
SUCCESSIVE INFORMATION REVELATION IN 3-PLAYER
INFINITELY REPEATED GAMES WITH INCOMPLETE

INFORMATION ON ONE SIDE

JULIAN MERSCHEN1

Bonn Graduate School of Economics, University of Bonn

Adenauerallee 24-42, 53113 Bonn, Germany

email: J.Merschen@uni-bonn.de

CDAM Research Report LSE-CDAM-2007-09 - March 2007
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(SJPE) in the example from Renault (2001). Furthermore we were able to show that the set of possible

SJPE is strictly larger than the set of “standard” JPE.
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1 Introduction

Infinitely repeated games with incomplete information werefirst introduced by Aumann and Maschler in

1966 in order to study the behavior of agents in the arms race during the cold war. Since then their approach

has found great relevance when analyzing long term behaviorin strategic settings with incomplete informa-

tion. Aumann and Maschler (1995) first showed in 1968 that 2-player infinitely repeated zero-sum games

with incomplete information on one side have a value and thusan equilibrium. Later Simon, Spiez, and

Torunczyk (1995) proved the existence of joint plan equilibria in all nonzero-sum games with two players.

Yet the existence of an equilibrium in the case of 3-player infinitely repeated nonzero-sum games with in-

complete information on one side has not been established. Renault (2001) proved by counterexample that

not all 3-player games possess a completely revealing or a joint plan equilibrium.

In this thesis we briefly describe the setup of infinitely repeated games with incomplete information,

discuss the results from the 2-player games and finally applythem to the 3-player case. After explaining

the findings of Renault we introduce an extension to joint plans which relies on the concept of successive

information revelation: in a first step one of the informed players would reveal some information about the

outcome of the choice of nature, in a second step the other informed player would reveal additional infor-

mation about the true state of nature. Using this concept of successive joint plans we prove the existence of

successive joint plan equilibria in the counterexample used by Renault (2001).
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2 Main Section

2.1 Infinitely Repeated Games with Incomplete Information

An infinitely repeated game with incomplete informationΓ∞ is given by(K, p0,G j ,N,Si ,g
j
i )

j∈K
i∈N where

K = {1, ...,k} is a finite set of k states of nature and each state of naturej ∈ K represents a one shot game

G j . The initial probability distribution over the states of nature is given byp0 = (p j
0) j∈K and can be seen

as a lottery where the outcome is a statej ∈ K. The set of n players is given byN = {1, ...,n} where each

player i ∈ N has a finite setSi of pure strategies or actions and for a givenj ∈ K a payoff function gji is

defined byg j
i : S→ R, whereS=

n

∏
i=1

Si. There exist two kinds of players. The uninformed players only

know the initial probability distribution over the states of nature but do not know the actual outcome of the

lottery. The informed players in addition know the chosenj ∈ K. We partition the set of playersN into two

sets, the set ofinformed players INand the set ofuninformed players UN.

Choice of nature

G1

G1

...

G2

G2

...

G2

G2

...

. . . . . . . . .

. . . . . . . . .

...

Gk

Gk

...

Figure 1: The GameΓ∞

We assume that there exist at least one player inIN and one inUN and each of these players have at

least two distinct actions and for allj ∈ K, p j
0 is strictly larger than zero. The setup of the game iscommon

knowledge, i.e. every player knows the setup of the game and knows that the other players know the setup of

game and so on. We also assume that every player hasperfect recallin a sense that every player remembers

at every point in time what his previous choices were. These assumptions are motivated by the fact that

players with only one action and states of nature with zero probability cannot affect the outcome of the

game and are thus neglected.

The game is played as follows. At time t = 0 nature chooses a state j ∈ K according to the initial

probability distributionp0. The chosen state is kept constant throughout the rest of thegame. The outcome

of the lottery is then communicated to the informed players but kept secret from the uninformed players.

At every following stage t = 1,2,..., every playeri ∈ N chooses simultaneously an actionsi ∈ Si . If st =

(s1, ...,sn) ∈ S is played at timet thestage game payofffor player i is given byg j
i (st) when j ∈ K is the

chosen state of nature. After each stage the chosen strategies of the players are publicly announced but
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the payoffs are not communicated. Note that every informed player is able to deduce his own stage game

payoff with certainty as he knows the correct state of nature, contrary to the uninformed player.

The only possibility for the uniformed players to make a conjecture about the true state of nature is to

consider the behavior of the informed players over time, i.e. the history of moves. For any finitet ≥ 0 the

history Ht is defined byHt = K× (
n

∏
i=1

Si)
t , whereH0 simply denotes the choice of nature. Furthermore the

infinite historyis given byH∞, whereH∞ = lim
t→∞

Ht .

2.1.1 Strategies, Payoff and Equilibrium concepts

A pure strategyρi for a playeri is an infinite sequenceρi = (ρi,1,ρi,2, ...) where for eacht ≥ 1, ρi,t ∈ Si

is chosen according the historyHt−1 and is dependent on the true statej ∈ K if i ∈ IN. A pure strategy

for player i specifies a move at every point in the gameΓ∞. A mixed strategyis a randomization over

the set of pure strategies. Abehavior strategyσi for player i specifies a probability distributions over his

actions at every stage of the gameΓ∞. Behavior strategies differ from mixed strategies in a sense that they

are chosen mutually independent by the players at timet. Since the informed player can profit from the

knowledge of the statej ∈ K we define the behavior strategy for an informed playeri as ak-tuple of state

dependent behavior strategies. Thusσi is given byσi =
(
σ1

i , . . . ,σk
i

)
, where for eachj ∈K, σ j

i is an infinite

sequence
(

σ j
i,1,σ

j
i,2, . . .

)
such that for each time t≥ 1 σ j

i,t : { j}×Ht−1 → ∆(Si), where∆(Si) is defined as

the set of probability distribution onSi, i.e. ∆(Si) =

{
(psi )si∈Si |∀si , psi ≥ 0, ∑

si

psi = 1

}
. The behavior

strategyσi of the uninformed playeri must be independent of the state and is thus given by an infinite

sequence(σi,1,σi,2, . . .) such that for each time t≥ 1 σi,t : (
n

∏
j=1

Sj)
t−1 → ∆(Si). Furthermore letBi be the

set of behavior strategies for playeri and letB =
n

∏
1=1

Bi . A behavior strategy profileσ ∈ B is defined by

σ = (σ1, . . . ,σn), that is every player i chooses the behavior strategyσi .

As mentioned above, behavior strategies are chosen mutually independent by the players. This has

the effect that for infinitely repeated games the set of behavior strategies is countably infinite while the set

of mixed strategies is uncountable. Since we are concerned with the existence of equilibria this poses the

question whether there can exist equilibria which are reached with a mixed strategy, but can not be reached

with a behavior strategy? The answer to this question is negative. Since we assume perfect recall we

can confine the strategies of the players to behavior strategies. This follows from Aumann’s result (1964)

which states that in infinitely repeated games with perfect recall every mixed strategy can be expressed as a

behavior strategy. In other words, if there exists an equilibrium in the gameΓ∞, then it can be reached with

a behavior strategy. Note that the proof found in Aumann’s paper is a generalization of Kuhn’s theorem to

infinitely repeated games.

Given a statej ∈ K the behavior strategy profileσ ∈ B induces an infinite sequence of stage game

actions(s1,s2, . . .) when the players abide toσ . We can now define the payoff for the first T stages of

playeri as the average of the first T stage game payoffs, i.e.
1
T

T

∑
t=1

g j
i (st). Note that the word average refers
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to the average payoff per stage of the game, which is the reason for the devision withT. Furthermore if

j ∈ K is given, the behavior strategyσ ∈ B induces a probability measure over the infinite historyH∞.

Since the behavior strategyσ can include probability distribution over the strategies chosen by the players

we consider the expectation of the average payoff with respect to σ . We can now define the expected

average payoff of the players whenσ is played.

Definition 2.1 (Expected Average Payoff)Let σ ∈ B be a behavior strategy profile which induces the

infinite sequence of stage game action profiles(s1,s2, . . .). Then for all players i, all states j∈ K and

all stages T≥ 1, the expected average payoff is given by:

γ j
i,T(σ) = Eσ

(
1
T

T

∑
t=1

g j
i (st)

)

And the expected average payoff over the states of nature K isgiven byγi,T(σ) = ∑
j∈K

p j
0 γ j

i,T(σ).

An alternative approach, and also the standard approach in economic models is to use a discount factor

δ ∈ (0,1) to specify the payoffs for the first T periods. Here the payofffor player i and statej is wi,T =

(1− δ )
T

∑
t=1

δ t−1g j
i (st). In order to capture long-term behavior, however, this approach is not appropriate

since for allε larger than zero there exist a timeT̂ ≥ 0 such that the payoffs of the players, starting after

time T̂ do not change more thanε for any strategy of the players. This is due to the discount factor

which describes real payoffs, hence after a certain time period T̂ the payoffs, no matter how large are

negligible. Real life examples for importance of long-termbehavior could be bilateral trade negotiations

or bargaining situations. In these situations we do not wantto factor in the payoffs from the negotiation or

bargaining process. We would much rather be willing to accept some lower payoffs from the negotiation

process and then reap the benefits in the later stages. In other words we prefer the infinite payoff sequence

(−1,−1,−1, ...,−1,1,1,1,1, ...) over the payoff sequence of all zeros.

In order to define an equilibrium concept we introduce the following notation. Ifσ ∈ B thenσ−i ∈∏
h6=i

Bh is

denoted as the behavior strategy for all players except for player i andσ = (σ−i ,σi).

Definition 2.2 (Uniform Equilibrium) The behavior strategyσ ∈ B describes an uniform equilibrium of

Γ∞ if it satisfies:

1. For all players i∈ N and for all ε > 0 there exists a T0 = T0(ε) such thatσ is an ε −Nash−

equilibrium in finitely repeated games with at least T0 stages, that is for all T≥ T0 and for any

alternative behavior strategyτi ∈ Bi of player i, γi,T(σ−i ,τi) ≤ γi,T(σ)+ ε.

2. For all informed players i∈ IN and for all j ∈ K, lim
T→∞

γ j
i,T(σ) → γ j

i (σ) and for all uninformed

players i∈UN, lim
T→∞

γi,T(σ) → γi(σ).

An uniform equilibrium generates, as Hart (1985) describes, anε-equilibrium in all long enough, but finite

gamesΓT . For an uniform equilibriumσ of the gameΓ∞ we define the equilibrium payoff as follows:

(γ j
1(σ) j∈K , ...,γ j

|IN|(σ) j∈K ,γ|IN|+1(σ), ...,γ|IN|+|UN|(σ)).

4



The description ofΓ∞ is a generalization of the three player model as described inRenault (2001).

