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1 Introduction

Infinitely repeated games with incomplete information wing introduced by Aumann and Maschler in
1966 in order to study the behavior of agents in the arms rageglthe cold war. Since then their approach
has found great relevance when analyzing long term behewv#brategic settings with incomplete informa-
tion. Aumann and Maschler (1995) first showed in 1968 thala®4qy infinitely repeated zero-sum games
with incomplete information on one side have a value and #rusquilibrium. Later Simon, Spiez, and
Torunczyk (1995) proved the existence of joint plan equidifin all nonzero-sum games with two players.
Yet the existence of an equilibrium in the case of 3-playénitely repeated nonzero-sum games with in-
complete information on one side has not been establishedhutt (2001) proved by counterexample that

not all 3-player games possess a completely revealing anglan equilibrium.

In this thesis we briefly describe the setup of infinitely r&pel games with incomplete information,
discuss the results from the 2-player games and finally aiyely to the 3-player case. After explaining
the findings of Renault we introduce an extension to joinhglahich relies on the concept of successive
information revelation: in a first step one of the informedydrs would reveal some information about the
outcome of the choice of nature, in a second step the othemi&d player would reveal additional infor-
mation about the true state of nature. Using this concepiadessive joint plans we prove the existence of

successive joint plan equilibria in the counterexampleluseRenault (2001).



2 Main Section

2.1 Infinitely Repeated Games with Incomplete Information

An infinitely repeated game with incomplete informatidn, is given by (K, pO,GJ,N,S,gij)ijee,\*f where

K ={1,...,k} is a finite set of k states of nature and each state of natark represents a one shot game
Gl. The initial probability distribution over the states oftaie is given bypg = (pé)jeK and can be seen
as a lottery where the outcome is a stateK. The set of n players is given By = {1,...,n} where each
playeri € N has a finite sef of pure strategies or actions and for a giviea K a payoff function éis
defined bygI : S— R, whereS= rlS There exist two kinds of players. The uninformed playery on
know the initial probability distribution over the statelsmature but do not know the actual outcome of the
lottery. The informed players in addition know the chogenK. We partition the set of playefs into two

sets, the set adhformed players INand the set ofininformed players UN

Choice of nature

Figure 1: The GamE€

We assume that there exist at least one playdiNirand one inUN and each of these players have at
least two distinct actions and for gl K, p(jJ is strictly larger than zero. The setup of the gameasimon
knowledgei.e. every player knows the setup of the game and knowstteatther players know the setup of
game and so on. We also assume that every playeydréect recalin a sense that every player remembers
at every point in time what his previous choices were. Thasamptions are motivated by the fact that
players with only one action and states of nature with zeobability cannot affect the outcome of the

game and are thus neglected.

The game is played as follows. At time t = 0 nature choosesta $ta K according to the initial
probability distributionpp. The chosen state is kept constant throughout the rest gltime. The outcome
of the lottery is then communicated to the informed playerskept secret from the uninformed players.
At every following stage t = 1,2,..., every playiee N chooses simultaneously an actisre §. If § =
(s1,...,5n) € Sis played at time the stage game payofor player i is given bygij (s) whenj e K is the

chosen state of nature. After each stage the chosen stmtefjthe players are publicly announced but
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the payoffs are not communicated. Note that every informagegp is able to deduce his own stage game

payoff with certainty as he knows the correct state of natwatrary to the uninformed player.

The only possibility for the uniformed players to make a estjire about the true state of nature is to
consider the behavior of the informed players over time,the history of moves. For any finite> 0 the
history H is defined byH; = K x HS , WwhereHg simply denotes the choice of nature. Furthermore the

infinite historyis given byH..,, whereH., = I|m H.

