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Abstract

We define combinatorial principles which unify and extend the
classical results of Steinhaus and Piccard on the existence of interior
points in the distance set. Thus the measure and category versions
are derived from one topological theorem on interior points applied
to the usual topology and the density topology on the line. Likewise
we unify the subgroup theorem by reference to a Ramsey property. A
combinatorial form of Ostrowski’s theorem (that a bounded additive
function is linear) permits the deduction of both the measure and
category automatic continuity theorem for additive functions.

Classification: 26A03; 04A15; 02K 20.

Keywords: Infinite combinatorics, subuniversal set, Ramsey the-
ory, No Trumps Principle, Baire property, measurability, measure-
category duality, density topology, distance set, subgroup theorem,
automatic continuity.



1 Introduction

The field of infinite combinatorics has, largely under the influence of Erdos
and his school, grown to have many applications, for example to Ramsey the-
ory within combinatorics ([GRS], [Hin]), and to number theory ([TaoVu]).
The theme of this paper is that an aspect of infinite combinatorics has pow-
erful applications in analysis. The relevant concept we call subuniversality,
because of the use of universality in a related context by Kestelman [Kesl].
We develop here the positive consequences of subuniversality; previously,
attention had instead been focussed on negative aspects (particularly of uni-
versality, cf. [Mill]). The applications in analysis include a unified treatment
of the classical theorems of Steinhaus and Ostrowski in our title, on difference
sets and on additive functions. Subuniversality is a notion of compactness,
naturally linked to the notion of shift-compactness employed in the semi-
group structures of measures under convolution (see [Par]); for a topological
analysis of this insight and further applications see [BOst8] and [BOst12]. It
also draws on the ambient additive combinatorics.

Recall that a function A : R — R is additive if it satisfies the Cauchy
functional equation

h(z+y)=h(z)+h(y) Vz,yeR.
Obvious examples of additive functions include linear functions h:
h(z) = cx for some constant ¢ € R.

Use of Hamel bases readily shows that not all additive functions are linear (see
e.g. [Kucz], V.2, [GerKucz]; cf. [CiePawl] §5.2) in general. But continuity is
enough to deduce linearity from additivity (by approximating real arguments
by rational ones). One can assume much less; quite how much less is one of
the questions addressed below.

In qualitative measure theory (that is, measure theory in which one is
concerned only with whether the measure of a set is zero or positive, rather
than with its numerical value), it is often the case that a measure-theoretic
theorem has a category-theoretic analogue, in which we replace ‘measurable
function’ by ‘function having the Baire property’ ([Kur-1], [Oxt] — briefly,
‘Baire function’ below), and ‘set of positive measure’ by ‘non-meagre set’
(or set of second category). See [Oxt] for a monograph treatment of such
measure-category duality.



In previous work, on additive functions (the Ostrowski theorem below)
and related results (the Steinhaus theorem below), it is the measure case that
has been regarded as primary and the Baire (or topological, or category) case
as secondary. As we shall see below, the reverse order is the more natural:
it is the Baire case that is paramount. Indeed, we deduce the measure cases
from the Baire cases, and do so by passing from the Euclidean topology to
the density topology.

Recall that, with |.| Lebesgue measure, a point z is a density point of a
set A if

AN (z—t,z+t)|/(2t) — 1 (t]0),

and that the density topology on R is defined by taking as open sets those
sets all of whose points are density points. This does define a topology
(see [LMZ] for a monograph treatment of density topologies in the broader
context of fine topologies). That the density topology provides a bridge
between the measure and category versions of the results above is indicated
by the following result: a set A is Lebesgue measurable iff it has the Baire
property under the density topology (see e.g. [Kech], p.119, Ex. 17.47).

In §2 below we state and prove the results (Theorems 1 and 2) that give
us the necessary tools. These are from infinite combinatorics, and topol-
ogy (relatives of the Baire Category Theorem). As corollaries, we obtain
the theorems of Piccard and of Steinhaus. In §3, we obtain (Theorem 3) a
Combinatorial Steinhaus Theorem. In §4, we obtain (Theorem 4) a corre-
sponding Combinatorial Ostrowski Theorem, with as corollaries the classical
Ostrowski and Banach-Mehdi theorems, in the measure and category cases.
As a corollary of Theorem 2, we also obtain (Theorem 5) the ‘No Trumps
Theorem’, unifying the measure and category cases for functions as the re-
sults of §2 do for sets, noting another classical corollary (the Fréchet-Banach
Theorem). In §5 we also obtain (Theorem 6) a result on the sense in which
the sets studied in §2 (the ‘subuniversal sets’) are ‘big enough’ (just as non-
null and non-meagre sets are ‘big enough’). In §6 we extend our treatment
to higher dimensions (Theorem 7). We close in §7 with a number of remarks
on related work and extensions.