Having defined the general model we will now turn to special cases in order to develop step by step the

results that will later be important for further analysis. We first consider the case where there are two

players and the gamesG j for j ∈ K are zero-sum games. In the next step we drop the second assumption

and consider nonzero-sum stage games. Finally, we will turnto the case whenIN = {1,2} andUN = {3}.
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2.2 2-Player Infinitely Repeated Zero-Sum Games with Incomplete Information on

One Side

We start by giving an example. For Example 1,Γ∞ is given by the two gamesG1 andG2 which are chosen

by equal probability, i.e.p0 = (1
2, 1

2). The stage gameG j can be interpreted as payoff matrices for players

1 and 2, which we will denote asA j
1 andA j

2 respectively, whereA j
1 = −A j

2. The informed player, namely

player 1, (which we will refer to as she), chooses her actionsalong the rows, i.e.S1 = {T,B} and player 2

(he), the uninformed player, chooses his actions along the columns, i.e.S2 = {L,M,R}. The entries in the

gamesG1 andG2 represent the payoffs to player 1. The payoffs of player 2 arethe negation of the payoffs

of player 1, i.e. for all strategiess∈ ∆(S1)×∆(S2) we haveg j
1(s) = −g j

2(s) for both states of nature, where

g j
1(s) = s1A j

1s2.

Player 1

Player 2

L M R

T −1 0 1

B 1 0 1

G1

Player 1

Player 2

L M R

T 1 1 0

B −1 1 0

G2

Figure 2: Example 1

Clearly, in this example the informed player will not want tocompletely reveal her information, that is

player 2 could deduce with probability equal to 1 the true state of nature when he knows the strategy of

player 1. This kind of strategy of player 1 is called acompletely revealing strategyand it would yield player

1 a payoff of zero in every state. It is also not optimal for player 1 to play anon-revealing strategywhere

player 2 cannot make any conclusions about the true state of nature. Note that a non-revealing strategy

would also yield a payoff of zero to player 1. We are interested in how players should behave in Example 1

and generally in the gameΓ∞ with k states of nature and thus find an expression for the equilibrium payoff

γ1(σ) = ∑
j∈K

p j
0γ j

1(σ) which we denote here as thevalueof the gameΓ∞. We first need to develop some

underlying theory in order to be able to give an expression for the value ofΓ∞.

Given Γ∞ with k states where the one shot games’ payoff can be represented, as above, with payoff

matricesA j
1 and A j

2, define the game∆1(p0) = ∑
j∈K

p j
0 G j where the payoff matrices are now given by

A1(p0) = ∑
j∈K

p j
0 A j

1 and similarly forA2(p0). The interpretation of∆1(p0) is that player 1 neglects her

knowledge of the true state of nature and considers only the expectation over the gamesG j as a reference

for her actions. For Example 1,∆1(
1
2, 1

2) is given in Figure 3.

It should be clear that in the gameΓ∞ player 1 can at least guarantee the Nash Equilibrium Payoff of the

game∆1(p0) by simply neglecting her knowledge and playing a Nash equilibrium strategy in the game

∆1(p0). Define the functiona1 : ∆(K) → R for player 1 by

6



Player 1

Player 2

L M R

T 0 0.5 0.5

B 0 0.5 0.5

Figure 3:∆1(
1
2, 1

2) for Example 1

a1(p) = max
s1∈∆(S1)

min
s2∈∆(S2)

s1A1(p)s2 = min
s2∈∆(S2)

max
s1∈∆(S1)

s1A1(p)s2

anda2 : ∆(K) → R for player 2 by

a2(p) = min
s1∈∆(S1)

max
s2∈∆(S2)

s1A2(p)s2 = min
s2∈∆(S2)

max
s1∈∆(S1)

s1A2(p)s2

The meaning of the functionai(p) as Simon (2006, lecture 6) describes, is the amount to which player

i’s payoff can be held down by the other player when they believe that p is the true probability distribution

governing the states of nature. Hence player 1 can, by neglecting her information at least guarantee a payoff

of a1(p0). But can she do better in some cases?

2.2.1 The Optimal Strategy of the Informed Player

We have seen that player 1’s payoff is closely related to the functiona1 which takes as an argument a

probability distribution over the states of nature, which is believed to true by both players. If player 1 were

to induce, with her actions, a new probability distributionover the states of nature then she would be able in

some situations to change the value ofa1 and thus improve her payoff. For example if player 1 in Example

1 always plays B then player 2 will, conditionally on player 1playing B, deduce that the true state of nature

is state 1 (note that this strategy is not optimal). This intuition suggests that player 2 can, by considering

player 1’s actions, update his belief about the true state ofnature with Bayes formula. Player 1 can use

this concept to her advantage by considering the functiona1(p) for all p = (p1, p2, ..., pk) ∈ ∆(K), which is

given in Figure 4. To be consistent,p2 refers to the probability assigned to state 2 and not to the quadratic

function.

a1(p1, p2) =






p2 p2 ∈ [0, 1
3]

1−2p2 p2 ∈ (1
3, 1

2]

2p2−1 p2 ∈ (1
2, 2

3]

1− p2 p2 ∈ (2
3,1]

The graph ofa1(p) suggests that, in order to be at the maximum value in both states, player 1 should try to

make player 2 believe that the updated probability isp2 = 1
3 when state 1 is chosen andp2 = 2

3 when state

2 is chosen. Now assume the following behavior strategyσ1 = (σ1
1 ,σ2

1 ) for player 1. In state 1 player 1

plays with 1
3 probability T forever and with23 probability B forever. In state 2 she plays with2

3 probability

7



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1
0.2
0.3

p2

a1(p1, p2)

Figure 4:a1(p) for Example 1

T forever and with1
3 probability B forever. Now suppose that player 2 knows the strategy of player 1, as

player 1 could communicate her strategy by using the actionsas an alphabet. Then conditional on hearing

the actionT, player 2 will conclude with Bayes formula that the conditional probability of being in state 2

is 2
3 and conditional on hearing the actionB player 2 will conclude that the conditional probability of being

in state 2 is1
3. In other words player 2 adjusts his belief over the states and setsp2 = 2

3 andp2 = 1
3 when

hearingT andB, respectively. Player 2 thus beliefs when hearingT that he is playing the game∆1(
1
3, 2

3)

and when hearingB he is playing the game∆1(
2
3, 1

3).

Player 1

Player 2

L M R

T 1
3

2
3

1
3

B −1
3

2
3

1
3

∆1(
1
3, 2

3)

Player 1

Player 2

L M R

T −1
3

1
3

2
3

B 1
3

1
3

2
3

∆1(
2
3, 1

3)

Figure 5:∆1(
1
3, 2

3) and∆1(
2
3, 1

3) for Example 1

Player 2 will best respond in both games∆1(
1
3, 2

3) and∆1(
2
3, 1

3) with action L. Hence in both games player

1 gets an expected payoff of a13 and thus the overall expected payoff is also1
3. Hence we have seen in

this example how player 1 can achieve a payoff strictly larger thana1(p0) by updating the beliefs of player

2. This concept has great implications for repeated games ofincomplete information. We now introduce a

formal notation for updating beliefs, the proof of the theorem can be found in Simon (2006, lecture 7).

Theorem 2.3 For p0 ∈ ∆(K), let P⊆ ∆(K) be a finite set, andλ ∈ ∆(P) s.t. p0 = ∑
p∈P

λpp. For every j∈ K

let a p∈ P be chosen according to the probability qj defined by qj(p) =
λpp j

∑t∈P λt t j . Then the probability

distribution on K conditional on p∈ P being chosen is the distribution p∈ ∆(K).

Using this concept player 1, can thus induce a new probability distributionp∈ ∆(K) on the states of nature

by choosing somep ∈ P according toq j and then signalingp to player 2. The signaling process could

be done by using his actions for some stages or simply to introduce a set of messages M which forms a

one-to-one relationship with the states.

8



In order to describe how player 1 should behave in general we use the concept of concavification of

functions. For a real valued functionf on some convex spaceC the concavificationof f , cav( f ), is the

minimum over all concave functions̃f : C → R s.t. f̃ (c) ≥ f (c) for all c ∈ C. The graph ofcav(a1) for

Example 1 is given in Figure 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1
0.2
0.3

p2

cav(a1(p1, p2))

Figure 6:cav(a1(p)) for Example 1

The payoff received by player 1 when using the strategy described above lies on the graph ofcav(a1) and

the optimal behavior strategy for player 1 is to update player 2’s beliefs such that player 1 can guarantee

cav(a1(p0)). This is done by choosingP s.t.∃ λp ∈ ∆(P) with ∑
p∈P

λp = p0 andcav(a1(p0)) = ∑
p∈P

λpa1(p)

where p is chosen according to the conditional probability distribution q j at time 1. After updating the

beliefs, player 1 can assure a payoff equal toa1(p) by playing a minmax strategy whenp∈ ∆(K) is now

believed to be the true probability distribution over the states. With respect to the initial probability distri-

bution, player 1 can assurecav(a1(p0)). This is exactly how player 1 acted in Example 1. She updated the

beliefs of player 2 according to the true state of nature. If nature chose state 1 she induced a probability

distribution settingp1 = 2
3 andp2 = 1

3 and similarly for state 2. This strategy guarantees her an expected

payoff of 1
3.

2.2.2 The Optimal Strategy of the Uninformed Player

We have already introduced the reasoning that explains how player 1 can guarantee a payoff of at least

cav(a1(p0)). We will now briefly turn to player 2’s strategy which guarantees him that he will pay no more

thancav(a1(p0)). In other words, player 2 can get a payoff of at leastvex(a2(p0)) where theconvexification

of a function is defined in analogy to the definition of its concavification: For a real valued functionf on

some convex spaceC theconvexificationof f , vex( f ), is the maximum over all convex functioñf : C→ R

s.t. f̃ (c) ≤ f (c) for all c∈C.

Since the uninformed player does not know his payoffs duringthe play of the game we need a different

approach for player 1. As after each period of the game the played strategies are announced to all the players,

player 2 can interpret his payoff at staget ≥ 1 as a k-dimensional vector where each entry represents the

payoff to player 2 in the gameG j ; that is for each behavior strategyσ ∈B and each staget ≥ 1 we can define

rt by rt = (g1
2(st), ...,gk

2(st)) wherest is the strategy induced byσ at time t. Now setvn as the average over

all vector payoffsr i up to n, that isvn = 1
n

n

∑
i=1

r i . Blackwell (1956) first studied games with vector payoffs

9



and defined approachable payoff sets for player 2. A set S isapproachablefor player 2 if for all strategies

of the other players, player 2 has a strategy that will guarantee thatvn will converge to some point in S

as n goes to infinity. Furthermore, Blackwell specified theBlackwell strategywhich describes how player

2 should behave in order to reach the approachable set. The Blackwell strategy relies on the hyperplane

theorem and the fact that player 2 can base his decision at time t + 1 on the payoff vectorvt . By using a

Blackwell strategy player 2 can thus reach a set S that will guarantee him a payoff of at leastvex(a2(p0)).

