
Finding Paths between Graph Colourings:

PSPACE-completeness and Superpolynomial

Distances

Paul Bonsma∗

Institut für Mathematik, Sekr. MA 6-1, Technische Universität Berlin,
Straße des 17. Juni 136, 10623 Berlin, Germany

bonsma @ math.tu-berlin.de

and

Luis Cereceda

Centre for Discrete and Applicable Mathematics
Department of Mathematics, London School of Economics

Houghton Street, London WC2A 2AE, U.K.
luis@maths.lse.ac.uk

CDAM Research Report LSE-CDAM-2007-12 — May 2007

Abstract

Suppose we are given a graph G together with two proper vertex k-colourings of G, α
and β. How easily can we decide whether it is possible to transform α into β by recolouring
vertices of G one at a time, making sure we always have a proper k-colouring of G?
This decision problem is trivial for k = 2, and decidable in polynomial time for k = 3.
Here we prove it is PSPACE-complete for all k ≥ 4. In particular, we prove that the
problem remains PSPACE-complete for bipartite graphs, as well as for: (i) planar graphs
and 4 ≤ k ≤ 6, and (ii) bipartite planar graphs and k = 4. Moreover, the values of k
in (i) and (ii) are tight, in the sense that for larger values of k, it is always possible to
recolour α to β.

We also exhibit, for every k ≥ 4, a class of graphs {GN,k : N ∈ N
∗}, together with two

k-colourings for each GN,k, such that the minimum number of recolouring steps required
to transform the first colouring into the second is superpolynomial in the size of the graph:
the minimum number of steps is Ω(2N), whereas the size of GN is O(N2). This is in stark
contrast to the k = 3 case, where it is known that the minimum number of recolouring
steps is at most quadratic in the number of vertices. We also show that a class of bipartite
graphs can be constructed with this property, and that: (i) for 4 ≤ k ≤ 6 planar graphs
and (ii) for k = 4 bipartite planar graphs can be constructed with this property. This
provides a remarkable correspondence between the tractability of the problem and its
underlying structure.

Keywords: vertex-recolouring, colour graph, PSPACE-complete, superpolynomial dis-
tance.

∗Supported by the Graduate School “Methods for Discrete Structures” in Berlin, DFG grant GRK 1408

1

1 Introduction

Throughout this paper, graphs will be finite, simple and loopless. Most of our terminology
and notation is standard and can be found in any textbook on graph theory such as, for
example, [4]. Standard references for complexity theory are [6] and [9]. We always regard
a k-colouring of a graph G = (V,E) as proper; that is, as a function α : V → {1, 2, . . . , k}
such that α(u) 6= α(v) for all uv ∈ E. For a positive integer k and a graph G, we define
the k-colour graph of G, denoted Ck(G), as the graph that has the k-colourings of G as its
node set, with two k-colourings joined by an edge in Ck(G) if they differ in colour on just one
vertex of G. We assume throughout that k ≥ χ(G) ≥ 2, where χ(G) is the chromatic number
of G. Having defined the colourings as nodes of Ck(G), the meaning of a path between two
colourings should be clear. In addition, other graph-theoretical notions such as distance and
adjacency can now be used for colourings. A path between two given colourings in Ck(G) can
also shortly be characterised by a sequence of recolourings, which is an ordered list consisting
of pairs composed of a vertex and a new colour for the vertex. If Ck(G) is connected, we say
that G is k-mixing. We use the term frozen for a k-colouring of a graph G that forms an
isolated node in Ck(G). Note that the existence of a frozen k-colouring of a graph immediately
implies that the graph is not k-mixing.

In [1, 2], some preliminary investigations into the connectedness of the k-colour graph
are made. In particular, [2] settles the computational complexity of the following decision
problem: given a 3-colourable graph G, is G 3-mixing? This problem is proved to be coNP-
complete for bipartite graphs but polynomial-time solvable for bipartite planar graphs. For G
a 3-chromatic graph, the answer is always in the negative.

A related problem is that of recognising when two given k-colourings of a graph G are in
the same connected component of Ck(G). Formally, we have the following decision problem:

k-Colour Path

Instance : Graph G, two k-colourings of G, α and β.
Question : Is there a path between α and β in Ck(G)?

It is easy to see that there is a path between k-colourings α and β of G if and only if,
for every connected component H of G, there is a path between the colourings induced by α
and β on H. For this reason we will always take our “argument graph” G to be connected.

The problem 2-Colour Path is trivial: the 2-colour graph of a connected bipartite graph
always consists of two isolated nodes.

For 3-colourings, we have:

Theorem 1.1 ([3]) The decision problem 3-Colour Path is in P.

The proof of correctness of the polynomial-time algorithm for 3-Colour Path given in
[3] can be employed to exhibit a path between the given 3-colourings, if such a path exists.
Moreover, such a path has length O(|V (G)|2), proving:

Theorem 1.2 ([3]) Let G be a 3-colourable graph with n vertices. Then the diameter of any
component of C3(G) is O(n2).

Our first main result settles the computational complexity of k-Colour Path:

2

Theorem 1.3 For every k ≥ 4, the decision problem k-Colour Path is PSPACE-complete.
Moreover, it remains PSPACE-complete for the following restricted instances:

(i) bipartite graphs and any fixed k ≥ 4;

(ii) planar graphs and any fixed 4 ≤ k ≤ 6; and

(iii) bipartite planar graphs and k = 4.

In terms of the well-known NP 6= PSPACE conjecture, Theorem 1.3 means the following.
Loosely speaking, having established that k-Colour Path is PSPACE-complete, asserting
that NP 6= PSPACE is equivalent to saying that there is no possible polynomial size certificate
for k-Colour Path. Thus proving that every possible certificate can have superpolynomial
size is a daunting task. In our second main result, however, we show that this is indeed the
case for the most natural certificate for k-Colour Path: the certificate for a YES-instance
consisting of a list of colourings constituting a path from the first colouring to the second
colouring. More precisely, we prove:

Theorem 1.4 For every k ≥ 4, there exists a class of graphs {GN,k : N ∈ N
∗} with the

following properties. The graphs GN,k have size O(N2), and for each of them there exist
two k-colourings α and β in the same component of Ck(GN,k) which are at distance Ω(2N).
Moreover,

(i) the graphs GN,k may be taken to be bipartite;

(ii) for every k ∈ {4, 5, 6}, the graphs GN,k may be taken to be planar (in such a case the
graphs have size O(N4)); and

(iii) for k = 4, the graphs GN,k may be taken to be planar and bipartite (in such a case the
graphs have size O(N4)).

