

e(x)dx! 0;

as t!1. The result follows on taking c = h0(0) and hc(t) = c+ �h0(t): �

Notes. 1. As the proof shows, the Representation Theorem is primarily
about slowly varying functions.
2. The generic functions of regular variation are thus the largest class

of functions to which the three fundamental theorems of regular variation
apply.
3. We revisit our comment in Section 2.4 about the qualitative character

of hc(t): We note that Theorem 4 has an immediate corollary in Theorem 5
below which is of particular relevance to the (descriptive) set-theoretic iden-
ti�cation of a natural context for regular variation theory (natural domain of
functions). See the discussion in Section 3 of [BOst16] (where the notation
below is fully explained).

Theorem 5 (GRV Character Theorem for �1
2). If h 2 �1

2 and
h 2 GRV+

� ; then

h(t) = �t+ hc(t) +

Z t

0

e(x)dx;

where

hc(t)! c is in �1
2 and e(x)! 0 in C1[b;1) as x!1:

We will derive this result as a corollary of the following.
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Theorem 6 (General Character Theorem). For h slowly varying
satisfying UCT and � a pointclass of functions closed under addition of con-
tinuous functions, h 2 � holds i¤ the representation equation

h(t) = hc(t) +

Z t

0

e(x)dx; with e(x)! 0 in C1[b;1) as x!1;

holds with hc 2 �:

Proof. Thi is immediate from the Representation Theorem and the clo-
sure hypothesis:

h = hc + g 2 �() hc = h� g 2 �;

where g(t) denotes the continuous function
R t
0
e(x)dx. The closure condition

is met in the cases where � is either the class of measurable functions or
the class of Baire functions. In turn this yields the character information
in the corresponding Representation Theorems for measurable/Baire regular
variation. �

Proof of Theorem 5. To deduce the �1
2 case we need to check the

closure hypothesis when � =�1
2. Identify functions with their graphs. Thus

y = h(t) + g(t) i¤ (y; t) 2 h + g: The assumption is that h has a �1
2 graph

and that g; being continuous, has a closed graph. The two formulas de�ning
the graph of g + h and its complement, namely

y = h(t) + g(t)() (9u; v)[(t; u) 2 h & (t; v) 2 g & y = u+ v];
y 6= h(t) + g(t)() (9u; v)[(t; u) 2 h & (t; v) 2 g & y 6= u+ v];

show both sets to be �1
2, because (t; u) 2 h is a �1

2 statement (see [BOst1]
for an explanation). Thus h+ g is in �1

2; giving the closure hypothesis. �

Our �nal result a¢ rms what is self-evident in the classical context �that
the product of two regularly varying functions is regularly varying (working
in the multiplicative formulation). For the generic variation context, this
follows by an application of the UCT, so is less obvious.

Proposition 4. If h; k 2GRV+; then h+ k 2GRV+.
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Proof. This follows from Proposition 3. Indeed, if h 2GRV+
� and

k 2GRV+
� ; then writing h0(t) = h(t) � �t and k0(t) = k(t) � �t; we ob-

tain
h(t) + k(t) = (�+ �)t+ [h0(t) + k0(t)]:

But h0 + k0 is slowly varying and satis�es UCT, so is in NT. Hence h + k
is GRV+

�+�. �

Postscript. Here we have handled the measure and Baire cases of the theory
by �nding their maximal common generalisation. Another way to proceed is
to reduce the �rst to the second. This is done in [BOst11], where we proceed
bitopologically, treating the measure case by switching from the Euclidean to
the density topology. Note that this reverses the traditional approach, which
treats the measure case as primary and the Baire case as secondary.
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