Hence when playing optimal, player 2 can guarantee a payoff of at leastvex(a2(p0)) which is equal

to −cav(a1(p0)). At the same time, player 1 can assure a payoff of at leastcav(a1(p0)). The value of the

game is thuscav(a1(p0)) whenp0 is the initial distribution of the states, as the following theorem states.

10



Theorem 2.4 (Aumann and Maschler) A 2-player infinitely repeated zero-sum game with incomplete in-

formation on one side has a value which is given by cav(a1(p0)) where p0 is the initial probability distrib-

ution on the k states of nature.

In the next section we will apply these results to infinitely repeated nonzero-sum games with incomplete

information. We will see that some concepts of zero-sum games can be transferred but we need to adjust

others.
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2.3 2-Player Infinitely Repeated Nonzero-Sum Game with Incomplete Information

on One Side

We now drop the constraint that the one shot games,G j for j ∈ K are zero-sum games, but otherwise keep

the setup as in the last section. Due to this change in payoff matrices, the payoffs of the players do not

depend negatively on each other anymore. This asymmetry makes the aspect of cheating and punishment

more important for assuring an equilibrium. The concept of cheating was not necessary in the zero-sum

case since player 2’s optimal response directly affected player 1’s payoff. Player 1 could independently

of player 2’s actions guarantee to getcav(a1(p0)) and could not get a higher payoff since player 2 could

guarantee to pay not more thancav(a1(p0)). This is not the case when considering the nonzero-sum case

as Example 2 given in Figure 7 illustrates.

Player 1

Player 2

L R

T 2,2 0,0

B 2,2 0,0

G1

Player 1

Player 2

L R

T 4,0 2,2

B 4,0 2,2

G2

Figure 7: Example 2

When the initial distribution is given byp0 = (1
3, 2

3) Theorem 1.4 would suggest that the equilibrium payoff

for player 1 would becav(a1(p0)) which in this case is equal toa1(p0) = 2
3, see Figure 8. First suppose that

player 1 could use her actions to signal which state of natureis chosen. Player 1 would play a completely

revealing strategy where she signals the true state of nature with her first move and then they play (T,L)

and (T,R) in state 1 and 2, respectively. This would guarantee both players a payoff of 2. But this is not an

equilibrium strategy since she can profit by sending the wrong message in state 2 and get a payoff of 4. This

intuition leads to the conclusion that in equilibrium player 1 should not be able to gain by sending signals

which are not according to protocol in any states of nature. This concept is calledincentive compatibility.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5
1.0
1.5
2.0

p2

a1(p1, p2)

Figure 8:a1(p) for Example 2

Since the informed player can always play a minmax strategy in the gameG j when j ∈ K is the true

state we require that the payoffs of player 1 areindividually rational. This means that given an equilibrium

12



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5
1.0
1.5
2.0

p2

a2(p1, p2)

Figure 9:a2(p) for Example 2

strategy player 1 gets in each state of nature at least her state dependent minmax payoff. As the informed

player can update the beliefs over the states we define individual rationality as follows, keeping in mind that

the uninformed player can still guarantee, using a Blackwell strategy,vex((a2(p0)).

Definition 2.5 (Individual Rationality) For player 1 and player 2:

• γ1 = (γ j
1) j∈K ∈ R

k is individual rational ifγ1 · p≥ a1(p) f or all p ∈ ∆(K).

• γ2 ∈ R is individual rational ifγ2 ≥ vex(a2(p)), where p∈∆(K) is believed to be the true probability

distribution governing the states.

An equilibrium has to satisfy individual rationality for both players and incentive compatibility for the

informed player. We now describe the slightly altered equilibrium concept.

2.3.1 Joint Plans and Joint Plan Equilibria

Joint Plans have first been described by Aumann and Maschler and we adopt the generalized form given in

Renault (2001).

Definition 2.6 (Joint Plan) For i in IN, a joint plan for player i is a tuple(M,λ ,P,z,γi) where:

1. M is a non empty finite set of messages (or signals).

2. λ = (λ j) j∈K is a signaling strategy such that for each state j,λ j ∈ ∆(M) and ∀m ∈ M,

λm =de f ∑
j∈K

p j
0λ j

m > 0.

3. P= (pm)m∈M such that for all m∈ M, pm∈ ∆(K) is the induced probability distribution on the states

of the nature given m, with pjm = p j
0λ j

m/λm where pj
m is the probability that is being assigned to state

j conditional on hearing the message m.

4. z= (zm)m∈M is a frequency strategy which is played after the signal is given such that for all m∈ M,

zm ∈ ∆(S).

5. γi ∈ R is the payoff to player i such that for all states j,γ j
i = max

m∈M
g j

i (zm).

13



The essence of a joint plan is that the informed player, who formulates the joint plan can update the beliefs

of the other player by signaling a message (or messages) which is selected according to the state dependent

probability distributionλ j . These signals are then transmitted using her actions as an alphabet. Note that

these signals do not directly affect the payoff function andcan be regarded as cheap talk. Once the signal

has been sent, the playing phase starts, where the players use a frequency strategy dependent on the sent

message. If an informed player deviates from the frequency strategy she is punished to an individual rational

vector inR
k. When the uninformed player deviates the informed player punishes him tovex(a2(pm)), where

pm is the a posteriori probability distribution on states, conditional on message m being sent. Although it

may seem that the informed player has the upper hand when designing the joint plan in equilibrium this is

surprisingly not the case. The informed player must design the contract in such a way that the individual

rationality constraint for the uninformed player is satisfied, which places restrictions on the joint plan. In

the zero sum case the uninformed player could only guaranteevex(a2(p0)), where now the joint plan has to

give him a payoff ofvex(a2(pm)) conditional on m being sent. The reason behind this is that the informed

player has to offer the uninformed player something in orderto commit to the contractzm. In equilibrium the

joint plan must thus satisfy individual rationality for allplayers and incentive compatibility for the informed

player who designs the joint plan.

Definition 2.7 (Joint Plan Equilibrium ) For player 1 a joint plan(M,λ ,P,z,γ1) describes an equilibrium

if there exists an individual rational vector y1 ∈ R
k such that for all m∈ M the following conditions are

satisfied:

1. For all j ∈ K with λ j
m > 0, γ j

1(zm) = y j
1

2. ∑
j∈K

p j
mg j

2(zm) ≥ vex(a2(pm))

3. For all j ∈ K with λ j
m = 0, γ j

1(zm) ≤ y j
1

Condition 1 and 2 are individual rationality conditions andcondition 3 is the incentive compatibility con-

dition for player i. Simon et. al (1995) proved the existenceof joint plan equilibria for 2-player infinitely

repeated games with incomplete information on one side withk states of nature using the concept of joint

plan equilibrium. Although the existence of joint plan equilibria is known for this case, a good algorithm to

find a joint plan equilibria is not known. For Example 2 there exists a simple joint plan for player 1 which

is given by(M,λ ,P,z,γ1) where:

• M = {1,2}

• λ = (λ 1,λ 2) whereλ 1 = (0,1) andλ 2 = (1
2, 1

2)

The signaling strategy is illustrated in Figure 10, where the leaves correspond to the messages and

the numbers along the branches are probabilities for natureand the state dependent lotteries.

• P = (p1, p2) wherep1 = p2 = (1
2, 1

2)
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2/31/3

choice of nature

λ 1
2 = 0

2

λ 1
1 = 1

1

state 1
λ 2

2 = 1/2

2

λ 2
1 = 1/2

1

state 2

Figure 10: Signaling Strategy

• z= (z1,z2) wherez1 = z2 = (T,R)

• γ1 = (0,2).

We will now show that the joint plan satisfies the condition ofa joint plan equilibrium. Condition 1 is

satisfied sincey= (y1
1,y

2
1) = (0,2) is an individual rational vector and sinceλ 1

1 > 0 we haveγ1
1(z1) = y1

1. As

λ 2
1 > 0 andλ 2

2 > 0 we haveγ2
1(z1) = y2

1 andγ2
1(z2) = y2

1. Condition 2 is satisfied since for message 1 we have

∑
j∈K

p j
1g j

2(z1) = 1 = vex(a2(p1)) and for message 2 we have∑
j∈K

p j
2g j

2(z2) = 1 = vex(a2(p2)). The incentive

compatibility condition is also satisfied since forλ 1
2 = 0 we haveγ1

1(z2) = 0 = y1
1, which completes the

proof. In the next section we will add another informed player and investigate the implications in this setup.
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2.4 3-Player Infinitely Repeated Nonzero-sum Games with Incomplete Informa-

tion on One Side

We now consider infinitely repeated games with 3 playersΓ∞ whenIN = {1,2} andUN = {3}. An example

for this situation could be that a policy maker, who has incomplete information, should make a decision

based on the input of his two advisers who both have full information.

In the 2-player case the informed player, since she only plays against one uninformed player, could

guarantee at least a payoff ofa1(p0). Now each informed player has to factor in that she is playingagainst

not only one uninformed player, but also against another informed player who knows the true state. This

will change the magnitude of the payoff which she can guarantee. For example, if player 1 is trying to

maximize her payoff, the other informed player can reveal the true state of nature to the uninformed player

and player 2 and player 3 play a state dependent minmax strategy against the player 1. Thus the informed

player i can guarantee in each statej ∈ K, v j
i wherev j

i = min
x−i∈∏h6=i ∆(Sh)

max
xi∈∆(Si)

g j
i (xi ,x−i). The informed

players can surely defend this payoff as they only have to play a minmax strategy in the gameG j when

j ∈ K is the true state. For the uninformed player the amount whichhe can guarantee coincides with

the 2-player case and we define player 3’s minmax payoff by thefunctiona3 : ∆(K) → R wherea3(p) =

min
(x1,x2)∈∆(S1)×∆(S2)

max
x3∈∆(S3)

∑
j∈K

p jg j
3(x1,x2,x3). We can now give the adjusted individual rationality constraint

for all players.

Definition 2.8 (Individual Rationality) For the informed players i∈ IN and for the uninformed player 3:

• the payoffγi = (γ j
i ) j∈K in R

K is individual rational if γ j
i ≥ v j

i f or all j ∈ K.

• the payoffγ3 in R is individual rational if γ3 ≥ vex(a3(p)), where p∈ ∆(K) is believed to be the

true probability distribution on the states.