2 Topology and Infinite Combinatorics

Our starting point is the Category Embedding Theorem below. At its heart
is the condition below applied to a sequence of autohomeomorphisms which
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may be regarded as a category convergence to the identity; we call it weak to
distinguish it from earlier usage as exemplified by Miller in [Mil4]. We shall
see that it is satisfied in the case of the Euclidean and density topologies
by shifts induced by a null sequence z, — 0, namely the functions h,(z) :=
T+ 2,. In the theorem the term ‘embedding’ is motivated by the applications
which follow. We write w for {0,1,2,...}.

Definition (weak category convergence). A sequence of homeomor-
phisms h,, satisfies the weak category convergence condition (wcc) if:

For any non-empty open set U, there is a non-empty open set V' C U
such that, for each k,

ﬂ V\h,}(V) is meagre. (wee)

n>k
Equivalently, for each k, there is a meagre set M such that, for ¢ ¢ M,
teV = (3n>k)h,(t) e V.

In what follows, the words quasi everywhere (q.e.), or for quasi all points,
mean for all points off a meagre set (see [Kah]).

Theorem 1 (Category Embedding Theorem). Let X be a Baire
space and h, : X — X be homeomorphisms satisfying (wecc). Then, for any
non-meagre Baire set T, for quasi all t € T, there is an infinite set M, such
that

{hm(t) :m e M} CT.

Proof. Suppose T is Baire and non-meagre. We may assume that 1" =
U\M with U non-empty and open and M meagre. Let V' C U satisfy (wcc).
Since the functions h,, are homeomorphisms, the set

M =M U Jh (M)

is meagre. Put

W=hV)=Jvnr'(v)cVvcu

k€Ew n>k



Then V NW is co-meagre in V. Indeed

v\w = J (VAR (vV),

kEw k>n

which by (wcc) is meagre.

Let t € (V. NW)\M' with t € T. Now there exists an infinite set M,
such that, for m € M, there are points v,, € V with ¢t = h_!(v,,). Since
hY(vy) =t & h (M), we have v,, ¢ M, and hence v,, € T. Thus {h,,(t) :
m € M} C T for t in a co-meagre set, as asserted. [J

The conclusion of the theorem has a natural interpretation in the case of
shifts. To justify it we shall need to prove that (wcc) holds for shifts.

Definition. Say that the set S is universal (resp. subuniversal) if for
any null sequence {z,} — 0, there are s € R and a co-finite (resp. infinite)
set M, such that

{s+2zm:meM;} CS.

We begin with the easier of two verifications of (wcc).

Proposition E (WCC for shifts in the Euclidean topology). Let
V' be an open interval in R. For any null sequence {z,} — 0 and each k € w,

Hy = ﬂ VAV + z,) is empty.

n>k

Proof. Let V = (a,b). Assume first that the null sequence is positive.
Then, for all n so large that a + z, < b, we have

VN h;l(V) = (a,a+ z,),

and so, for any k € w,

ﬂ V\h *(V) is empty.

n>k

The same argument applies if the null sequence is negative, but with the
end-points exchanged. [



Proposition D (WCC for shifts in the density topology). Let V' be
measurable and non-null. For any null sequence {z,} — 0 and each k € w,

Hy = ﬂ VAV + z,) is of measure zero, so meagre in the d-topology.
n>k

That is, the sequence h,(x) :=x — z, satisfies (wce) under the d-topology.

Proof. Suppose otherwise. Then for some k, |Hy| > 0. Write H for Hy.
Since H C V, we have, for n > k, that 0 = HNh,' (V)= HN(V + z,) and
so a fortiori ) = H N (H + z,). Let u be a metric density point of H. Thus
for some interval I5(u) = (u — /2, u + §/2) we have

3
[H 0 Is(w)| > Zo.