The rest of the paper is organised as follows. In Section 2 we introduce the notions that
will be used in the proofs. In Section 3 we prove Theorem 1.3 and also show that the values
of k in parts (ii) and (iii) of the theorem are tight: for larger values of k, the instance is always
a YES instance. This follows from a result that guarantees that for sufficiently large k, a graph
will always be k-mixing. Section 4 is devoted to the proof of Theorem 1.4.

Theorems 1.1 to 1.4 together suggest that the computational complexity of k-Colour

Path and the possible distance between k-colourings are intimately linked. How strong is
this connection between PSPACE-completeness and superpolynomial distances in the colour
graph? In particular, bearing in mind the tightness of k in (ii) and (iii) of Theorem 1.3: is
it true that for a planar graph G and k ≥ 7, or G a bipartite planar graph and k ≥ 5, the
components of Ck(G) always have polynomial diameter? (In these cases Ck(G) is actually
connected—see Section 3.4.) We formulate this question more generally as a conjecture in
Section 3.4, and give a partial answer. For completeness, we remark that artificial graph
classes can be constructed for which k-Colour Path is easy, but which still contain in-
stances with colourings at superpolynomial distance: the graph classes {GN,k : N ∈ N

∗} from
Theorem 1.4 are examples of such classes.

It is very interesting to compare the work presented in this paper and [1, 2] with [7],
which contains remarkably similar results. For a given instance ϕ of the Boolean satisfiability

3

problem, the authors of [7] define the graph G(ϕ) as the graph with vertex set the satisfying
assignments of ϕ, and assignments adjacent whenever they differ in exactly one bit. They con-
sider the analogous question to the one we address here: given ϕ together with two satisfying
assignments, are the assignments in the same connected component of G(ϕ)? In consonance
with our results, they find the same correspondence between PSPACE-complete instances of
this decision problem and possible superpolynomial paths in the graph of satisfying assign-
ments. (In a similar fashion to [1, 2], and again finding similar results, they also study the
decision problem: given ϕ, is G(ϕ) connected?) We note that despite the parallelism between
the results, the proofs are, in each case, very different.

2 Preliminaries

2.1 List-colouring instances

In Sections 3 and 4 we will construct particular k-Colour Path instances G,α, β: first for
the PSPACE-hardness proof, and then for the superpolynomial distance proof. In both cases,
it is easier to first define list-colouring instances: for such instances we give every vertex v a
colour list L(v) ⊆ {1, 2, 3, 4}. A proper list-colouring is a proper vertex colouring with the
additional constraint that every vertex colour needs to be chosen from the colour list of the
vertex. In the same way as that in which we define the colour graph Ck(G) of G with nodes
corresponding to proper k-colourings, we define the list-colour graph C(G,L) of G with nodes
corresponding to proper list-colourings, where L represents the colour lists. The problem
List-Colour Path is now defined as follows.

List-Colour Path

Instance : Graph G, colour lists L(v) ⊆ {1, 2, 3, 4} for all v ∈ V (G), list-colourings α and β.
Question : Is there a path between α and β in C(G,L)?

Whenever colour lists are given for the vertices of the graph, ‘proper list-colouring’ should
be read when we say ‘colouring’. In figures we will write colour lists as 123 instead of {1, 2, 3},
for example.

A list-colouring instance can then be turned into a normal 4-colouring instance, for exam-
ple, by adding a K4 on vertex set {u1, . . . , u4}. Since any 4-colouring of K4 is frozen, we may
without loss of generality assume that κ(ui) = i in all colourings κ in the component of the
colour graph we consider. Now adding edges vui if and only if i 6∈ L(v) turns the graph into
a 4-colouring instance, where in all 4-colourings κ we consider, κ(v) ∈ L(v). The next lemma
shows more formally that this can be done for various k, also when we require planarity and
bipartiteness to be maintained, without increasing the size of the graph too much.

Lemma 2.1 For any k ≥ 4, a List-Colour Path instance G,L,α, β with lists L(v) ⊆
{1, 2, 3, 4} can be transformed into a k-Colour Path instance G′, α′, β′ such that the distance
between α and β in C(G,L) (possibly infinite) is the same as the distance between α′ and β′

in Ck(G
′). Moreover,

(i) if G is bipartite, this can be done so that G′ is also bipartite, for all k ≥ 4;

(ii) if G is planar, this can be done so that G′ is also planar, when 4 ≤ k ≤ 6; and

4

1

4

5 3

2

1

3

2

(a)

5

4

(b)

4

65
3

46
1

2

3
1

2
5

Figure 1: Planar graphs and with respective frozen 5- and 6-colourings.

(iii) if G is planar and bipartite, this can be done so that G′ is also planar and bipartite,
when k = 4.

In all cases, this can be done so that |V (G′)| ≤ |V (G)|f(k) and |E(G′)| ≤ |E(G)|+ |V (G)|g(k)
for some functions f(k) and g(k).

Proof : For our transformations we first need, for every k ≥ 4, a bipartite graph with a
frozen k-colouring; for every 4 ≤ k ≤ 6, a planar graph with a frozen k-colouring; and a
planar bipartite graph with a frozen 4-colouring. We proceed to describe such graphs and
colourings.

Let Lk be the bipartite graph obtained from the balanced complete bipartite graph Kk,k

by removing the edges of a perfect matching in Kk,k. Consider the following k-colouring κ
of Lk: colour the vertices in each part of the bipartition of Lk with the colours 1, 2, . . . , k,
where vertices in opposite parts that were originally connected by an edge from the removed
perfect matching are given the same colour. This colouring κ is a frozen colouring of Lk.
Note that L4 is just the 3-dimensional cube, which is a planar graph. So now we only need
planar graphs with frozen k-colourings for k = 5 and k = 6. Such graphs and colourings are
shown in Figures 1(a) and (b). (The graph second graph is actually the icosahedron.)

The transformation from a List-Colour Path instance G,L,α, β to a k-Colour Path

instance G′, α′, β′ is now as follows. Let F be a graph with a frozen k-colouring κ. For every
vertex v ∈ V (G) and colour c ∈ {1, . . . , k}\L(v), we add a copy of F to G, labelled Fv,c.
We also add an edge between v and a vertex u of Fv,c with κ(u) = c. This yields G′. The
colourings α′ and β′ are obtained by extending α and β using the colouring κ for every Fv,c.

It is easy to see that every k-colouring obtainable from α′ and β′ induces the same frozen
colouring on every copy of F . Also, because of the way the edges between v and vertices of
Fv,c are added, all these k-colourings of G′ correspond to list colourings of G, and vice versa.
This proves that the distance between α and β in C(G,L) is exactly the same as the distance
between α′ and β′ in Ck(G

′).
When G and F are bipartite, the construction of G′ starts with a number of bipartite

components, and edges are added only between different components. So in this case G′ is
also bipartite. It can also be seen that G′ is planar when G and F are planar: start with a
planar embedding of G and for each copy Fv,c of F , consider a planar embedding that has a
vertex with colour c on its outer face. These embeddings of Fv,c can be inserted into a face
of G that is incident with v. Now adding an edge between v and a vertex of Fv,c with colour
c can be done without destroying planarity.