The added difficulty in this situation is that player 3 does not always know who deviated. Since there are

different types of deviation, we will first introduce them. If any player deviates from a frequency strategy,

such as specified in joint plans, the deviation is observed byevery other player, including the uninformed

player. Thus the deviator can be identified and is therefore punished. The second type of deviation concerns

deviating from a state dependent signaling strategy. Suppose that an informed player does not adhere to

the signaling strategy and sends a messagem, which according to the signaling strategy would be sent with

probabilityλ j
m ∈ (0,1) in state j, with certainty. In other words, suppose that player 1 should sent message

1 and message 2 both with probability of1
2 in state 1. Player 1 could deviate by always sending message 1.

This type of deviation would not be observed by any other player. Note that this type of deviation should

be ruled out by the incentive compatibility constraint. Thethird case is that an informed player does not

adhere to the signaling strategy in some statej ∈ K and sends a messagem, which would according to

the signaling strategy be sent with probability equal to zero in state j. Surely, the other informed player

can observe the deviation since she knows the true state and would inform the uninformed player that a
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deviation has occurred. The problem is now that the uninformed player does not know which player is

“lying”. It could be the case that although the correct message has been sent the other informed player will

say that a deviation has occurred. Furthermore it could evenbe the case that a deviation of this type occurs

and the other informed player does not announce this as it would lead to an improvement in her payoff

as well. Thus formulate a punishment strategy in this case becomes more complex in comparison to the

2-player setup. This is demonstrated in Example 3 given in Figure 11.

L R

T 1,1,1∗ 1,1,1∗

B 1,1,1∗ 1,1,1∗

X

state 1

L R

T 2,2,0 2,2,0

B 2,2,0 2,2,0

Y

L R

T 2,2,0 2,2,0

B 2,2,0 2,2,0

X

state 2

L R

T 1,1,2∗ 1,1,2∗

B 1,1,2∗ 1,1,2∗

Y

Figure 11: Example

Here player 1’s strategy set is{T,B}, player 2’s strategy set is{L,R}, player 3’s strategy set is{X,Y} and

the initial probability distribution over the states isp0 = (1
2, 1

2). The payoffs with added stars correspond

to the Nash equilibrium payoffs in pure strategies for each gameG j with j ∈ K. To offer some intuition

for the necessary constraints on the punishment strategy wesuppose that there exist a completely revealing

equilibrium strategyσ ∈ B. Hence player 3 finds out with probability equal to one which the chosen state

of nature is. If state 1 is chosen by nature then player 3 playsX and if the selected state is 2, player 3

chooses Y. The equilibrium payoff vector forσ is ((1,1),(1,1),1.5). Note that the equilibrium payoffs for

players 1 and 2 correspond to their minmax payoffs in both stages. Now suppose that one of the players

deviates from the completely revealing strategy. Player 3 will not know who actually deviated. To see this

let w.l.o.g. player 1 convey with his action that the true state is 2 and let player 2 convey that 1 is the

true state. There are 2 cases to be considered. Either player1 deviated and the true state is 1 or player 2

deviated and the true state is 2. This is equivalent to sayingplayer 2 is telling the truth and state 1 is actually

the true state, the latter is equivalent to player 1 telling the truth and state 2 is actually the true state. The

difficulty is now to punish both players simultaneously, in other words, to find a strategyz∈ ∆(S) such that

g1
1(z) ≤ γ1

1(z) andg2
2(z) ≤ γ2

2(z). But this constraint is not possible to satisfy. Consider the mixed strategy

z∈ ∆(S) where players assign probability p,q and l to action T,L and X, respectively. In state 2 player 2 has

an expected payoff ofg2
2 = 2l +(1− l) and in state 1 player 1 has an expected payoff ofg1

1 = l +2(1− l)

andg1
1(z)+ g2

2(z) = 3. As mentioned abovev1
1 = v2

1 = v1
2 = v2

2 = 1. Hence in case of a deviation player 3
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has no viable strategy to punish both informed players at once, as at least one of the informed players gets

a payoff strictly larger than the equilibrium payoff, sinceg1
1(z)+g2

2(z) = 3 and the equilibrium payoffs for

player 1 and player 2 are 1 in both stages. We see that it is possible to gain by deviating.

Example 3 suggests that we need to introduce a more restrictive concept of rationality for the informed

players. Tomala (1995) first introduced the concept ofjoint rationality for the informed players which states

that player 3 needs to have a strategyz∈ ∆(S) which punishes both informed players at once below or equal

to their equilibrium payoff in any two states( j, j ′) ∈ K×K. In other words when player 1 signals we are in

state j and player 2 says “No, we are in statej ′”, player 3 will not know who deviated and therefore must

have a strategy such that he can punish both informed playersat once in statesj and j ′. In addition to this

constraint the jointly rational payoffs must still be individually rational for informed players.

Definition 2.9 (Joint Rationality for the Informed Player) For any couple of states( j, j ′) ∈ K ×K let

JR1,2( j, j ′) =
{
(γ1,γ2) ∈ R

k×R
k : ∃ z∈ ∆(S) s.t. g j

1(z) ≤ γ j
1and gj ′

2 (z) ≤ γ j ′

2

}
. For all j ∈ K set:

IR1( j) =
{
(γ1,γ2) ∈ R

k×R
k : γ j

1 ≥ v j
1

}

IR2( j) =
{
(γ1,γ2) ∈ R

k×R
k : γ j

2 ≥ v j
2

}

A payoff vector(γ1,γ2) ∈ R
k×R

k is jointly rational for the informed players if

(γ1,γ2) ∈ IR1∩ IR2∩JR1,2,

where IR1 =
⋂

j∈K IR1( j), IR2 =
⋂

j∈K IR2( j) and JR1,2 =
⋂

( j , j ′)∈K×K JR1,2( j, j ′).

Renault (2001) characterizes completely revealing equilibrium with the notion of joint rationality for the

informed players.

Proposition 2.10 γ = ((γ j
1) j∈K ,(γ j

2) j∈K ,γ3)) ∈ R
k×R

k×R is a completely revealing equilibrium payoff if

and only if the following conditions are satisfied:

1. ((γ j
1) j∈K ,(γ j

2) j∈K) is jointly rational for players 1 and 2

2. ∃(zj ) j∈K ∈ (∆(S))k such that for all j∈ K, γ j
i = g j

i (z
j ) for i = 1,2 and

γ3 = ∑
j∈K

p j
0 g j

3(z
j ) and for all j ∈ K and gj

3(z
j ) ≥ vk

3.

Surely the joint rationality conditions must be satisfied and player 3 can now guarantee his state dependent

minmaxv j
3 for all statesj ∈K as he knows the choice of nature. Before we give an equilibrium for Example

3 we must adjust the definition of a joint plan equilibrium to fit the new individual rationality constraint of

the informed players.

Definition 2.11 (Joint Plan Equilibrium) For player i∈ IN the joint plan for player i(M,λ ,P,z,γi) de-

scribes an joint plan equilibrium for player i if:
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1. ∀ j ∈ K,∀m∈ M with λ j
m > 0,g j

1(zm) ≥ v j
1 and gj

2(zm) ≥ v j
2

2. ∀ ∈ M, ∑
j∈K

p j
mg j

3 ≥ vex(a3(pm))

3. ∀ j ∈ K,∀m∈ M with λ j
m > 0, gj

i (zm) = γ j
i

As before conditions 1 and 2 are individual rationality for the informed player and the third condition is the

incentive compatibility constraint for playeri. Renault (2001) showed that the set of joint plan equilibrium

payoffs is a subset of the uniform equilibrium payoffs. Furthermore if playeri designs the joint plan and

we set for any statej ∈ K, γ j
3−i = min

{
g j

3−i(zm) : m∈ M, p j
m > 0

}
then the joint plan equilibrium payoff is

jointly rational for the informed players.

For Example 3 we showed on page 17 that no completely revealing equilibrium can exist. This is due

to the fact the payoff vector from the completely revealing strategy,((1,1),(1,1),1.5) is not a member of

JR1,2(1,2) and thus by Proposition 2.10 this example has no completely revealing equilibrium. Although

no completely revealing equilibrium exists the game has a non-revealing joint plan equilibrium for player 1

(or player 2), which is given by:
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• M = {1}

• λ = (λ 1,λ 2) whereλ 1
1 = λ 2

1 = 1

• P = {p1} is given byp1 = (1
2, 1

2)

• z= (z1) with z1 = z2 = 1
4(T,L,Y)+ 1

4(T,R,Y)+ 1
4(B,L,Y)+ 1

4(B,R,Y)

• γ1 = (γ1
1 ,γ2

1) = (2,1)

The equilibrium payoff is given by ((2,1),(2,1),1). The conditions for a joint plan equilibrium as we will

show are satisfied. Condition 1 is satisfied since the informed players get at least their minmax payoff

in both states of nature. The individual rationality constraint for player 3 is satisfied sincevex(a3(p1)) =

a3(p1) = max
{

p1
1,2p2

1

}
= 1 for m = 1. The incentive compatibility for player 1 is also satisfiedsince

in every statej, we only send one message since the joint plan is non-revealing. The message 1 can be

interpreted as ’I am telling you nothing’. Thus the given joint plan describes an equilibrium. We now

investigate equilibrium existence for 3-player games whenk = 2 and whenk≥ 3.

2.4.1 Equilibrium Existence with k = 2

We have seen that for Example 3 no completely revealing equilibria exist. But we have shown that in

Example 3 there exists a joint plan equilibrium. This relationship between completely revealing and joint

plan equilibrium holds in general as the following theorem from Renault (2001) states.

Theorem 2.12 For a 3-player infinitely repeated game with incomplete information on one side with two

states of nature, for any initial distribution p0 ∈ ∆(K) there exists a completely revealing equilibrium or a

joint plan equilibrium.

Renault (2001) showed that we can concretize this theorem asfollows. There exist games where no joint

plan equilibria for either player exist. Furthermore thereexist games where no completely revealing nor a

joint plan equilibrium for one of the two players exist.
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2.4.2 Equilibrium Existence with k≥ 3

In the case of larger state spaces, there exist games, where there no completely revealing equilibrium and

no joint plan equilibrium exists for any player. We will givethe proof found in Renault (2001) since it

demonstrates the interdependencies of individual rationality and incentive compatibility for the players.

L R

T 0,2,0 0,2,0

B −1,1,0 −1,1,0

X

state 1

L R

T 0,0,1∗ 0,0,1∗

B −1,0,1 −1,0,1

Y

L R

T −1,0,3 −1, 0,3

B 0,0,3∗ 0,−1,3

X

state 2

L R

T 1
2, 1

2,0 1
2, 1

2,0

B 1,0,0 1,1,0

Y

L R

T 1,−1,0 1
2,0,0

B 1,−1,0 3
2,0,0

X

state 3

L R

T 0,−1,1 0,0,1∗

B 1,−1,1 0,0,1∗

Y

Figure 12: Example 4

For the game given in Example 4 player 1’s strategy set is{T,B}, player 2’s strategy set is{L,R}, player

3’s strategy set is{X,Y} and the initial probability distribution over the states isgiven by p0 = (1
3, 1

3, 1
3).