Let E = H N I;(u). For any z,, we have [(E + z,) N (Is(u) + z,)| = |E| > 26.
For 0 < z, < 0/4, we have |(E+ z,)\Is(u)| < [(u+0/2,u+35/4)] < §/4. Put
F = (E+z,)NIs(u), then |F| > /2. But § > |EUF| = |E|+|F|—|ENF| >
35+15—|ENF] So

1
|Hm(H+zn)|2|EmF|215,

contradicting ) = H N (H + z,). This establishes the claim. [J

Propositions E and D taken together with the Category Embedding The-
orem yield as immediate the following result, due in this form in the measure
case to Borwein and Ditor [BoDi|, answering a question of Erdés [Erd] (see
[Mil1] for more on this). The result was already known much earlier albeit
in somewhat weaker form by Kestelman ([Kesl] Th. 3), and rediscovered by
Trautner [Trau] (see [BGT] p. xix and footnote p. 10). See also [BOst10] for
a homotopic generalization.

Theorem (Kestelman-Borwein-Ditor Theorem). Let {z,} — 0 be
a null sequence of reals. If T is measurable and non-null (resp. Baire non-
meagre), then, for almost all (resp. for quasi-all) t € T, there is an infinite
set M, such that
{t+zm:meM}CT.

For a useful weakening see Theorem 5, ‘The No Trumps Theorem’ of
Section 4.



We now change from a topological to a bitopological setting ([Kel], cf.
[LMZ]) in which we have two distinct but related topologies in play. This
bitopological viewpoint enables us to unify the two classical theorems on
interior points due in the measurable case to Steinhaus and in the Baire case
to Piccard. The common generalization is of course a category theorem.

Theorem 2 (Topological, or Category, Interior Point Theorem).
Let {z,} — 0 be a null sequence (in the Fuclidean topology). Let R be
gwen a shift-invariant topology T under which it is a Baire space and the
homeomorphisms hy,(x) = x+ z, satisfy (wec). For S Baire and non-meagre
in T, the difference set S — S contains an interval around the origin.

Proof. Suppose otherwise. Then for each positive integer n we may
select

Zn € (= 1/n,+1/n)\(S = 9).

Since {z,} — 0 (in the Euclidean topology), the Category Embedding The-
orem applies, and gives an s € S and an infinite M, such that

{hm(s) :me M} CS.
Then for any m € M,
s+z, €85 ,ie z,€S5—25,
a contradiction. [

Corollary (Piccard Theorem, Piccard [Picl|, [Pic2]). For S Baire
and non-meagre in the Fuclidean topology, the difference set S — S contains
an interval around the origin.

First Proof. Apply Theorem 2, since by Proposition E, the (wcc) con-
dition holds. [

Second Proof. Suppose otherwise. Then, as before, for each positive
integer n we may select z, € (— 1/n,+ 1/n)\(S —S5). Since z, — 0, by the
Kestelman-Borwein-Ditor Theorem, for quasi all s € S there is an infinite
M such that {s + z,, : m € M} C S. Then for any m € M, s+ z,, € S,
ie. z, € S—.9, a contradiction. [

Corollary (Pettis, [Pet]) For S,T Baire and non-meagre in the Euclidean
topology, the difference set S — T contains an interval.

7



Proof. First consider the special case when S,T are equal to each
other, and so also to S N T, modulo meagre sets; then S — T contains an
interval around the origin. To prove this, argue similarly but now select
Zn € (—1/n,+1/n)\(S —T). Since z, — 0, by the Kestelman-Borwein-
Ditor Theorem, for quasi all £ € S N T there is an infinite M, such that
{t+ 2z :m € M4} C S. Then, for any m € My, t + 2, € S, ie. 2z, € S=T,
a contradiction. The general case may be reduced to the special case by an ap-
propriate translation, say by a, of T to T’ = T'—a, so that S—T = (S—T")+a.
Indeed, for some interval I, S contains I modulo meagre sets and a translate
of T', say T — a, also contains I modulo meagre sets; thus we may replace S
by the smaller set S := SN[ and T by T":= T N (I + a) and then S’ and
T’ — a are both equal modulo meagre sets to . [J

Corollary (Steinhaus’ Theorem, [St]). For S of positive measure, the
difference set S — S contains an interval around the origin.