5

14 42 23 314231

u v

Figure 2: A (1, 3)-forbidding path from u to v.

Since for all k ≥ 4 we can choose F to be bipartite, for 4 ≤ k ≤ 6 we can choose F to be
planar, and for k = 4 we can choose F to be both planar and bipartite, we are done. 2

2.2 Adding (a, b)-forbidding paths

The next notion that will be used in the following sections is that of an (a, b)-forbidding path.
For a, b ∈ {1, . . . , 4}, an (a, b)-forbidding path from u to v is a (u, v)-path with colour lists L,
with L(u), L(v) 6= {1, 2, 3, 4}, such that in any colouring, it is not possible that u has colour a
and v simultaneously has colour b. Any other combination of colours for u and v (chosen from
the colour lists) is possible. In addition, any recolouring of u and v is possible—perhaps after
first recolouring a few internal vertices of the path—as long as it does not yield the forbidden
colour combination. (Note that if a 6= b, an (a, b)-forbidding path from u to v is not the same
as an (a, b)-forbidding path from v to u.) Figure 2 shows an example of a (1, 3)-forbidding
path from u to v. More formally, we have:

Definition 2.2 A colouring κ of a (u, v)-path is a (c, d)-colouring if κ(u) = c and κ(v) = d.
A (u, v)-path P with colour lists L, where a ∈ L(u) and b ∈ L(v) is an (a, b)-forbidding path
if the following two conditions are satisfied.

• A (c, d)-colouring exists if and only if c ∈ L(u), d ∈ L(v) and (c, d) 6= (a, b). Such a
pair (c, d) is called admissible for P .

• If both (c, d) and (c′, d) are admissible, then for any (c, d)-colouring, a sequence of
recolourings exists that ends with a (c′, d)-colouring, without ever recolouring v, and
only recolouring u in the last step. A similar statement holds for admissible pairs (c, d)
and (c, d′).

In the constructions in the following sections we will often say ‘add an (a, b)-forbidding
path between u and v’. This means that we add an (a, b)-forbidding (u′, v′)-path P with
L(u′) = L(u) and L(v) = L(v′) to the graph, and then identify u with u′ and v with v′. Then
for the colourings and recolourings of u and v in the resulting graph, the above properties
hold. This means that in our proofs we do not have to consider colourings and recolourings
of the internal vertices of the path in detail; we can simply assume that any recolouring of u
and v is possible, as long as this does not respectively give them colours a and b.

The next lemma shows that we do not even have to describe such an (a, b)-forbidding path
in detail every time; as long as L(u), L(v) 6= {1, 2, 3, 4}, such a path always exists.

Lemma 2.3 For any Lu ⊂ {1, 2, 3, 4}, Lv ⊂ {1, 2, 3, 4}, a ∈ Lu and b ∈ Lv, there exists an
(a, b)-forbidding (u, v)-path P with L(u) = Lu, L(v) = Lv and all other colour lists L(w) ⊆
{1, 2, 3, 4}. Moreover, we can insist P has even length at most six.

Proof : Let c ∈ {1, 2, 3, 4}\L(u) and d ∈ {1, 2, 3, 4}\L(v). If c 6= d then we let P be a path
of length four with the following colour lists along the path: Lu, {a, c}, {c, d}, {d, b}, Lv. We

6

prove it is an (a, b)-forbidding path: if in a given colouring u has colour a, then the second
vertex has colour c, the third colour d, the fourth colour b, so v cannot have colour b. When v
has colour b the reasoning is analogous. It can also be seen that for every admissible (x, y),
an (x, y)-colouring exists. This colouring is unique if x = a or y = b. If not, then it can
be verified that all (x, y)-colourings can be obtained from each other by recolouring internal
vertices of P only. Adjacent (x, y) and (x, y′)-colourings are found as follows: if x = a, then
both colourings are unique, and they are adjacent. If x 6= a then we find adjacent colourings
by, if necessary, colouring the vertex next to u with a, the middle vertex with c, and the
vertex adjacent to v with colour d, in both colourings. We conclude that P with these colour
lists is indeed an (a, b)-forbidding path with the required properties.

If c = d, then we let P be a path of length six with the following colour lists along
the path: Lu, {a, c}, {c, e}, {e, f}, {f, c}, {c, b}, Lv, for some e ∈ {1, 2, 3, 4}\{a, c} and
f ∈ {1, 2, 3, 4}\{b, c} with e 6= f . As before, it can be verified that this is an (a, b)-forbidding
path with the desired properties. 2

3 PSPACE-completeness of k-Colour Path for k ≥ 4

3.1 Overview

In this section, we prove that k-Colour Path is PSPACE-complete for several graph classes
and values of k ≥ 4. The PSPACE-hardness of k-Colour Path will be shown using a
reduction from Sliding Tokens, one of several decision problems defined and proved to be
PSPACE-complete in [8]. We first reduce Sliding Tokens to List-Colour Path and then
apply Lemma 2.1 to prove the existence of equivalent k-Colour Path instances. We first
establish that k-Colour Path is indeed in PSPACE.

Claim 3.1 The decision problem k-Colour Path is in PSPACE.

Proof : We actually prove that k-Colour Path is in NPSPACE, and then appeal to Sav-
itch’s Theorem, which asserts that PSPACE = NPSPACE (see [9] p.150 or [10] for details).
Given an instance G,α, β of k-Colour Path together with a sequence of recolourings trans-
forming α into β (the certificate), we can easily check the validity of the certificate using a
polynomial amount of space. This means that k-Colour Path is in NPSPACE. 2

3.2 A PSPACE-complete problem: Sliding Tokens

The main result of [8] is the presentation of a new nondeterministic model of computation
based on reversing edge directions in weighted directed graphs with minimum in-flow con-
straints on vertices. This model, called nondeterministic constraint logic, or NCL, is shown to
have the same computational power as a space-bounded Turing machine, and several decision
problems surrounding it are proved to be PSPACE-complete. These decision problems are
then used to prove the PSPACE-completeness of certain sliding-block puzzles such as Rush
Hour and Sokoban. The last section of [8] gives an equivalent formulation of NCL in terms
of sliding tokens along graph edges—it is this latter formulation that we will use for our
reductions and which we now proceed to describe. Let us first give some definitions. A token
configuration of a graph G is a set of vertices on which tokens are placed, in such a way that
no two tokens are adjacent. (Thus a token configuration can be thought of as an independent
set of vertices of G.) A move between two token configurations is the displacement of a

7

token from one vertex to an adjacent vertex. (Note that a move must result in a valid token
configuration.)