Players 1 and 2 are as usual the informed players. Again the payoffs labeled with a star correspond to Nash

equilibrium payoffs inG j for all j ∈ K. The minmax payoff for both informed players is zero in all states

of nature. The minmax payoff for player 3 is given byvex(a3(p)) = a3(p) = max
{

3p2, p1 + p3
}

.

Proposition 2.13 The game in Example 4 does not have a completely revealing equilibrium.

Proof: We prove this by contradiction. Suppose there exists a completely revealing equilibrium strategy

σ ∈ B. When players abide toσ the informed players receive an equilibrium payoff of zero in all stages

j ∈ K. These payoffs correspond to the Nash equilibrium payoffs in statej. To find a contradiction we only

need to check whether the equilibrium payoffs are jointly rational. But here no (mixed) strategy that jointly

punishes both players equal or below their equilibrium payoff exists. To see this, suppose there exists such

a strategyz∈ ∆(S) where the players assign probability p,q and l to the action T,L and X, respectively.
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Theng2
1(z) = 1

2 p− 1
2 pl − p− l + 1 andg1

2(z) = l(p+ 1) and thusg2
1(z) + g1

2(z) ≥
1
2. Likewise we have

g3
1(z)+g2

2(z) ≥
1
2. Hence the payoffs generated byσ are neither inJR1,2(2,1) norJR1,2(3,1) and hence are

not jointly rational. Due to Proposition 2.10 we have derived a contradiction, which completes the proof.

Proposition 2.14 For the game in Example 4 no joint plan equilibrium exist for players 1 and 2.

Proof: Again we prove this by contradiction. Assume that a joint plan equilibrium(M,λ ,P,z,γi) exist for

player i. Since we have 3 states of nature we consider 3 messages for the joint plan. LetM be given by

M = {1,2,3}. By the definition of the a posteriori probability distribution we have,

∀ j,m∈ {1,2,3} ,λ j
m > 0⇔ p j

m > 0

Due to this relationship it is sufficient to consider the a posteriori probability distributionP = (p1, p2, p3)

for determining whether the individual rationality constraints of the joint plan equilibrium are satisfied. Let

us now consider the implications of the individual rationality constraint of the informed players.

• p1
m > 0, for m∈ M implies that player 1 has to chooseT in frequency strategyzm.

• p3
m > 0, for m∈ M implies that player 1 has to chooseR in frequency strategyzm.

Since the a posteriori probability distributionP is a convex combination of the initial distribution,p1,p2 and

p3 must be such thatp1
1 ≥

1
3, p2

2 ≥
1
3 andp3

3 ≥
1
3. The implications of the individual rationality constraint

for uninformed player give:

• 3p2
2 > p1

2 + p3
2 implies that player 2 will play X after hearing message 2.

Given player 3’s action, players 1 and 2 will play B and L, respectively, in order to assure their minmax

payoff of zero. Given the players’ behavior frequency strategy,z2 is given byz2 = (B,L,X). With z2 we can

specify the payoff matrix for players 1 and 2 whenz2 is being played,



γ1
1(z2) γ1

2(z2)

γ2
1(z2) γ2

2(z2)

γ3
1(z2) γ3

2(z2)


=




−1 1

0 0

1 −1


 .

As we can see from the payoff matrix player 1 would never want to playz2 in state 1 and similarly player

2 would never want to playz2 in state 3. Individual rationality of the informed player implies that whoever

designs the joint plan it will be such thatp2 = (0,1,0). To see this suppose w.l.o.g. that player 1 designs

the joint plan, thenp1
1 must be zero because of individual rationality of player 1 and p3

1 must be zero due

to player 2’s constraint. Hence after hearing message 2, player 3 knows with certainty that the true state is

never 1 or 3.

Result 1: z2 = (B,L,X) andp2 = (0,1,0)

Furthermore we know form∈ {1,3}, if p1
m > 0 we must haveγ1

2(zm) ≥ 2
3 as player 1 will play T and thus

player 2 can assure himself at least2
3 in state 1 by playing R since player 3 must chose X with a probability
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greater than at least13. Similarly if p3
m > 0 we must haveγ3

1(zm) ≥ 1
2, since player 2 will play R and thus

player 1 can assure himself3
2 ×

1
3 = 1

2 in state 3 by playing B. From above we know that ifp1
1 > 0 then

player 1 will play T inz1 and thus we need to satisfyγ1
2(z1) ≥

2
3.

The next step is to determine the signaling strategy for message 1,λ1 = (λ 1
1 ,λ 2

1 ,λ 3
1 ). We have four

possible types of signaling strategies, as we can rule out signalingλ1 = (0,0,1) andλ1 = (0,1,0) directly,

since the a posteriori probability distribution has to be a convex combination ofp0.

1. λ1 = (> 0,0,0) can be ruled out since player 3 would play Y which violates theconstraintγ1
2(z1)≥

2
3.

2. λ1 = (> 0,0,> 0) can be ruled out for the same reasons as given in case 1.

3. λ1 = (> 0,> 0,> 0) implies that player 2 believes with some positive probability that conditional

on hearing message 1 the true state of nature is three. Since Rstrictly dominates the action L, player

2 chooses R and player 3 must choose X in order to satisfyγ3
1(z1) ≥

1
2. Hencez1 would be given by

z1 = (T,R,X) which gives player 1 a payoff ofγ2
1(z1) = −1 which is less than her minmax of zero

in stage 2 and thus not individually rational.

4. Finally, letλ1 = (> 0,> 0,0) and considerz1 to be strategy when player 1 plays T, player mixes L

and R, and player 3 mixes X and Y. We can writez1 as follows,

z1 = α1(T,L,X)+ α2(T,R,X)+ α3(T,R,Y)+ α4(T,L,Y),

such that∑r∈{1,...,4} αr = 1, for r ∈ {1, ...,4} , αr ≥ 0. In order to assure that the individual rationality

constraint for player 1 is satisfied in state 1 we must haveγ2
1(z1)≥ 0, i.e.−(α1+α2)+

1
2(α3+α4)≥

0. Hencez1 must be such thatα1 + α2 ≤
1
3. Due to this constraint onz1, player 2 cannot design the

joint plan sincez1 would give him a payoff which is strictly larger than zero in state 2. Asγ2
2(z2) = 0,

the incentive compatibility condition of player 2 would be violated as she would want to send signal

1 in stage 2.

Result 2: Only player 1 can design the joint plan.

We must now specifyαr for r ∈ {1, ...,4} such thatγ1
2(z1)≥

2
3 which gives usα1+α2 = 1

3 and the previous

constraint holds with equality. Using the individual rationality constraint of player 3 we can give the a

posteriori probability distribution over the states conditional that message 1 was sent. We must have that

∑ j∈{1,2,3} p j
1g j

3(z1) ≥ max
{

3p2
1, p1

1 + p3
1

}
. Sinceλ 3

1 = 0 we have by definition thatp3
1 = 0 and we can

rewrite the individual rationality constraint for player 3as 2
3 p1

1 + p2
1 ≥ max

{
3p2

1, p1
1

}
. Using p1

1 + p2
1 = 1

we find the solution atp1 = (p1
1, p2

1, p3
1) = (3

4, 1
4,0). With z1 as specified we can now give the payoff matrix

for players 1 and 2 whenz1 is being played



γ1
1(z1) γ1

2(z1)

γ2
1(z1) γ2

2(z1)

γ3
1(z1) γ3

2(z1)


=




0 2
3

0 1
3

≤ 1
3 ≤ 0


 .

Result 3: z1 = α1(T,L,X)+α2(T,R,X)+α3(T,R,Y)+α4(T,L,Y), whereα1 +α2 = 1
3 andp1 = (3

4, 1
4,0)
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We have already specifiedz1 andz2 and now turn to the signaling strategyλ3 and the corresponding fre-

quency strategyz3. This will lead to the anticipated contradiction. By similar reasoning as above we

find thatλ3 can only be of the formλ3 = (0,> 0,> 0). We can writez3 as follows,z3 = β1(T,R,X)+

β2(B,R,X)+ β3(T,R,Y)+ β4(B,R,Y), such that∑r∈{1,...,4} βr = 1, for r ∈ {1, ...,4} , βr ≥ 0. Due to the

incentive rationality condition for player 1 we need thatγ2
1(z3) = 0, hence−β1+ 1

3β3 + β4 = 0 and we can

rewriteβ1 andβ2 asβ1 = 1
3β3+β4 andβ2 = 1− 4

3β3−2β4. With z3 as specified we can now give the payoff

matrix for players 1 and 2 whenz3 is being played,



γ1
1(z3) γ1

2(z3)

γ2
1(z3) γ2

2(z3)

γ3
1(z3) γ3

2(z3)


=




−1+ 3
2β3 + β4 1− 1

2β3

0 2β3 +3β4−1

3
2 −2β3−

5
2β4 0


 .

In order to assure that the individual rationality constraint for player 2 in state 2 is satisfied we needγ2
2(z3)≥

0 which implies that 1−2β3−3β4 ≤ 0. Using this constraint we can rewrite the payoff of player 1in state 3

as 3
2 −2β3−

5
2β4 = (1−2β3−3β4)+(1

2 + 1
2β4) < 1

2 + 1
2β4. If β4 = 1 we have3

2 −2β3−
5
2β4 = −1 and so

for all β4 ∈ [0,1] we have3
2 −2β3−

5
2β4 < 1. This violates the incentive compatibility condition of player

1 asg3
1(z3) < g3

1(z2) = 1 and thus player 1 would prefer to send signal 2 in state 3.

Result 4: There exists no joint plan for player 1 which satisfies the conditions of a joint plan equilibrium.

This completes the proof.

We have shown that no completely revealing equilibrium and no joint plan equilibrium for neither informed

player in Example 4 can exist. In the next section we turn to a new equilibrium concept which relies on

successive information revelation by the informed players.
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2.5 Successive Information Revelation by the Informed Players

We first discuss the approach suggested by Renault (2001) andthen explain our own. Renault (2001)

suggests that in the game in Example 4 player 1 should send a state dependent messageλ = (λ 1,λ 2,λ 3)

such that the a posteriori probability distribution and thefrequency strategy are as follows.