Proof. Arguing as in the first proof above, by Proposition D, the wcc
holds and S, in the density topology, is Baire and non-meagre ([Kech]). The
measure-theoretic form of the second proof above also applies. [

Just as with the Pettis extension of Piccard’s result, so too here, Steinhaus
proved that for S, T non-null measurable S — T contains an interval.

Unlike some of the results above, these results extend to topological
groups. See e.g. [Com] Th. 4.6 p.1175 for the positive statement, and
the closing remarks for a negative one.

3 More on Steinhaus’ Theorem

The following corollary to Steinhaus’ Theorem (and its Baire category ver-
sion) is important enough to merit a name.

Theorem (Category [Measure] Subgroup Theorem). For an addi-
tive Baire [measurable] subgroup S of R, the following are equivalent:

(i) S=R

(i) S is non-meagre [non-null.

Proof. By the Topological/Category Interior Point Theorem, for some
interval I,

ICS—SCS&,

8



and hence R={J,nl =5.0

Here we develop a combinatorial version, in the language of Ramsey the-
ory ([GRS], [Hin]).

Definition. Say that a set S has the Ramsey distance property if for any
convergent sequence {u,} there is an infinite M such that

{tp — Up :m,n e M} CS.

Thinking of the points of S as those having a particular colour, S has the
Ramsey distance property if any convergent sequence has a subsequence all
of whose pairwise distances have this colour.

Theorem 3 (Combinatorial Steinhaus Theorem). For an additive
subgroup S of R, the following are equivalent:

() S =R,

(ii) S is universal,

(iii) S is subuniversal,

(iv) S has the Ramsey distance property.

We quote ([Muth], Prop. 1, cf. [MilMuth]):
Muthuvel’s Infinite Index Theorem. If S is a proper subgroup of R,
then the index of S in R is infinite.

Our proof requires the following strengthening of Muthuvel’s Infinite In-
dex Theorem (see also the Remark at the end of the section).

Non-covering Lemma. Let S be a proper additive subgroup of R. An
open interval cannot be covered by a finite union of cosets of S.

Proof. Suppose otherwise and that for S a proper subgroup of R there is
an interval I and distinct, and so pairwise disjoint, cosets S, S + u, ..., S + w
covering it. The Lemma may be reduced by a shift (say by s+ u when s+ u
is in I for some s in S) to considering the case that

0,0) CT:=SU(S+u)U...(S +w), (1)

with a > 0. We claim that R C 7. This implies that the index of S in R
is finite, thus contradicting Muthuvel’s Infinite Index Theorem. Let o =
inf{s € S: s > 0}. The claim will follow once we have shown that ¢ = 0; see
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below. So, suppose on the contrary, that o > 0. We now make the subsidiary
claim that, without loss of generality, u, ..., w all lie in (0,0). To see this in
the case of u, we may first assume that v > 0, otherwise replace u by —u,
appealing to the symmetry S +u = —(S — u). Let

n=max{n:u—no >0} = [u/o].

Put v = v —no. Thus 0 < v < 0. If 0 € S, then v/ > 0 (otherwise
S+u=8+u =275),andso S+u =S+ u with « in (0,0). If 0 ¢ S,
we may select s > ¢ with (s — o) small enough that v” = u — ns satisfies
—o < u”" < o. Thus S+u = S+u". As before u” is non-zero, so by symmetry,
we may suppose that u” > 0. Thus again S +u = S + «” with «” in (0,0).
Thus the subsidiary claim is established.

By definition of o, S avoids the interval (0,0). Hence S + u avoids the
interval (u,u + o) and a fortiori (u, o). There is thus a smallest interval
(1,0) € (0,0) which S, and its finitely many translates S + u, ..., S + w, all
avoid, which contradicts (1). We have thus ruled out ¢ > 0. From here the
claim R C T follows easily. Take x € R; we may suppose that x > 0, invoking
the symmetry S+u = —(S —u). Let m = [z/a], so that ma < z < (m+1)a.
Choose s € S with 0 < s < min{a, (m+1)a—z}. Let n be the largest integer
such that ns < < (n+ 1)s. Then

O<x—mns<s<a.