2.1.1 Strategies, Payoff and Equilibrium concepts

A pure strategyp; for a playeri is an infinite sequencg; = (pi 1,0 2,...) where for each > 1, pit € §

is chosen according the histoH¢_1 and is dependent on the true state K if i € IN. A pure strategy
for playeri specifies a move at every point in the game A mixed strategys a randomization over
the set of pure strategies. Behavior strategy; for player i specifies a probability distributions over his
actions at every stage of the gaimg. Behavior strategies differ from mixed strategies in a eg¢hat they
are chosen mutually independent by the players at timgince the informed player can profit from the
knowledge of the statg € K we define the behavior strategy for an informed playaes ak-tuple of state
dependent behavior strategies. Tl given byg; = (oil, e oik), where for each) € K, oij is an infinite

sequence{cri{l,oifz,...) such that for each timet 1 oij;t :{j} xHi—1 — A(S), whereA(S) is defined as

the set of probability distribution of;, i.e. A(S) = < (p¥)ses|Vs, p¥ >0, > p% =1;. The behavior

S

strategya; of the uninformed player must be independent of the state and is thus given by an @finit
n

sequencga; 1, 0; 2,...) such that for each timex 1 iy : (I_|18j )1 — A(S). Furthermore leB; be the

set of behavior strategies for playieand letB = ﬂ Bi. A behavior strategy profiler € B is defined by

o= (01,...,0n), thatis every player i chooses the behavior stramgy

As mentioned above, behavior strategies are chosen muindikpendent by the players. This has
the effect that for infinitely repeated games the set of biehatrategies is countably infinite while the set
of mixed strategies is uncountable. Since we are conceritadhe existence of equilibria this poses the
question whether there can exist equilibria which are redetith a mixed strategy, but can not be reached
with a behavior strategy? The answer to this question istivegaSince we assume perfect recall we
can confine the strategies of the players to behavior steste@his follows from Aumann’s result (1964)
which states that in infinitely repeated games with perfecall every mixed strategy can be expressed as a
behavior strategy. In other words, if there exists an elgpiilm in the gamé «,, then it can be reached with
a behavior strategy. Note that the proof found in Aumannfsgpés a generalization of Kuhn’'s theorem to

infinitely repeated games.

Given a statej € K the behavior strategy profile € B induces an infinite sequence of stage game

actions(s,s,...) when the players abide to. We can now define the payoff for the first T stages of

T
playeri as the average of the first T stage game payof'fsh—rlr.(iigiJ (2t). Note that the word average refers
t=
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to the average payoff per stage of the game, which is the mefasdhe devision withT. Furthermore if

j € K is given, the behavior strategy € B induces a probability measure over the infinite histbigy.
Since the behavior strategycan include probability distribution over the strategieegen by the players
we consider the expectation of the average payoff with sigec. We can now define the expected

average payoff of the players wheris played.

Definition 2.1 (Expected Average Payoff)Let o € B be a behavior strategy profile which induces the
infinite sequence of stage game action profigssy,...). Then for all players i, all states ¢ K and

all stages T> 1, the expected average payoff is given by:

j 18
Yir(0) =Eo ftzigi(st)

And the expected average payoff over the states of naturgids byy (o) = Z( pé %{T(G).
j€ '

An alternative approach, and also the standard approadwitoenic models is to use a discount factor

0 € (0,1) to specify the payoffs for the first T periods. Here the payoffplayeri and statej is wi T =
T _

(1-9) Zlétflgi‘ (2). In order to capture long-term behavior, however, this apph is not appropriate
t=

since for alle larger than zero there exist a tifie> 0 such that the payoffs of the players, starting after
time T do not change more than for any strategy of the players. This is due to the discouctofa
which describes real payoffs, hence after a certain time@dr the payoffs, no matter how large are
negligible. Real life examples for importance of long-tdsehavior could be bilateral trade negotiations
or bargaining situations. In these situations we do not wafdctor in the payoffs from the negotiation or
bargaining process. We would much rather be willing to atseme lower payoffs from the negotiation
process and then reap the benefits in the later stages. Invatings we prefer the infinite payoff sequence

(-1,-1,-1,...,—1,1,1/1 1,...) over the payoff sequence of all zeros.

In order to define an equilibrium concept we introduce thkfeihg notation. Ifo € Btheno_; € |_I By is
h#i

denoted as the behavior strategy for all players excepti&yepi ando = (0_j, Gi).

Definition 2.2 (Uniform Equilibrium) The behavior strategy € B describes an uniform equilibrium of

I if it satisfies:

1. For all players i€ N and for all € > 0 there exists a d= To(€) such thato is an & — Nash—
equilibrium in finitely repeated games with at leagtstages, that is for all T> Ty and for any

alternative behavior strategy € B; of playeri, yit(0-i,T) < yi1(0) +¢.
2. For all informed players i IN and for all j € K, TIim %{T(a) — yij(o) and for all uninformed

playersic UN, lim y.1(0) — ().