• M = {1,2,3}

• λ 1 = (λ 1
1 ,λ 1

2 ,λ 1
3 ) = (1,0,0), λ 2 = (λ 2

1 ,λ 2
2 ,λ 2

3 ) = (1
3, 1

3, 1
3) andλ 3 = (λ 3

1 ,λ 3
2 ,λ 3

3 ) = (0,0,1)

• p1 = (p1
1, p2

1, p3
1) = (3

4, 1
4,0), p2 = (p1

2, p2
2, p3

2) = (0,1,0) andp3 = (p1
3, p2

3, p3
3) = (0, 1

4, 3
4)

• z1 = 1
3(T,L,X)+ 1

3(T,L,Y), z2 = (B,L,X), z3 = 2
5(T,R,X)+ 1

5(B,R,X)+ 2
5(B,R,Y)

With the frequency strategiesz1, z2 and z3 we obtain the following payoffs for player 1 and player 2,

respectively. 


γ1
1(z1) γ1

2(z1)

γ2
1(z1) γ2

2(z1)

γ3
1(z1) γ3

2(z1)


=




0 2
3

0 1
3

1
3 −1







γ1
1(z2) γ1

2(z2)

γ2
1(z2) γ2

2(z2)

γ3
1(z2) γ3

2(z2)


=




−1 1

0 0

1 −1







γ1
1(z3) γ1

2(z3)

γ2
1(z3) γ2

2(z3)

γ3
1(z3) γ3

2(z3)


=




− 3
5 1

0 1
5

1
2 0




Note that this joint plan for player 1 is not incentive compatible since 1= γ3
1(z2) 6= γ3

1(z3) = 1
2. In state 3

player 1 would want to send message 2. Renault (2001) now suggests that player 2 should have an extra

communication phase after player 1 sends message 2, in whichplayer 2 can say “OK” or “NO, the true

state is c”. If player 1 sends sends message 2 in state 3 player2 should say “NO” and player 2 and 3 should

punish player 1. If the message is “OK” then the game goes on asbefore. But if the message is “NO” they

then play(T,R,X) forever. Renault (2001) proves that this strategy describes an uniform equilibrium for

the game in Example 4.

Although this strategy leads to an equilibrium it seems to besome what “ad hoc”. In general, why

should player 3 believe in the a posteriori probability distribution if the joint plan is not incentive compat-

ible? Say that since the plan is not incentive compatible he is not going to believe in the joint plan and

always play X, which would be with respect to the initial probability distribution p0 individual rational.

Concerning player 1, why would she want give control to player 2. Suppose player 1 sends message 2 when

the true state is 2, in other words player 1 is not lying. If player 2 is “nasty” she would always say “NO, the

true state is c” given the true state is 2. They would then play(T,R,X) forever which would give player 2 a

payoff of zero and player 1 a payoff of−1. Hence player 1 should be disinclined to give up control andbe
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at the mercy of player 2 especially when player 2 can play an individual rational action which would give

player 1 a payoff worse than her minmax payoff. Since we assumed that player 2 is not “nasty” this does

not pose a problem in this particular case. We now describe a different equilibrium concept which is not

only individually rational but also incentive compatible.

2.5.1 Successive Joint Plans and Successive Joint Plan Equilibria

In this section we consider plans where one of the informed players, say playeri, sends some state de-

pendent signal or message which is then followed by an additional information revelation by player 3− i.

Conditional on the message the players then play a message dependent frequency strategy, as usual. We

call such a plan asuccessive joint plan. If a successive joint plan is such that the signaling strategies of both

players are incentive compatible and the payoffs of all players are individually rational then the successive

joint plan describes an successive joint plan equilibrium.We will now define successive joint plans and the

corresponding successive joint plan equilibrium.

Definition 2.15 (Successive Joint Plan)For i and3− i in IN, a successive joint plan is a tuple(Mi ,λ ,P(λ ),b,M3−i ,µ ,P(λ ,µ)

where:

1. Mi is a non empty finite set of messages (or signals) for player i,who will be the first to reveal

information.

2. λ = (λ j) j∈K is a signaling strategy, such that for each state j,λ j ∈ ∆(Mi) and ∀m ∈ M,

λm =de f ∑
j∈K

p j
0λ j

m > 0.

3. P(λ ) = (pm(λ ))m∈Mi such that for all m∈ M, pm(λ ) ∈ ∆(K) is the induced probability distribution

on the states of the nature given m, with pj
m(λ ) = p j

0λ j
m/λm where pj

m(λ ) is the probability that is

assigned to state j conditional on hearing message m from player i.

4. b= (b1, ...,b|Mi |) ∈ 2|Mi | is defined such that if bm = 1 then player3− i will reveal some additional

information if she hears the message m∈ Mi . If bm = 0 then conditional on hearing message m∈ Mi ,

player3− i will reveal no further information.

5. M3−i is a finite set of messages (or signals) for the player3− i who will be able to send some message

m̂∈ M3−i if and only if a message m∈ Mi was sent by player i that satisfies bm = 1.

6. µ = (µ j) j∈K is a signaling strategy such that for each state state j, where player i can send a message

m∈ Mi with bm = 1 with positive probability,µ j ∈ ∆(M3−i) and∀m̂∈ M3−i ,µm̂ =de f ∑
j∈K

p j(λ )µ j
m̂ >

0.

7. P(λ )= (pm(λ )m∈Mi , bm=0, pmm̂(λ ,µ)m∈Mi , bm=1, m̂∈M3−i
) such that for all m∈Mi with bm= 0, pm(λ )∈

∆(K) is the induced probability distribution on the states of thenature given m with pjm(λ ) =

p j
0λ j

m/λm where pj
m(λ ) is the probability that is being assigned to state j conditional on hearing
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the message m from player i. For all m∈ Mi with bm = 1, pmm̂(λ ,µ) ∈ ∆(K) is the induced proba-

bility distribution on the states of the nature given m andm̂ with pj
mm̂(λ ,µ) = p j

m(λ )µ j
m̂/µm̂ where

p j
mm̂(λ ,µ) is the probability that is being assigned to state j, conditional on hearing the message m

from player i andm̂ from player3− i.

8. z= ((zm)m∈Mi ,(zmm̂)m∈Mi ,m̂∈M3−i
) is a frequency strategy which is played after the signal is given

such that for all m∈ Mi with bm = 0, zm ∈ ∆(S) and for all m∈ Mi with bm = 1, for all m̂∈ M3−i ,

zmm̂ ∈ ∆(S).

9. γi ∈ R
k is the payoff to player i where∀ j ∈ K, γ j

i = max

{
max
m∈Mi

g j
i (zm), ∑

m̂∈M3−i

µ j
m̂g j

i (zmm̂)

}

10. γ3−i ∈ R
k is the payoff to player3− i where for all stages j∈ K conditional on hearing any message

m∈ M, with bm = 1 the payoff in state j isγ3−i|m= max
m̂∈M3−i

g j
i (zmm̂).

As usual, if an informed player deviates from a frequency strategy in statej the other informed player will

reveal the true state of nature and she will then together with player 3 punish the deviator to her state de-

pendent minmax. Furthermore if any informed player’s signal is not according to protocol, she is punished

to her state dependent minmax. If the uninformed player deviates from any frequency strategyzm or zmm̂

the informed players punish the uninformed player such thathe will receive a payoff ofvex(a3(pm(λ )) or

vex(a3(pmm̂(λ ,µ)), respectively. We will now define a successive joint plan equilibrium.

Definition 2.16 (Successive Joint Plan Equilibrium)The successive joint plan

(Mi ,λ ,P(λ ),b,M3−i ,µ ,P(λ ,µ),z,γi ,γ3−i) describes a successive joint plan equilibrium if:

1. ∀ j ∈ K,∀m∈ Mi with bm = 0 and λ j
m > 0, gj

i (zm) ≥ v j
i and gj

3−i(zm) ≥ v j
3−i

2. ∀ j ∈ K,∀m∈ Mi with bm = 1 and λ j
m > 0, ∀ m̂∈ M3−i andµ j

m̂ > 0,

g j
i (zmm̂) ≥ v j

i and gj
3−i(zm̂) ≥ v j

3−i.

3. ∀m∈ Mi with bm = 0, ∑
j∈K

p j
m(λ )g j

3(zm) ≥ vex(a3(pm(λ )))

4. ∀m̂∈ M3−i , ∑
j∈K

p j
mm̂(λ ,µ) g j

3(zmm̂) ≥ vex(a3(pmm̂(λ ,µ)))

5. ∀ j ∈ K,∀m∈ M with bm = 0 andλ j
m > 0, gj

i (zm) = γ j
i

6. ∀ j ∈ K,∀m∈ M with bm = 1 andλ j
m > 0 g j

i (zmm̂) = γ j
i

7. ∀ j ∈ K,∀m∈ M with bm = 1 andλ j
m > 0, ∀m̂∈ M3−i with µ j

m̂ > 0, g j
3−i(zmm̂) = γ j

3−i |m

Condition 1 is the individual rationality condition for playersi and 3− i in case playeri sends a message

after which player 3− i sends no further message. Condition 2 is the individual rationality condition for

playersi and 3− i in case playeri sends a message after which player 3− i sends some further message.

Conditions 3 and 4 are the individual rationality conditions for player 3. Conditions 5 and 6 are the incentive
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compatibility conditions for playeri, conditions 5 in case she sends a messagem∈ Mi with bm = 0 and

condition 6 whenbm = 1. Condition 7 is the incentive compatibility condition forplayer 3− i.

The motivation for using successive joint plans is that we can split the revelation process in two steps.

This allows us to avoid certain incentive compatibility problems as we have seen in Example 4, where it was

impossible to define a joint plan for player 1 that is incentive compatible. Using two phases of revelation

we simply let player 2 reveal the information that was not incentive compatible for player 1.

2.5.2 Properties of Successive Joint Plans

We will now analyze the properties of successive joint plansand successive joint plan equilibria. Similar

to joint plan equilibria, every successive joint plan equilibrium describes a uniform equilibrium. The proof

for successive joint plan equilibria is a generalization ofthe proof for standard joint plan equilibria, which

can be found in Renault (2001, p. 235). Since successive joint plans are an extension of joint plans, Lemma

2.17 follows directly.

Lemma 2.17 Let the joint plan(M,λ ,P,z,γi) for player i∈ IN satisfy the conditions of a joint plan equi-

librium, then there exists a successive joint plan(Mi ,λ ,P(λ ),b,M3−i ,µ ,P(λ ,µ),z,γi ,γ3−i) which satisfies

the conditions of a successive joint plan equilibrium.