The following two questions are proved to be PSPACE-complete in [8].

1. Given a graph G and a token configuration of G, can a specified token eventually be
moved by some sequence of moves?

2. Given a graph G and two token configurations of G, is there a sequence of moves from
one token configuration to the other?

Because we will be using the second of these questions in our reductions, we formally
define the problem Sliding Tokens as follows.

Sliding Tokens

Instance : Graph G, two token configurations of G, TA and TB .
Question : Is there a sequence of moves transforming TA into TB?

The reduction used to prove PSPACE-completeness of Sliding Tokens in [8] actually
shows that the problem remains PSPACE-complete for very restricted graphs and token
configurations. Our reduction to List-Colour Path is actually from a slightly wider class
of restricted instances for which Sliding Tokens remains PSPACE-complete—we do not
give a reduction from the general problem. We proceed to describe the instances G,TA, TB

of Sliding Tokens that we will use for our reduction.
The graphs G are made up of token triangles (copies of K3) and token edges (this involves

a slight abuse of terminology: when we say token edge, we actually mean a copy of K2).
Token triangles and token edges are all mutually disjoint, and joined together by edges called
link edges, in such a way that every vertex of G is part of some token triangle or token
edge. Moreover, every vertex in a token triangle ends up with degree 3, and G has a planar
embedding where every token triangle bounds a face. The graphs G have maximum degree 3
and minimum degree 2.

The token configurations TA and TB are such that every token triangle and every token
edge contain exactly one token on one of their vertices. In any sequence of moves from TA or
TB , a token may never leave its triangle or its edge: the first time any token would slide to
another triangle or edge, it would become adjacent to the token belonging to this triangle or
edge. So tokens may never slide along a link edge. (We remark that it is this limitation on
possible token displacements that allows for a reasonably straightforward reduction.) Token
configurations where every token triangle and every token edge contain exactly one token are
called standard token configurations of G—thus TA and TB are standard token configurations.
A simple example of a restricted instance graph G with a standard token configuration is
shown in Figure 3. (Token triangles and token edges are shown in bold; a circled vertex
depicts a vertex on which a token is placed.) We insist: for these restricted instances, Sliding

Tokens is PSPACE-complete. For further details, we refer the reader to [8].

3.3 The construction of equivalent List-Colour Path instances

Given a restricted instance G,TA, TB of Sliding Tokens as described in Section 3.2, we con-
struct an instance G′, L, α, β of List-Colour Path such that standard token configurations
of G correspond to list-colourings of G′, and sliding a token in G corresponds to a sequence
of vertex recolourings in G′.

8

Figure 3: An example of a restricted instance graph G together with a standard token con-
figuration.

We first label the vertices of G: the token triangles are labeled 1, . . . , nt, and the vertices
of triangle i are labeled ti1, ti2 and ti3. The token edges are labeled 1, . . . , ne, and the vertices
of token edge i are labeled ei1 and ei2.

The construction of G′ is as follows: for every token triangle i we introduce a vertex ti,
with colour list L(ti) = {1, 2, 3}. For every token edge i we introduce a vertex ei in G′, with
colour list L(ei) = {1, 2}. Whenever a link edge of G joins a vertex tia with a vertex ejb, we
add an (a, b)-forbidding path of even length between ti and ej in G′. We do the same for
pairs tia and tjb, and pairs eia and ejb. Note that this is a polynomial-time transformation.

Standard token configurations of G now correspond to colourings of G′ as follows: a token
configuration where the token of token edge i is on eij (j = 1, 2) corresponds to colourings of G′

where ei has colour j. Analogously, if the token of token triangle i is on tij (j = 1, 2, 3), this
corresponds to colourings where ti has colour j. Since tokens are not adjacent, it is possible
to choose colours for the internal vertices of the (a, b)-forbidding paths so as to obtain a
proper colouring of G′. Two colourings α and β corresponding to TA and TB respectively
are constructed this way. Note that to a given standard token configuration of G there
can correspond multiple colourings of G′ because of the freedom in choice of colours for the
internal vertices of the (a, b)-forbidding paths.

Claim 3.2 The graph G′ as constructed above is planar and bipartite.

Proof : Let us consider a planar embedding of G where all token triangles bound a face. A
planar embedding of G′ can be obtained from that of G by contracting all token triangles
and token edges, and subdividing the remaining (link) edges. All (a, b)-forbidding paths in G′

have even length, so G′ is bipartite. 2

Claim 3.3 Let G,TA, TB be a resticted instance of Sliding Tokens as described in Sec-
tion 3.2, and let G′, L, α, β be the corresponding instance of List-Colour Path as con-
structed above. Then G,TA, TB is a YES-instance if and only if G′, L, α, β is a YES-instance.

Proof : Recall that a token configuration in which the token of token edge i (token triangle i)
is on eij (on tij) corresponds to multiple colourings of G′ where ei (ti) has colour j. Because
of this multiplicity of colourings, we define colour classes of colourings: if two colourings κ
and λ of G′ have κ(ti) = λ(ti) and κ(ei) = λ(ei) for every i, then κ and λ are said to be in
the same colour class.

Hence the correspondence between standard token configurations and colourings defines
a mapping between standard token configurations and colour classes. This mapping is in

9

fact a bijection: (a, b)-forbidding paths restrict their end vertices from having colours a and b
respectively, but they pose no other restriction on the possible colours of their end vertices.
So tia and ejb cannot both be occupied by a token in a token configuration if and only if no
colouring κ has κ(ti) = a and κ(ej) = b. (Similar statements hold for pairs ti and tj, and
pairs ei and ej.)

Now we claim that if there exists a sequence of moves that transforms TA into TB , then
there exists a sequence of recolourings that transforms α into β. We mentioned earlier that any
token configuration obtainable from TA is a standard token configuration. Hence every token
move corresponds to recolouring a vertex ti or a vertex ei. Note that before recolouring ti
(or ei), it may be necessary to first recolour some internal vertices of (a, b)-forbidding paths
incident with ti (or ei), but by the definition of (a, b)-forbidding paths, we know this is always
possible. It can also be seen that when we finally arrive in the colour class that contains β in
this way, the internal vertices of all (a, b)-forbidding paths can be recoloured so that exactly
the colouring β is obtained.