An uniform equilibrium generates, as Hart (1985) desctibag-equilibrium in all long enough, but finite

games . For an uniform equilibriuno of the gamd ., we define the equilibrium payoff as follows:

(V) (0)jeks - VdN‘(U)jEKaV[INHl(U)a coos YiINJUN| (O))-
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The description of ., is a generalization of the three player model as describdRkeimault (2001).
Having defined the general model we will now turn to speciakesan order to develop step by step the
results that will later be important for further analysis.e \fiftst consider the case where there are two
players and the game® for j € K are zero-sum games. In the next step we drop the second aisump

and consider nonzero-sum stage games. Finally, we willttuthe case wheN = {1,2} andUN = {3}.



2.2 2-Player Infinitely Repeated Zero-Sum Games with Incomigte Information on
One Side

We start by giving an example. For Exampld, is given by the two games! andG? which are chosen
by equal probability, i.epg = (%, %). The stage gam@! can be interpreted as payoff matrices for players
1 and 2, which we will denote a@l andA% respectively, wheré\{ = —Aé. The informed player, namely
player 1, (which we will refer to as she), chooses her actiosg the rows, i.eS; = {T,B} and player 2
(he), the uninformed player, chooses his actions alongghenmns, i.e.S; = {L,M,R}. The entries in the
gamesG! andG? represent the payoffs to player 1. The payoffs of player Zleaegation of the payoffs

of player 1, i.e. for all strategiesc A(S;) x A(S) we haveg{(s) = —gé(s) for both states of nature, where

gl(s) = s1Als,.

Player 2 Player 2
L M R L M R
T|-1]0 1 T 1|1
Player 1 Player 1
B 110 1 B|-1|1 0
Gl GZ

Figure 2: Example 1

Clearly, in this example the informed player will not wantdompletely reveal her information, that is
player 2 could deduce with probability equal to 1 the trugest# nature when he knows the strategy of
player 1. This kind of strategy of player 1 is calleda@mpletely revealing strategynd it would yield player

1 a payoff of zero in every state. It is also not optimal foryglal to play anon-revealing strategwhere
player 2 cannot make any conclusions about the true statatafen Note that a non-revealing strategy
would also yield a payoff of zero to player 1. We are interégtehow players should behave in Example 1
and generally in the ganie, with k states of nature and thus find an expression for thdibgum payoff

vi(o) = jé péy{(o) which we denote here as thalue of the gamd .. We first need to develop some
underlying theory in order to be able to give an expressiotife value of .

GivenTl ., with k states where the one shot games’ payoff can be represestabipae, with payoff
matricesAi and Aé, define the gamé\;(pg) = Z( pé G/ where the payoff matrices are now given by
A1(po) = jé p(jJ A{ and similarly forAx(po). Trjlee interpretation of\;(po) is that player 1 neglects her

knowledge of the true state of nature and considers onlyxheatation over the gam&/ as a reference

for her actions. For Example A,l(%, %) is given in Figure 3.

It should be clear that in the ganfiie, player 1 can at least guarantee the Nash Equilibrium Paydffeo
gameA;(po) by simply neglecting her knowledge and playing a Nash dopiulin strategy in the game
A1(po). Define the functior : A(K) — R for player 1 by
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Player 2

L M R

T| 0 |05 |05
Player 1

B| O |[05]05

Figure 3:A1(3, 3) for Example 1

a = max min $A = min max SiA
1(P) = M, i, P = _min | max, sAp)se

anday : A(K) — R for player 2 by
a = min max A = min max $A:
2(P) 51€A(S.L>52€A(SZ)51 2(P)e2 SZGA(SZ>51€A(31)S:L 2(P)e2
The meaning of the functiog;(p) as Simon (2006, lecture 6) describes, is the amount to wHayep
i's payoff can be held down by the other player when they beltbat p is the true probability distribution
governing the states of nature. Hence player 1 can, by rtegddeer information at least guarantee a payoff

of a1(po). But can she do better in some cases?