Proof: Let the successive joint plan be given by(M,λ ,P,(0, ...,0),M3−i ,µ ,P,z,γi ,γ3−i). Sinceb= (0, ...,0)

player 3− i will never send additional information, the choice ofµ andM3−i is thus irrelevant. Furthermore

the payoff of player 3− i in statej ∈ K is given byγ j
3−i = ∑m∈M p j

m(λ )g j
3−i(zm). We now need to show that

the successive joint plan satisfies the conditions of a successive joint plan equilibrium. Sinceb = (0, ...,0)

conditions 2, 4, 6 and 7 do not have to checked since for allm∈ M, bm = 0. Since the conditions 1,2 and

3 of the joint plan equilibrium are satisfied this implies that conditions 1,3 and 5 of a successive joint plan

equilibrium are satisfied. This completes the proof.

Note that the following statement is not necessarily satisfied. If there exists a successive joint plan

(Mi ,λ ,P(λ ),b,M3−i ,µ ,P(λ ,µ),z,γi ,γ3−i) which satisfies the conditions of a successive joint plan equilib-

rium then there exists a joint plan(M,λ ,P,z,γi ,) for playeri ∈ IN or 3− i that satisfies the conditions of a

joint plan equilibrium.

Proposition 2.18 For the gameΓ given in Example 4 there does not exist a joint plan equilibrium for player

1 and no joint plan equilibrium for player 2, but there existsa successive joint plan(Mi ,λ ,P(λ ),b,M3−i ,µ ,P(λ ,µ),z,γi ,γ3−i)

which satisfies the conditions of a successive joint plan equilibrium.

Proof: The first part was profen in Renault (2001) and was also givenin an earlier section. We now give

a successive joint plan for Example 4, where first player 1 sends some state dependent message and then

player 2, conditional on the message of player 1, reveals additional information about the true state of

nature.
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Let (M1,λ ,P(λ ),b,M2,µ ,P(λ ,µ),z,γ1,γ2) be given by:

• M1 = {1,2}

• λ 1 = (λ 1
1 ,λ 1

2 ) = (1,0), λ 2 = (λ 2
1 ,λ 2

2 ) = (1
3, 2

3) andλ 3 = (λ 3
1 ,λ 3

2 ) = (0,1)

This gives us the following a posteriori probability distribution P(λ ) = (p1(λ ), p2(λ )) on the states of

nature.

• P(λ ) = (p1(λ ), p2(λ )) wherep1(λ ) = (p1
1(λ ), p2

1(λ ), p3
1(λ )) = (3

4, 1
4,0) and

p2(λ ) = (p1
2(λ ), p2

2(λ ), p3
2(λ )) = (0, 2

5, 3
5)

In other words after hearing message 1 we know that we are with3
4 probability in state 1 and with14 in

state 2. This makes player 3 indifferent between choosingX andY. After hearing message 2 we know that

we are with2
5 probability in state 2 and with35 probability in state 3 but never in state 1. After hearing

message 1 player 2 does not reveal any additional information but conditional on hearing message 2 player

2 will reveal additional information with the following signaling strategyµ = (µ2,µ3). Since message 2 is

sent with zero probability in state 1 we can neglect to specify µ1. The combined signaling strategy is given

in Figure 13. The leaves correspond to the messages. The numbers along the branches correspond to the

probabilities that a certain state or message gets chosen.

1/31/3
1/3

choice of nature

λ 1
2 = 0

2

λ 1
1 = 1

1

state 1

λ 2
2 = 2/3λ 2

1 = 1/3

1

state 2

µ2
b = 1/2

b

µ2
a = 1/2

a

2

λ 3
2 = 1λ 3

1 = 0

1

state 3

µ3
b = 1

b

µ3
a = 0

a

2

Figure 13: Successive Signaling Strategy

The signaling strategy for player 2 is given by:

• b = (b1,b2) = (0,1)

• M2 = {a,b}

• µ = (µ2,µ3) whereµ2 = (µ2
a,µ2

b) = (1
2, 1

2) andµ3 = (µ3
a ,µ3

b) = (0,1)

29



Hence after hearing message 2, player 2 sends conditional onbeing in state 2 with1
2 probability message

a and likewise with1
2 probability messageb. If player 2 hears message 2 and the true state is state 3 she

will always send messageb. This signaling behavior gives us the following final a posteriori probability

distributionP(λ ,µ) = (p1(λ ), p2(λ ,µ), p3(λ ,µ)).

• P(λ ,µ) = (p1(λ ), p2a(λ ,µ), p2b(λ ,µ)) where

p1(λ ) = (p1
1(λ ), p2

1(λ ), p3
1(λ )) = (3

4, 1
4,0),

p2a(λ ,µ) = (p1
2a(λ ,µ), p2

2a(λ ,µ), p3
2a(λ ,µ)) = (0,1,0) and

p2b(λ ,µ) = (p1
2b(λ ,µ), p2

2b(λ ,µ), p3
2b(λ ,µ)) = (0, 1

4, 3
4)

We now specify the frequency strategiesz1, z2a andz2b.

• z= (z1,z2a,z2b) wherez1 = 1
6(T,R,X)+ 5

6(T,R,Y), z2a = (B,R,X) and

z2b = 1
2(B,R,X)+ 1

2(B,R,Y)

With the frequency strategiesz1, z2a andz2b we obtain the following payoffs for player 1 and player 2,

respectively. 


γ1
1(z1) γ1

2(z1)

γ2
1(z1) γ2

2(z1)

γ3
1(z1) γ3

2(z1)


=




0 1
3

1
4

5
12

1
12 0







γ1
1(z2a) γ1

2(z2a)

γ2
1(z2a) γ2

2(z2a)

γ3
1(z2a) γ3

2(z2a)


=




−1 1

0 0

1 −1







γ1
1(z2b) γ1

2(z2b)

γ2
1(z2b) γ2

2(z2b)

γ3
1(z2b) γ3

2(z2b)


=




−1 1
2

1
2 0

3
4 0




• The payoff for player 1 is given byγ1 = (0, 1
4, 3

4)

• The payoff for player 2 is given byγ2 = (1
3,0,0)

We will now show that(M1,λ ,P(λ ),b,M2,µ ,P(λ ,µ),z,γ1,γ2) as specified above satisfy the definition of

a successive joint plan equilibrium. We know from before that the minmax payoff for the informed players

is zero in all states; that is for alli ∈ IN and for all j ∈ K we havev j
i = 0. For player 3 the minmax payoff

is given byvex(a3(p)) = a3(p) = max
{

3p2, p1 + p3
}

whenp = (p1, p2, p3) ∈ ∆(K) is believed to be the

true probability distribution governing the states of nature. We first show that condition 1 holds. Since

message 1 is the only message inM1 which satisfiesb1 = 0 we need to check that the individual rationality

conditions hold in case message 1 is being sent with positiveprobability.

• λ 1
1 > 0: g1

1(z1) = 0 = v1
1 andg1

2(z1) = 1
3 > v1

2
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• λ 2
1 > 0: g2

1(z1) = 1
4 > v1

1 andg2
2(z1) = 5

12 > v2
2

Message 2 is being sent with positive probability in states 2and 3 and satisfiesb2 = 1. Hence player

2 will further reveal information conditional on hearing message 2 by player 1. Condition 2 holds

since,

• µ2
a > 0: g2

1(z2a) = 0 = v2
1 andg2

2(z2a) = 0 = v2
2

• µ2
b > 0: g2

1(z2b) = 1
2 > v2

1 andg2
2(z2b) = 0 = v2

2

• µ3
b > 0: g3

1(z2b) = 3
4 > v3

1 andg3
2(z2b) = 0 = v3

2

We now check conditions 3 and 4. The individual rationality conditions for player 3 are satisfied since:

• Message 1 satisfiesb1 = 0 and withp1(λ )= (p1
1(λ ), p2

1(λ ), p3
1(λ ))= (3

4, 1
4,0) we have∑

j∈K
p j

1(λ )g j
3(z1)=

3
4 = max

{
3p2

1(λ ), p1
1(λ )+ p3

1(λ )
}

= vex(a3(p1(λ )))

Message 2 satisfiesb2 = 0 so

• for messagea with p2a(λ ,µ) = (p1
2a(λ ,µ), p2

2a(λ ,µ), p3
2a(λ ,µ)) = (0,1,0) we have

∑
j∈K

p j
2a(λ ,µ)g j

3(z2a) = 3 > max
{

3p2
2a(λ ,µ), p1

2a(λ ,µ)+ p3
2a(λ ,µ)

}
= vex(a3(p2a(λ ,µ)))

• for messageb with p2b(λ ,µ) = (p1
2b(λ ,µ), p2

2b(λ ,µ), p3
2b(λ ,µ)) = (0, 1

4, 1
4) we have

∑
j∈K

p j
2b(λ ,µ)g j

3(z2b) = 3
4 = max

{
3p2

2b(λ ,µ), p1
2b(λ ,µ)+ p3

2b(λ ,µ)
}

= vex(a3(p2b(λ ,µ)))

Conditions 5 and 6 are satisfied since:

• In state 1 player 1 sends message 1 with probability equal to one, i.e.λ 1
1 = 1 andg1

1(z1) = γ1
1 . Player

1 would also not want to send message 2 in state 1 sincez2a andz2b would give her a payoff of

g1
1(z2a) = −1 andg1

1(z2b) = −1, respectively.

• In state 2 player 1 sends both messages with positive probability, i.e. λ 2
1 = 1

3 andλ 2
2 = 2

3. The

payoff from sending message 1 isg2
1(z1) = 1

4 = γ2
1 and the expected payoff from sending message

2 is 1
2g2

1(z2a) + 1
2g2

1(z2b) = 1
2 · 0+ 1

2 ·
1
2 = 1

4 = γ2
1 . Hence player 1 is indifferent between sending

message 1 and message 2.

• In state 3 player 1 sends message 2 with probability equal to one, i.e.λ 3
2 = 1 (after which player 2

sends messageb with probability equal to one) andg3
1(z2b) = γ1

1 . Player 1 would also not want to

send message 1 in state 3 sincez1 would give her a payoff ofg3
1(z1) = 0.

The incentive compatibility constraint for player 1 is thussatisfied without player 2 having to say “OK” or

“NO”. Concerning player 2 we need to check that conditional on hearing message 2 the incentive compati-

bility constraint holds:

• In state 2 player 2 sends messagea andb with equal probability, i.e.µ2
2a = µ2

2b = 1
2 andg2

2(z2a) =

g2
2(z2a) = γ2

2 |2 = 0.
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• In state 3 player 2 sends message b with probability equal to one, i.e.µ3
2b = 1 andg3

2(z2b) = γ3
2 |2= 0.

In state 3 Player 2 would also not want to send messagea with positive probability sincez2a would

give her a payoff ofg3
2(z2a) = −1.

We have shown that all payoffs are individually rational andthat the incentive compatibility constraints for

players 1 and 2 are satisfied. Thus the successive joint plan describes a successive joint plan equilibrium

with the equilibrium payoff vector of((0, 1
4, 3

4),(1
3 ,0,0),1). This completes the proof.