Similarly, for every sequence of recolourings from α to β we can construct a sequence of
token moves from TA to TB : whenever a vertex ti (ei) is recoloured from colour a to colour b,
we move the corresponding token from tia to tib (from eia to eib). This completes the proof. 2

Claim 3.3 shows that the instance G′, L, α, β of List-Colour Path we constructed above is
equivalent to the given instance of Sliding Tokens. In addition, G′ is planar and bipartite
(Claim 3.2). Now by Lemma 2.1 we can construct equivalent k-Colour Path instances
from G′, L, α, β. All of these transformations are polynomial-time, and k-Colour Path is
in PSPACE (Claim 3.1). This proves Theorem 1.3.

3.4 Tightness of the hardness results

Recall that the colouring number col(G) of a graph G (also known as the degeneracy or the
maximin degree) is defined as the largest minimum degree of any subgraph of G. That is,
col(G) = max

H⊆G
δ(H). The following result appears in [1] but was essentially proved in [5]—we

reproduce the proof given in [1] for completeness.

Theorem 3.4 For any graph G and integer k ≥ col(G) + 2, G is k-mixing.

Proof : We use induction on the number of vertices of G. The result is obviously true for
the graph with one vertex. So suppose G has two or more vertices. Let v be a vertex with
degree dG(v) ≤ col(G), and set G′ = G − v. Note that col(G′) ≤ col(G), hence we also
have k ≥ col(G′) + 2. By induction we can assume that G′ is k-mixing.

Take two k-colourings α and β of G, and let α′, β′ be the k-colourings of G′ induced
by α, β. Since G′ is k-mixing, there exists a sequence α′ = γ′

0, γ
′
1, . . . , γ

′
r = β′ of k-colourings

of G′ so that for i = 1, . . . , r, γ′
i−1

and γ′
i differ in the colour of exactly one vertex of G′.

Denote this vertex by vi and denote the new colour γ′
i(vi) by ci. We now try to take the same

recolouring steps to recolour G, starting from α. If for some i it is not possible to recolour
vertex vi, this must be because vi is adjacent to v and v at that moment has the colour ci.
But because v has degree at most col(G) ≤ k−2, there is a colour c 6= ci that does not appear
on any of the neighbours of v. Hence we can first recolour v to c, and then continue with
recolouring vi to ci and move on.

10

In this way we find a sequence of k-colourings of G, starting at α, and ending in a colouring
in which all the vertices except possibly v will have the same colour as in β. But then, if
necessary, we can also recolour v to give it the colour from β. This gives a path between α
and β in Ck(G), completing the proof. 2

Recalling that the colouring number of a planar graph is at most 5, and that the colouring
number of a bipartite planar graph is at most 3, Theorems 1.1, 1.3 and 3.4 together yield:

Theorem 3.5 Restricted to planar graphs, the decision problem k-Colour Path is PSPACE-
complete for 4 ≤ k ≤ 6, and polynomial-time solvable for all other values of k.

Theorem 3.6 Restricted to bipartite planar graphs, the decision problem k-Colour Path

is PSPACE-complete for k = 4, and polynomial-time solvable for all other values of k.

We saw in Section 1 that 3-Colour Path is polynomial-time solvable and that for any
YES-instance G,α, β of this problem, the distance between α and β in C3(G) is at most
quadratic in the size of G. On the other hand, Theorems 1.3 and 1.4 establish a connec-
tion between instance classes for which k-Colour Path is PSPACE-complete and possible
superpolynomial distances in the k-colour graph of these instances. We remark that the rea-
son why we cannot make the values of k in parts (ii) and (iii) of Theorem 1.4 larger by a
straightforward extension of our methods rests fundamentally on the fact that for a planar
graph G, col(G) ≤ 5, and that for a bipartite planar graph G, col(G) ≤ 3. These consider-
ations, together with Theorems 3.5 and 3.6, beg the following question: is it true that for
a planar graph G and k ≥ 7, or G a bipartite planar graph and k ≥ 5, Ck(G) always has
polynomial diameter? More generally, given that an instance of k-Colour Path is always
a YES-instance for k ≥ col(G) + 2, is it true that for any graph G and k ≥ col(G) + 2, Ck(G)
always has polynomial diameter? We conjecture that this is indeed the case:

Conjecture 3.7 For a graph G with n vertices and k ≥ col(G) + 2, the diameter of Ck(G)
is O(n3).

For values of k ≥ 2 col(G) + 1, we are able to prove this statement, and even a stronger
bound:

Claim 3.8 For a graph G with n vertices and k ≥ 2 col(G) + 1, the diameter of Ck(G)
is O(n2).

Proof : We can iteratively delete vertices of degree at most col(G) until no vertices are left.
Using such an elimination ordering, we label the vertices v1, . . . , vn so that every vertex has
at most col(G) neighbors with a lower index. (The label vn corresponds to the first deleted
vertex.) Using this vertex ordering, we first prove the following statement by induction over n.

Let α and β be distinct k-colourings of G, and let i be the lowest index such that α(vi) 6= β(vi).
There exists a recolouring sequence that starts with α and ends with recolouring vi to β(vi),
where every vj with j < i is never recoloured, and every vj with j ≥ i is recoloured at most
once.

The statement is trivial for n = 1. If i = n, then vn can be recoloured to β(vn) because

11

β is a proper colouring that coincides with α on all other vertices. Now suppose i < n, and
consider G′ = G − vn. Let α′ be the k-colouring of G′ induced by α. By induction we can
assume there exists a recolouring sequence starting with α′ that ends with recolouring vi to
β(vi), in which vertices vj with j < i are not recoloured, and vertices vj with j ≥ i are
recoloured at most once. So for every vertex we can identify an old colour and a new colour
in this recolouring sequence (they may be the same). Because there are at least 2 col(G) + 1
available colours, and vn has at most col(G) neighbors, a colour c can be chosen for vn that
is not equal to the old colour or new colour of any of its neighbors. First recolour vn to c if
necessary, and then recolour the rest of the graph according to the recolouring sequence for
G′. By the choice of colour c, all intermediate colourings are proper, so this is the desired
recolouring sequence for G.

Now, we can keep repeating the above procedure, every time for a new vertex vi which
will have a higher index, since the colours of the vertices with a lower index are not changed.
So every vertex vi is considered only once this way, and for every vi only n− i recolourings are
needed before it can be recoloured to β(vi). This will yield β after at most O(n2) recolouring
steps. 2

4 Graphs with colourings at superpolynomial distance

4.1 The construction of the graphs

In this section we construct classes of k-Colour Path instances such that the distance be-
tween the two colourings is superpolynomial in the size of the graph. For every integer N ≥ 1,
we construct a graph GN with colour lists L. (To avoid cluttering the notation, we will de-
note the colour lists of each GN by L; which graph these lists belong to will be clear from the
context.) The graphs GN will have size O(N2) and the C(GN , L) will have diameter Ω(2N).