Thus x —ns € T and so x € T, for if say x —ns € S +u, then also x € S+ u.
Thus R C T', contradicting Muthuvel’s Infinite Index Theorem. []

Proof of the Combinatorial Steinhaus Theorem. It is clear that (i)
implies (ii) and (ii) implies (iii). To see that (iii) implies (iv) observe that,
as S is subuniversal, there are £ and an infinite M such that

{t+u, :neM} CS.
But, for m and n in M,
Up — Uy = (4 up) — (E+ up) €S,

giving (iv). To prove (iv) implies (i) we use the Non-covering Lemma. Sup-
pose that S # R. Then, as S is a subgroup, it cannot contain any (non-empty)
interval. Suppose that vy, ...,v,_1 have been selected with v, < 1/(k + 1)?
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and vy, + ... +v,_1 ¢ S for each m < n—1. We want to select v,, < 1/(n+1)?
such that for each m <n

U+ ... tv, €8S, (2)
or equivalently
Up &S — (U + .+ 0p1).

Thus we require that

Un € ﬂ(( )>\S (U +...+vn_1))

m<n

- ( n+1 >\U et o)

m<n

If we cannot select such a v, then

U S—(m+..+v,1) 2 (O,ﬁ) .

m<n

This contradicts the Non-covering Lemma. Thus after all, the induction can
proceed. Put u, := vy + ... + v, then {u,} is convergent. According to (iv)
there is an infinite M such that for m and n in M with m < n

U+ oo+ Ut = Up — Uy, € S.
This contradicts (2). O

Second Proof of the Subgroup Theorem. For S Baire non-meagre,
resp. measurable non-null, S is subuniversal by the Kestelman-Borwein-
Ditor Theorem, so the theorem follows as a corollary of the Combinatorial
Steinhaus Theorem. []

Remark. The essence of Muthuvel’s Infinite Index Theorem is illustrated
best in a proof that the index cannot be 2. So suppose that R is partitioned
into two cosets, S and u + S, where u ¢ S. Note that 2u € S, for otherwise
2u € u+ S, so u € S, a contradiction. As R is a field, we have R = 2R.
But 2R C S, because, for z € R, we may show that 2z € S. This is clear if
r € S,whereas if x € u + S, we have that 2z € 2u+ 25 C S. Thus R = 5,
again a contradiction.
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4 Ostrowski’s Theorem

Theorem 4 (Combinatorial Ostrowski Theorem). If f: R — R is
additive and bounded (locally, above or below) on a subuniversal set S, then
f 1s locally bounded and hence linear.

Proof. Suppose that f in not locally bounded at the origin. Then we
may choose z, — 0 such that f(z,) > n, without loss of generality (otherwise
replace f by —f). But there are s € S and an infinite M, such that

{s+ 2, :meM,} CS,

implying that f is unbounded on S locally at s, a contradiction. It follows
from local boundedness at the origin that f is continuous. Indeed choose
d > 0 and M such that, for all ¢ with |¢| < 0, we have

[F(O)] < M.

For ¢ > 0 arbitrary, choose any integer N with N > M /e. Now provided
[t| < §/N, we have

NIf®)] = f(NO] < M, or [f(t)] < M/N <e. [

A weaker result, with the condition S subuniversal strengthened to S
universal is in [Kes2]. As immediate corollaries of the above and of the
Kestelman-Borwein-Ditor Theorem we have the following pair of classical
results.

Corollary (Ostrowski Theorem [Ostr], cf. [Kes2]). If f: R — R is
additive and bounded (locally, above or below) on a set of positive measure
S, then f is locally bounded and hence linear.

Corollary (Banach-Mehdi Theorem, [Ban-T| Th. 4 pg. 35, [Meh]).
If f:R — R is additive and bounded (locally, above or below) on a non-
meagre Baire set S, then f is locally bounded and hence linear.

Corollary (Fréchet [Frech], Banach [Ban-T]). If f: R — R is additive
and measurable or Baire, then f is continuous and so linear.

The boundedness conditions above lead naturally to a consideration of
the level sets of a function and their combinatorial properties. Here we go
beyond the null sequences.
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Definitions. 1. For the function i : R — R, the (symmetric) level sets
of h are defined by
H":={t:|h(t)| <r}.

2. We write NT({T} : k € w}) to means that, for every bounded/convergent
sequence {u,} in R, some T}, contains a translate of a subsequence of {u,,},
i.e. there is k € w, infinite Ml C w,t € R such that

{t+u, :n € M} CTj.