We have seen that the set of possible successive joint plan equilibria is strictly larger than the set of

“standard” joint plan equilibria. Furthermore we have shown that the game in Example 4 has an equilibrium

realized by successive information revelation. The nice property of this equilibrium is that player 2 does

not have to announce that player 1 is lying which can pose problems; that is player 1 could be telling the

truth but player 2 could announce that player 1 is lying. In any case, when player 2 announces that player 1

is lying, player 3 would not necessarily know who is deviating. This problem is avoided in this case since

individual rationality holds for both players. We see that incentive compatibility is a strong and desirable

property of an equilibrium.

The question is now whether there exists a successive joint plan equilibrium for Example 4 where

player 2 is the first one the reveal some information followedby player 1. The answer to this question

is yes. The relevance of this result will be briefly discussedin the conclusion. We now give a successive

joint plan(M2,λ ,P(λ ),b,Mi ,µ ,P(λ ,µ),z,γ2,γ1) and then prove that this successive joint plans satisfies the

conditions of a successive joint plan equilibrium. Due to its length we shall give the successive joint plan

and the proof in a more compact form, but which is closely related to the proof of Proposition 2.18.

(M2,λ ,P(λ ),b,Mi ,µ ,P(λ ,µ),z,γ2,γ1) is given by:

• M2 = {1,2}

• λ 1 = (λ 1
1 ,λ 1

2 ) = (1,0), λ 2 = (λ 2
1 ,λ 2

2 ) = (2
3, 1

3) andλ 3 = (λ 3
1 ,λ 3

2 ) = (0,1)

• P(λ ) = (p1(λ ), p2(λ )) wherep1(λ ) = (3
5, 2

5,0) and

p2 = (p1
2(λ ), p2

2(λ ), p3
2(λ )) = (0, 1

4, 3
4)

• b = (1,0)

• M1 = {a,b}

• µ = (µ1,µ2) whereµ1 = (µ1
a,µ1

b) = (1,0) andµ2 = (µ2
a ,µ2

b) = (1
2, 1

2)

The successive signaling strategy is illustrated in Figure14.

• P(λ ,µ)= (p1a(λ ,µ), p1b(λ ,µ)), p2(λ )) wherep1a(λ ,µ)= (3
4, 1

4,0), p1b(λ ,µ)= (0,1,0) andp2(λ )=

(0, 1
4, 3

4),

• z= (z1a,z1b,z2) wherez1a = 1
3(T,R,X)+ 2

3(T,R,Y), z1b = (B,L,X) and

z2 = 5
12(B,R,X)+ 7

12(B,R,Y)

• The payoff for player 2 is given byγ2 = (2
3, 1

6,0)

32



1/31/3
1/3

choice of nature
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a = 1

a

1
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2 = 1

2

λ 3
1 = 0

1
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b

µ2
a = 1/2

a

1

Figure 14: Successive Signaling Strategy

• The payoff for player 1 is given byγ1 = (0, 7
36,

5
8)

With the frequency strategiesz1a, z1b andz2 we obtain the following payoffs for players 1 and player 2

respectively. 


γ1
1(z1a) γ1

2(z1a)

γ2
1(z1a) γ2

2(z1a)

γ3
1(z1a) γ3

2(z1a)


=




0 2
3

0 1
3

1
6 0







γ1
1(z1b) γ1

2(z1b)

γ2
1(z1b) γ2

2(z1b)

γ3
1(z1b) γ3

2(z1b)


=




−1 1

0 0

1 −1







γ1
1(z2) γ1

2(z2)

γ2
1(z2) γ2

2(z2)

γ3
1(z2) γ3

2(z2)


=




−1 5
12

7
12

1
6

5
8 0




We now prove that(M2,λ ,P(λ ),b,M1,µ ,P(λ ,µ),z,γ2,γ1) as given above satisfies the conditions of a suc-

cessive joint plan equilibrium.

We first show that condition 1 holds. Since message 2 is the only message inM2 which satisfiesb2 = 0 we

need to check that the individual rationality conditions holds in case message 2 is being sent.

• λ 2
2 > 0: g2

1(z2) = 7
12 > v2

1 andg2
2(z2) = 1

6 > v2
2

• λ 3
2 > 0: g3

1(z2) = 5
8 > v3

1 andg3
2(z2) = 0 = v2

2

Message 1 is being sent with positive probability in states 1and 2 and satisfiesb1 = 1. Hence player

1 will reveal further information conditional on hearing message 1 by player 2. Condition 2 holds

since:
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• µ1
a > 0: g1

1(z1a) = 0 = v1
1 andg1

2(z1a) = 2
3 > v1

2

• µ2
a > 0: g2

1(z1a) = 0 = v2
1 andg2

2(z1a) = 1
3 > v2

2

• µ2
b > 0: g2

1(z1b) = 0 = v2
1 andg2

2(z1b) = 0 = v2
2

We now check conditions 3 and 4. The individual rationality conditions for player 3 are satisfied since:

• Message 2 satisfiesb2 = 0 and withp2(λ )= (0, 1
4, 3

4) we have∑
j∈K

p j
2(λ )g j

3(z2)= 3
4 = max

{
3p2

2(λ ), p1
2(λ )+ p3

2(λ )
}

=

vex(a3(p2(λ )))

Message 1 satisfiesb1 = 1 so

• for messagea with p1a(λ ,µ) = (3
4, 1

4,0) we have

∑
j∈K

p j
1a(λ ,µ)g j

3(z1a) = 3
4 = max

{
3p2

1a(λ ,µ), p1
1a(λ ,µ)+ p3

1a(λ ,µ)
}

= vex(a3(p1a(λ ,µ)))

• for messageb with p1b(λ ,µ) = (0,1,0) we have

∑
j∈K

p j
1b(λ ,µ)g j

3(z1b = 3 > max
{

3p2
1b(λ ,µ), p1

1b(λ ,µ)+ p3
1b(λ ,µ)

}
= vex(a3(p1b(λ ,µ)))

Conditions 5 and 6 are satisfied since:

• In state 1 player 2 sends message 1 with probability equal to one, i.e. λ 1
1 = 1 (after which player

1 sends messagea with probability equal to one) andg1
2(z1a) = γ1

2. Player 2 would also not want

to send message 2 in state 1 sincez2 would give her a payoff ofg1
2(z2) = 5

12 which is less that

g2
1(z1a) = 2

3.

• In state 2 player 1 sends both messages with positive probability, i.e. λ 2
1 = 2

3 andλ 2
1 = 1

3. The

payoff from sending message 2 isg2
2(z2) = 1

6 = γ2
2 and the expected payoff from sending message

1 is 1
2g2

2(z1a) + 1
2g2

2(z1b) = 1
2 ·

1
3 + 1

2 · 0 = 1
6 = γ2

2 . Hence player 1 is indifferent between sending

message 1 and message 2.

• In state 3 player 2 sends message 2 with probability equal to one, i.e.λ 3
2 = 1 andg3

2(z2) = γ3
2 . Player

1 would also not want to send message 1 in state 3 sincez1a andz1b would give her a payoff of

g3
2(z1a) = 0 andg3

2(z1b) = −1, respectively.

Condition 7 is satisfied since:

• In state 1 player 1 sends messagea with probability equal to one, i.e.µ1
1a = 1 andg1

1(z1a) = γ1
1 |1= 0.

In state 1 player 1 would also not want to send messageb with positive probability sincez1b would

give her a payoff ofg1
1(z1b) = −1.

• In state 2 player 1 sends messagea andb with equal probability, i.e.µ2
1a = µ2

1b = 1
2 andg2

1(z1a) =

g2
1(z1a) = γ2

1 |1.

We have shown that all payoffs are individual rationally andthat the incentive compatibility constraints for

players 1 and 2 are satisfied. Thus the successive joint plan describes a successive joint plan equilibrium

with the equilibrium payoff vector of((0, 7
36,

5
8),(2

3, 1
6,0),1). This completes the proof.
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Due to the existence of successive joint plan equilibria forExample 4, where neither a completely

revealing equilibrium nor a joint plan equilibrium for player 1 nor a joint plan equilibrium for player 2

exist, the question arises if this result can be generalizedto all 3-player infinitely repeated games with

incomplete information on one side and any finite number of states. In other words does there always exist

a successive joint plan equilibrium for this class of games?

35



3 Conclusion

We have shown that there exist 3-player infinitely repeated games with incomplete information on one side

and three states of nature where no joint plan equilibria exist for neither player 1 nor player 2. We have then

introduced and defined a more general concept, successive joint plans, where both informed players take

part in the revelation process. Using successive joint plans we have then profen the existence of equilibria

for a particular game where no joint plan equilibrium exist.We have found two successive joint plant

equilibria, one where player 1 is the first to reveal some information and the other one where player 2 is the

first player to send some signal.

The fact that there exist two successive joint plan equilibria, as described above, not only supports our

approach but also gives a positive outlook that the answer tothe posed question will be a positive one. If

the existence of successive joint plan equilibria for all 3-player infinitely repeated games with incomplete

information on one side and with arbitrary many states can beprofen, the general proof should give the

existence of two successive joint plan equilibria, one where player 1 is the first to reveal some information

and the other one where player 2 is the first player to send somesignal.

We now give a possible approach to answer the question posed in the last chapter. If the number

of states is 2 then there exist either a completely revealingequilibrium or a joint plan equilibrium for

one of the two informed players. For an arbitrary number of states we should first check whether there

exists a completely revealing equilibrium. If the existence of completely revealing equilibria fails Propo-

sition 2.10 imposes restrictions on the equilibrium payoffs. Keeping this restriction and the individual

rationality constraints in mind we now could define a correspondenceF : ∆(K) → R
k ×R

k by F(p) =






g1
1(z)−v1

1 g1
2(z)−v1

2
...

...

gk
1(z)−vk

1 gk
2(z)−vk

2


 : z∈ ∆(S),γ3 > vex(a3(p))





. If there exists az∈ ∆(S) such thatF(p0)∩




≥ 0 ≥ 0
...

...

≥ 0 ≥ 0


 6= /0 then there exists a joint plan with one message and only onestage of revelation for one

of the informed players. Now letC be the connected component of





p∈ ∆(K) : F(p)∩




≥ 0 ≥ 0
...

...

≥ 0 ≥ 0


= /0





containingp0. We can characterizeC by settingC=
⋃

i

Ci whereCi is of the formCi =






p∈C : F(p)∩




< 0 ≥ 0

> 0 ≥ 0
...

...

≥ 0 < 0



6= /0






.

In all setsCi the individual rationality constraint is violated for someinformed player. But by considering

the relative frontier of some of theCi and using the convexity ofF we should be able to prove the existence

of a successive joint plan equilibrium.
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