The number N can be seen as the number of ‘bits’ that is used in the graph: the graph will
have N vertices whose colour can be thought of as a binary variable. For every combination
of binary values there will exist a corresponding colouring of GN . These combinations can
be mapped to values 0, . . . , 2N − 1 in such a way that one can only increase or decrease this
value by one when recolouring GN .

For a given N , the graph GN is constructed as follows. Start with N triangles, each
consisting of vertices vi, v′i and v∗i with L(vi) = {1, 2}, L(v′i) = {1, 2, 3} and L(v∗i) = {3, 4},
for i = 1, . . . , N . In a colouring κ where κ(v∗i) = 3, triangle i is said to be locked, otherwise
it is unlocked. Now between every pair v∗i and v∗j with i 6= j we add a (4, 4)-forbidding path.
So:

Observation 4.1 At most one triangle can be unlocked in any colouring.

For every i, we add (a, b)-forbidding paths from v∗i to every vj with j < i: we add a (4, 1)-
forbidding path from v∗i to vi−1, and (4, 2)-forbidding paths from v∗i to vj with j ≤ i−2. This
ensures that:

Observation 4.2 Triangle i can only be unlocked in a colouring κ when κ(vi−1) = 2 and
κ(vj) = 1 for all j ≤ i − 2.

This yields the graph GN .

12

4.2 Bounds on size and distance

Claim 4.3 The sizes of V (GN) and E(GN) are both bounded by a function in O(N2).

Proof : The graph GN consists of N triangles, N(N−1)/2 (4, 4)-forbidding paths, and N(N−
1)/2 paths that are either (1, 4)-forbidding or (2, 4)-forbidding paths.

Because we may assume that all (a, b)-forbidding paths have length at most 6 (Lemma 2.3),
we get |V (GN)| ≤ 3N + 5N(N − 1) ∈ O(N2), and |E(GN)| ≤ 3N + 6N(N − 1) ∈ O(N2). 2

To show that there exists a pair of colourings of GN such that exponentially many steps
(exponential in N) are needed to go from one to the other, we need only consider the colours
of the vertices vi. These can be seen as the N bits with value 1 or 2. We call a colouring κ of
GN a (c1, c2, . . . , cN)-colouring if κ(vi) = ci for all i. All (c1, c2, . . . , cN)-colourings together
form the colour class (c1, c2, . . . , cN).

Observation 4.4 Every colour class (c1, . . . , cN) with ci ∈ {1, 2} is non-empty.

Proof : Consider a colouring κ where κ(vi) = ci, κ(v′i) = 3− ci and κ(v∗i) = 3 for all i. Since
all triangles are locked, this colouring does not violate any of the constraints imposed by the
forbidding paths, and so can be extended to a full colouring of GN . 2

Lemma 4.5 Let (x1, . . . , xN) and (y1, . . . , yN) be distinct tuples with all xi, yi ∈ {1, 2}.

• If the tuples differ only on position i, and xi−1 = 2, and xj = 1 for all j < i−1, then from
any colouring in class (x1, . . . , xN) we can reach some colouring in class (y1, . . . , yN)
via a sequence of recolourings, without ever leaving colour class (x1, . . . , xN) in the
intermediate colourings.

• Otherwise, there is no colouring in class (x1, . . . , xN) that is adjacent to a colouring in
class (y1, . . . , yN).

Proof : Suppose the above conditions on the tuples hold. We show that any colouring κ in
the class (x1, . . . , xN) can be recoloured to a colouring in class (y1, . . . , yN). Note that by the
definition of (a, b)-forbidding paths, we may ignore all recolourings of the internal vertices of
these paths, since we know that any necessary recolouring of these vertices is always possible.

We first show how to recolour κ to an (x1, . . . , xN)-colouring in which only triangle i is
unlocked. If all triangles are locked in κ, we can immediately recolour v∗i to 4—this does not
violate any of the constraints imposed by the forbidding paths. Otherwise, there is exactly
one triangle which is unlocked. Let this triangle be triangle j, where j 6= i. We now lock
this triangle. If we cannot immediately recolour v∗j to 3, this must be because κ(v′j) = 3. We
change this colour to κ(v′j) := 3−κ(vj), and then triangle j can be locked. Next, triangle i can
be unlocked: no other triangles are unlocked, so the (4, 4)-forbidding paths pose no restriction.
Since κ(vi−1) = 2 and κ(vj) = 1 for all j < i−1, the (4, 1) and (4, 2)-forbidding paths starting
at v∗i pose no restriction either. At this point, we can set κ(v′i) := 3, and then set κ(vi) := yi

to obtain a colouring in class (y1, . . . , yN). This proves the first statement.
Now let α be an (x1, . . . , xN)-colouring, let β be a (y1, . . . , yN)-colouring, and suppose that

that α and β are adjacent. This means they differ only on one vertex, and because the tuples
are distinct, α and β must therefore differ precisely on a vertex vi, for some i. This means
triangle i is unlocked in both colourings. Because of the (4, 1)- and (4, 2)-forbidding paths

13

1111 → 2111 → 2211 → 1211 →
1221 → 2221 → 2121 → 1121 →
1122 → 2122 → 2222 → 1222 →
1212 → 2212 → 2112 → 1112

Figure 4: Colour classes visited in a shortest path between a (1, 1, 1, 1)-colouring and a
(1, 1, 1, 2)-colouring of G4.

starting at v∗i , α(vi−1) = 2 and α(vj) = 1 for all j < i−1. This proves the second statement. 2

It follows from Lemma 4.5 that every colour class is adjacent to at most two other colour
classes (we use the concept of adjacency of colour classes with the obvious meaning). Firstly,
the colour of v1 can always be changed. In addition, there is at most one vi such that vi−1

has colour 2 and vj has colour 1 for all j < i − 1; this is the only other vertex of v1, . . . , vN

whose colour can be changed without first changing that of one of the others. Figure 4 shows
all colour classes of G4 and the order in which these need to be visited in order to go from a
(1, 1, 1, 1)-colouring to a (1, 1, 1, 2)-colouring of G4—all 16 different classes need to be visited.
This is proved formally for every N in Theorem 4.6.

Theorem 4.6 Every graph GN has two colourings α and β in the same component of C(GN , L)
which are at distance at least 2N − 1.

Proof : For the colouring α we choose a colouring in class (1, . . . , 1); such a colouring exists
by Observation 4.4. Colouring β will be a colouring in class (1, . . . , 1, 2). We first prove
by induction that such colourings exist and that they can be obtained from each other by
recolourings, using the following induction hypothesis.