The term appears in [BOst5] on subadditive functions, in the measurable
and Baire cases (see §7 Remark 9 for background). Specializing to the case
when T}, = S for all k, we see that S is subuniversal iff NT(S) holds. This
allows a formulation of when a function may be regarded as having ‘nice’
level sets. Thus, since R is the union of the level sets of a function, we have
as an immediate corollary of the Kestelman-Borwein-Ditor Theorem:

Theorem 5 (No Trumps Theorem). For h : R — R, measur-
able/Baire NT({H" : k € w}) holds.

As an illustration of how useful this weakened form is, we use it to derive
a strengthening of two classical results above.

Corollary (Generalized Fréchet-Banach Theorem). If h: R — R
is additive and its level sets H* satisfy NT({H* : k € w}), then h is locally
bounded and so continuous and linear.

Proof. Suppose that h in not locally bounded at the origin. Then we
may choose z, — 0 such that h(z,) > n, without loss of generality (if not
replace h by —h). But there are s € R, k € w and an infinite Mg such that

{5+ 2, :m € M,} C H",
SO
h(s + zm) = h(s) + h(zm) > h(s) + m,

so that h is unbounded on H*, a contradiction as |h| < k on H*. Thus h
is locally bounded. An interval is subuniversal and so by the Combinatorial
Ostrowski Theorem h is continuous and so linear. [

This result embraces its classical counterpart for h measurable or Baire.

13



One also has a restatement of the Ostrowski Theorem, now by reference
to functions with ‘nice’ level sets.

Theorem 4’ (Second Combinatorial Ostrowski Theorem). For

h(x) an additive function, h(z) is continuous and h(x) = cx for some con-
stant c iff NT({H* : k € w}) holds.

The Subgroup Theorem may also be similarly restated. For this, we need
a variant on the NT(S) in which subuniversal is strengthened to universal;
the corresponding notation is NT 4(S), where the suffix A denotes ‘almost
all’, i.e. ‘for all but a finite number of’.

Theorem 3’ (Combinatorial Steinhaus Theorem Restated). For
an additive subgroup S of R, the following are equivalent:

(i) S =R,

(ii) NTA( ),
Eul) T(9),

iv) S has the Ramsey distance property.
5 Subuniversal Sets

The Combinatorial Ostrowski Theorem, together with the Ostrowski and
Banach-Mehdi theorems, shows that subuniversality serves as a condition to
make a set ‘big enough’, in the context of additive functions. The next two
results give senses in which subuniversal and universal sets are ‘big enough’,
in general.

Theorem 6. A subuniversal set is uncountable.

Proof. Suppose not: then 5,7 := S — S are countable. We select v,,
with the aim to guaranteeing inductively, for m < n, that

U + oo + 0, €T,
or, applying a shift, that

U T — (U + oo + Vp1).

14



So, suppose that vy, ...,v,_; have been selected with v, < 1/(k + 1)? and
Uy ooy Un—1 & S for each m < n — 1. Now choose

vne( )\mU (Ua e 0m)).

This is again possible since we have to avoid only a countable set. Now
consider the sequence

Up = Vo + V1 + ... +Up_1,
with ug = 0. Suppose for some ¢ and infinite M that
{t+u, :neM} CS.
Then, for pairs n > m that are in M, we have the contradiction
U+ oot Uy = (t+uy) — (t+uy) € S—95="T. O

A further, very striking result holds, shown by Kestelman ([Kesl], Theorem
6), namely:

Theorem. For S universal, S’, the set of limit points of S, contains an
interval.

6 Higher Dimensions

The Subgroup Theorem holds in RY — this is a matter only of a change in
vocabulary: one needs only replace open intervals by open balls throughout.
However, more interestingly, the Combinatorial Steinhaus Theorem actually
implies its own higher-dimensional analogue.

Theorem 7 (N-dimensional Combinatorial Steinhaus Theorem).
For an additive subgroup T of RN, the following are equivalent:

(i) T =RV,

(il) NTA(T )

Eul) T(T)

iv) T has the Ramsey distance property.
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Proof. Again we need only prove (iv) implies (i). So suppose that
(iv) holds for a subgroup 7" C R¥. For any non-zero vector v in RY, let
S =T nN Lin{v}. We claim that Theorem 3 implies S = Lin{v}. Thereupon
T = RY is immediate. Now, up to homorphism, S is a subgroup of R, so to
establish the claim it suffices to observe that property (iv) for 7" implies the
corresponding property (iv) of Theorem 3 for S, now regarded as a subgroup
of Lin{v}. Indeed, given a convergent {u, } C Lin{v}, there is an infinite M
such that

{ty, — Uy, : myn e M} CT.