Induction hypothesis
There is a path in C(GN , L) from any colouring α′ in class (1, . . . , 1, x0, x1, . . . , xN−n) to some
colouring β′ in class (1, . . . , 1, 3 − x0, x1, . . . , xN−n).

The colourings differ on vertex vn: we have α′(vn) = x0 and β′(vn) = 3 − x0, while for
all i 6= n, we have α′(vi) = β′(vi). If n = 1, the statement follows directly from Lemma 4.5.
If n > 1, then from α′ we recolour to a (1, . . . , 1, 2, x0, x1, . . . , xN−n)-colouring (which differs
from the initial class only in the (n−1)-th position), using the induction hypothesis. Then we
recolour to a (1, . . . , 1, 2, 3−x0, x1, . . . , xN−n)-colouring, using Lemma 4.5. Finally, using the
induction hypothesis again, we can recolour to a (1, . . . , 1, 1, 3 − x0, x1, . . . , xN−n)-colouring,
which proves the statement.

Now we show that to go from a (1, . . . , 1)-colouring to a (1, . . . , 1, 2)-colouring, at least 2N −2
other colour classes need to be visited, using the following induction hypothesis.

Induction hypothesis
To go from a (1, . . . , 1, 1, x1, . . . , xN−n)-colouring to a (1, . . . , 1, 2, y1, . . . , yN−n)-colouring, at
least 2n − 2 other colour classes need to be visited.

14

If n = 1, the statement is obvious. If n > 1, then consider a shortest path between two colour-
ings in these classes, if it exists. At some point in the sequence of recolourings, the colour
of vn is changed for the first time; before this we must have a (1, . . . , 1, 2, 1, z1 , . . . , zN−n)-
colouring, by Lemma 4.5 (in this colouring, vn−1 has colour 2). By the induction hypothesis,
at least 2n−1 − 2 colour classes have been visited before this colour class was reached. Now
changing the colour of vn to 2 yields a (1, . . . , 1, 2, 2, z1 , . . . , zN−n)-colouring. Using the in-
duction hypothesis again, at least 2n−1 − 2 colour classes need to be visited before class
(1, . . . , 1, 2, y1, . . . , yN−n) is reached. This means that in total, at least 2n−4+2 intermediate
colour classes have been visited in the recolouring procedure. This completes the proof. 2

Claim 4.3 and Theorem 4.6 show that GN with its colour lists L is a list-colouring instance
such that C(GN , L) has a component of diameter superpolynomial in the size of GN . In the
next sections, we use the graphs GN to construct bipartite and planar k-colouring instances
for various k with the same property.

4.3 Making the graphs planar and bipartite

In this section we show that the List-Colour Path instances constructed in Sections 4.1
and 4.2 can be used to construct k-Colour Path instances with the same properties, for
various graph classes. For this, we will again apply Lemma 2.1. Unfortunately, the graphs GN

constructed in Section 4.1 are neither bipartite or planar. We now show how these in-
stances GN , L, α, β can be turned into bipartite and planar instances.

We start with a copy of GN with lists L and obtain a bipartite graph GB
N with lists L as

follows. For every triangle i, we replace the edge viv
∗
i by a (3, 3)-forbidding path of even length.

This yields an even cycle, and does not influence the possible colourings and recolourings of vi

and v∗i . All other forbidding paths can also be chosen of even length (Lemma 2.3). Since
all forbidding paths in the graph have vertices vi or v∗i for some i as their end vertices, the
resulting graph is bipartite and has all vertices vi and v∗i in the same part of the bipartition.
As before, we can find two colourings α and β of GB

N that are at distance at least 2N − 1.
The size of these graphs is not significantly different to that of the graphs GN .

Claim 4.7 The graphs GB
N have O(N2) vertices and edges.

Next, we use the graphs GB
N to construct bipartite planar List-Colour Path instances GP

N .
Observe that GB

N can be drawn in the plane so that only edges of forbidding paths cross;
that is, so that edges that were formerly part of the triangles never cross. Using such a
drawing of GB

N (without too many crossings, see Claim 4.10 below), we replace every (a, b)-
forbidding path P on which there are r crossings by a long path consisting of r + 2 new
paths Q0, . . . , Qr+1, drawn along the same curve as the old path. We do this in a way such
that the paths Qi contain exactly one crossing, for 1 ≤ i ≤ r, and Q0 and Qr+1 contain no
crossings. For 0 ≤ i ≤ r, the paths Qi and Qi+1 share a vertex with colour list {1, 2}. For
1 ≤ i ≤ r, the path Qi will be a (1, 2)-forbidding path; Q0 will be an (a, 2)-forbidding path
and Qr+1 will be a (1, b)-forbidding path. Together they form an (a, b)-forbidding path:

Observation 4.8 Let Q be an (a, b)-forbidding path from u to v, and let Q′ be a (c, d)-
forbidding path from v to w such that V (Q)∩V (Q′) = {v}, where L(v) = {b, c}. Together, Q
and Q′ form an (a, d)-forbidding path from u to w.

15

13 3421 42 21

124134e

21

21

23

14

34

n

s

w

34

12

13

34

2434

23

34

14

21

21
1321

21

12

n

e

s

w

34

42
1234

34231234

c

Figure 5: A crossing component corresponding to two (1, 2)-forbidding paths.

After this is done for every (a, b)-forbidding path that contains crossings, we end up
with a drawing where the only crossings occur between (1,2)-forbidding paths, where both
end vertices of both paths have colour list {1, 2}. All such pairs are now replaced with
the crossing component of Figure 5: this shows how an (n, s)-path and a (w, e)-path that are
both (1, 2)-forbidding paths are replaced. After replacing all such crossings we obtain a planar
graph. Note that bipartiteness is maintained: previously all end vertices of (a, b)-forbidding
paths were in the same part of a bipartition, and this is also true for the end vertices of the
crossing component. In addition, all cycles in the crossing component are even. We call the
resulting graph GP

N . The following lemma shows that, with regard to the possible colourings
and recolourings of the end vertices n, s,w, e, this crossing component behaves exactly the
same way as the two old forbidding paths.

Lemma 4.9 The crossing component of Figure 5 has the following properties.

• For cn, cs, cw, ce ∈ {1, 2}, a colouring κ with κ(n) = cn, κ(s) = cs, κ(w) = cw and
κ(e) = ce exists if and only if

¬(cn = 1 ∧ cs = 2) ∧ ¬(cw = 1 ∧ ce = 2).

• For any colouring κ with κ(s) = 1, there exists a sequence of recolourings that ends
by changing κ(n), without ever changing κ(s), κ(w) or κ(e). Similar statements hold
for recolouring s when κ(n) = 2, recolouring w when κ(e) = 1 and recolouring e when
κ(w) = 2.

Proof : The vertex c is the central vertex of the crossing component. The graph consists of
four branches around c, called the north, south, west and east branches. Before we begin the
proof of the above statements, let us make the following observation, which spares us a lot of

16

case analysis: swapping colours 1 and 2 in the lists of the crossing component corresponds to
mirroring the drawing in the bottom-left to top-right diagonal, and swapping colours 3 and 4
corresponds to mirroring in the top-left to bottom-right diagonal. So whenever we prove a
statement for the north branch, the same statement holds for the east (west) branch when we
swap the colours 1 and 2 (3 and 4) in the statement. Swapping both 1 with 2 and 3 with 4
yields a correct statement for the south branch.

If c has colour 3, then n must have colour 2 (arguing along the right path of the north
branch). If c has colour 2, then n again has colour 2 (consider the left path in the north
branch). In general we find, for a colouring κ:

• if κ(c) ∈ {2, 3}, then κ(n) = 2;

• if κ(c) ∈ {1, 4}, then κ(s) = 1;

• if κ(c) ∈ {2, 4}, then κ(w) = 2;

• if κ(c) ∈ {1, 3}, then κ(e) = 1.

Since either c ∈ {2, 3} or c ∈ {1, 4}, it follows that κ(n) = 1 and κ(s) = 2 cannot occur
simultaneously; similarly for w and e. It can also be seen that whenever c is not coloured
with 2 or 3, there exist colourings of the north branch where n has colour 1, and colourings
where n has colour 2. Similar statements hold for the other three branches. All this proves
that for every combination of colours cn, cs, cw, ce for the four vertices, a corresponding
colouring κ exists, except when cn = 1 and cs = 2, or when cw = 1 and ce = 2. This proves
the first statement about possible colourings. Now we consider possible recolourings of the
crossing component.

We prove that we can always recolour n, as long as s has colour 1, without ever recolour-
ing w or e. Whenever c has colour 1 or 4, it is easy to see that we can recolour the north
branch and change the colour of n without any recolouring of c or of the other branches.

Now suppose κ(c) = 3. This means κ(n) = 2 and κ(e) = 1. In this case we first change
the colours of all vertices adjacent to c to 2 or 4, without changing κ(n), κ(s), κ(w) or κ(e).

• It is obvious this can be done in the west branch.

• For the east branch we use the fact that κ(e) = 1.

• For the south branch we use the fact that κ(s) = 1.

• For the north branch we use the fact that κ(n) = 2.

At this point we can recolour c to 1. Now it can be checked that the vertices in the north
branch can be recoloured so that n gets colour 1.

Similarly, when κ(c) = 2 all of c’s neighbors can be recoloured to 1 or 3 without recolour-
ing n, s, w or e. Then c can be recoloured to 4, which in turn allows n to receive colour 1,
after a few steps.

This shows that we can always recolour n whenever κ(s) = 1. For the other three branches,
similar statements follow from the above mentioned symmetries. 2

Observation 4.8 and Lemma 4.9 show that after replacing forbidding paths with multiple
forbidding paths, and replacing crossings with crossing components, the new structures act

17

like the old forbidding paths with regard to possible colourings and recolourings of vi, v′i
and v∗i (though perhaps ‘a few’ more recolourings of internal vertices are needed). So the
statements from Lemma 4.5 and Theorem 4.6 can be proved for these graphs. Adapting the
two colourings of GN to colourings of GP

N is straightforward. It remains only to consider the
size of the graphs GP

N .

Claim 4.10 The graphs GP
N have O(N4) vertices and edges.

Proof : We started with a drawing of GN in which only (a, b)-forbidding paths cross. It is
easy to see that a drawing can be found such that every pair of forbidding paths crosses at
most once. The graph GN has O(N2) forbidding paths, so this drawing has at most O(N4)
crossings. For every crossing we introduce a number of new vertices that is bounded by some
constant (closely related to the number of vertices in a crossing component), so the number
of vertices, which was O(N2), increases to at most O(N4). So the number of vertices of GP

N

is in O(N4). Since GP
N is planar, its average degree is less than six, so the number of edges is

in O(N4) as well. 2

We have constructed bipartite List-Colour Path instances with size O(N2) (Claim 4.7),
and bipartite planar List-Colour Path instances with size in O(N4) (Claim 4.10). The
pairs of colourings for each of these instances are at distance at least 2N − 1, just as for the
original List-Colour Path instances (Theorem 4.6). Lemma 2.1 shows that these can be
transformed into k-Colour Path instances without a significant size increase. This com-
pletes the proof of Theorem 1.4.

Acknowledgements

We are indebted to Moshe Vardi for initially suggesting that the decision problem k-Colour

Path might be PSPACE-complete for k ≥ 4.

References

[1] L. Cereceda, J. van den Heuvel and M. Johnson, Connectedness of the graph of
vertex-colourings. CDAM Research Report LSE-CDAM-2005-11 (2005). Available from
http://www.cdam.lse.ac.uk/Reports/reports2005.html; accepted for publication in
Discrete Math.

[2] L. Cereceda, J. van den Heuvel and M. Johnson, Mixing 3-colourings in bipar-
tite graphs. CDAM Research Report LSE-CDAM-2007-06 (2007). Available from
http://www.cdam.lse.ac.uk/Reports/reports2007.html.

[3] L. Cereceda, J. van den Heuvel and M. Johnson, Finding paths between 3-colourings; in
preparation.

[4] R. Diestel, Graph Theory, 3rd edition. Springer-Verlag, 2005.

[5] M. Dyer, A. Flaxman, A. Frieze and E. Vigoda, Randomly colouring sparse random
graphs with fewer colours than the maximum degree. Random Struct. Algor. 29(4) (2006),
450–465.

18

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, 1979.

[7] P. Gopalan, P.G. Kolaitis, E.N. Maneva and C.H. Papadimitriou, The connectivity of
Boolean satisfiability: computational and structural dichotomies. In Proceedings of Au-
tomata, Languages and Programming, 33rd International Colloquium, ICALP 2006,
Part I, LNCS 4051, 346–357. Available from http://arxiv.org/abs/cs.CC/0609072.

[8] R.A. Hearn and E.D. Demaine, PSPACE-completeness of sliding-block puzzles and other
problems through the nondeterministic constraint logic model of computation. Theoret.
Comput. Sci. 343 (2005), 72–96.

[9] C.H. Papadimitriou, Computational Complexity. Addison-Wesley, 1994.

[10] W.J. Savitch, Relationships between nondeterministic and deterministic tape complexi-
ties. J. Comput. Syst. Sci. 4(2) (1970), 177–192.

19