But for m,n € M we trivially have
Up — Uy € Lin{v}NT =S.

So the claim is established, and hence too our theorem. [J

7 Remarks

1. Topological groups and shifts.

Just as we generalized the Combinatorial Steinhaus Theorem from one
to higher dimensions above, some of the results here can be generalized to
topological groups; see [BOst12] for details. We point out, however, that
some of the work above does not extend in this way. For, we have made use
of the density topology to unify the measure and category cases. But it is
known that the real line cannot be made into a topological group under the
density topology, a result of Heath and Poerio ([HePol).

In the above we work with shifts, so fixing one variable in the Cauchy
functional equation and reducing the effective dimension from two to one.
2. Namioka’s theorem.

The dimension reduction just mentioned is relevant to the relationship
between separate and joint continuity for functions of two variables. The
prototypical result here is Namioka’s theorem ([Nam]; [Piot]), that separate
continuity implies joint continuity, not everywhere but generically — off a
large set.

3. Negligibles.

The meagre and null sets in the work above may be thought of as neg-

ligible. One generalization is in the theory of sigma-ideals ([Kech] §15.C,
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[KeSo]); another is in the work of Fremlin [Frem| on measure spaces with
negligibles.
4. Quantitative versus qualitative measure theory.

As mentioned in the Introduction, we work largely with qualitative rather
than quantitative measure theory here. The only place where we use quan-
titative measure theory is in the proof of Proposition D. The distinction
between the two is related to the limits of measure-category duality. For
background on this, see e.g. [Oxt].

5. Dichotomy.

The theme of the Cauchy functional equation, and in particular of the
Ostrowski and Banach-Mehdi theorems, is that an additive function satisfy-
ing mimimal regularity conditions is continuous (and so linear) — that is, that
it is either very good or very bad (but see [CiePaw2] for positive results in
this case). Such dichotomy theorems hold in other contexts; see in particular
[BOst12] for normed groups.

6. Automatic continuity.

A related property is automatic continuity, where a function satisfying
appropriate weak conditions is proved to be necessarily continuous. For au-
tomatic continuity for Banach algebras, see [Dal]; for other automatic prop-
erties, see [BOst6).

7. Converse Ostrowski theorem.

Our Combinatorial Steinhaus Theorem is clearly best-possible, in that it
gives a set of equivalences. By contrast, our Combinatorial Ostrowski Theo-
rem is not, and it is natural to wonder whether it may be given a best-possible
form. It turns out that it may. The relevant result is topological, and hinges
on the idea of shift-compactness; see [BOst8].

8. Regular variation.

The Steinhaus and Ostrowski theorems play a central role in the theory
of regular variation (see e.g. the standard work on the subject, [BGT], where
they are respectively Theorems 1.1.1 and 1.1.4). The unified and extended
treatment of these theorems achieved here can be carried over to the theory
of regular variation; this is done in a companion paper. In this regard, note
the contrast between quantitative and qualitative measure theory in the sev-
eral proofs given in [BGT] of the Uniform Convergence Theorem, the main
result of the subject. See [BOstll] for a derivation of this result from the
Category Embedding Theorem.

9. No Trumps.
The term No Trumps in Theorem 5, a combinatorial principle, is used
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in close analogy with earlier combinatorial principles, in particular Jensen’s
Diamond ¢ [Je] and Ostaszewski’s Club & [Ost]. The argument in the proof
of the No Trumps Theorem is implicit in [CsEr] and explicit in [BG1], p.482
and [BGT], p.9. The intuition behind our formulation may be gleaned from
forcing arguments in [Mill], [Mil2], [Mil3].

10. Models of set theory.

The programme begun here has implications for models of set theory,
such as that of Solovay [Sol] in which all sets of reals are measurable (and
have the Baire property), or Shelah’s model [She] in which all sets of reals
have the Baire property. In subuniversality one has a unifying concept for
measurability and the Baire property; one may, for example, ask for models
of set theory in which all uncountable sets are subuniversal.
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