2.2.1 The Optimal Strategy of the Informed Player

We have seen that player 1's payoff is closely related to timetfona; which takes as an argument a
probability distribution over the states of nature, whisloelieved to true by both players. If player 1 were
to induce, with her actions, a new probability distributmrer the states of nature then she would be able in
some situations to change the valueapfind thus improve her payoff. For example if player 1 in Exampl
1 always plays B then player 2 will, conditionally on playeplaying B, deduce that the true state of nature
is state 1 (note that this strategy is not optimal). Thisititto suggests that player 2 can, by considering
player 1's actions, update his belief about the true stateatiire with Bayes formula. Player 1 can use
this concept to her advantage by considering the funatiop) for all p= (pt, p, ..., pX) € A(K), which is
given in Figure 4. To be consisten? refers to the probability assigned to state 2 and not to tlaelGuic

function.

Wi

p? p® € [0,
1-2p* p?e(

3

ai(pt, p?) =

WIN - NI

2p* -1 p*e(

3

WIN NI Wi

L

1—p?

©
N
m
—

The graph of (p) suggests that, in order to be at the maximum value in bothsstptayer 1 should try to
make player 2 believe that the updated probabilitg3s= % when state 1 is chosen apd = % when state
2 is chosen. Now assume the following behavior strategy- (011,012) for player 1. In state 1 player 1

plays with3 probability T forever and wittg probability B forever. In state 2 she plays w#probability

7



0.3
ar(ph, p?) 0.2
01 F

O 1 1 1 1
0O 01 02 03 04 05 06 07 08 09
2

Figure 4:a;(p) for Example 1

T forever and With% probability B forever. Now suppose that player 2 knows thatsgy of player 1, as
player 1 could communicate her strategy by using the actisran alphabet. Then conditional on hearing
the actionT, player 2 will conclude with Bayes formula that the conditiprobability of being in state 2
is % and conditional on hearing the actiBrplayer 2 will conclude that the conditional probability afibg

in state 2 is%. In other words player 2 adjusts his belief over the statelssatsp? = % andp? = % when
hearingT andB, respectively. Player 2 thus beliefs when heafinthat he is playing the garmel(%, %)
and when hearing he is playing the gama; (%, 3).

Player 2 Player 2
L M R L M R
T 1 2 1 T |1 1 2
Player 1 3 3 3 Player 1 3 3 3
B | -1 2 1 B 1 1 2
3 3 3 3 3 3
M(3,2) M(5.3)

Figure 5:A1(3, 3) andA (%, 3) for Example 1

Player 2 will best respond in both gamg(3, 2) andAy (3, 3) with action L. Hence in both games player
1 gets an expected payoff of%and thus the overall expected payoff is a@o Hence we have seen in
this example how player 1 can achieve a payoff strictly latgana; (po) by updating the beliefs of player
2. This concept has great implications for repeated gamiggomplete information. We now introduce a

formal notation for updating beliefs, the proof of the therarcan be found in Simon (2006, lecture 7).

Theorem 2.3 For pp € A(K), let PC A(K) be a finite set, and € A(P) s.t. p = zp)\pp. For every je K
.pe

App!

StepAtt)
distribution on K conditional on g P being chosen is the distributiongA(K).

let a pe P be chosen according to the probability defined by J:](p) =

Then the probability

Using this concept player 1, can thus induce a new probgbistributionp € A(K) on the states of nature
by choosing some € P according tog! and then signaling to player 2. The signaling process could
be done by using his actions for some stages or simply todotre a set of messages M which forms a

one-to-one relationship with the states.



In order to describe how player 1 should behave in generalseethe concept of concavification of
functions. For a real valued functiohon some convex space the concavificatiorof f, cauvf), is the
minimum over all concave functions: C — R s.t. f(c) > f(c) for all c € C. The graph oftav(as) for

Example 1 is given in Figure 6.

0.3
cavay (pt, p?)) 8.2

O 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09
2

p

Figure 6:cav(a; (p)) for Example 1

The payoff received by player 1 when using the strategy destrabove lies on the graph cv(a;) and

the optimal behavior strategy for player 1 is to update pl&®beliefs such that player 1 can guarantee
cav(ai(po)). This is done by choosing s.t. 3 Ap € A(P) with pgp/\p = po andcav(ai(po)) = pgp)\pal(p)
where p is chosen according to the conditional probabilisgrithution g’ at time 1. After updating the
beliefs, player 1 can assure a payoff equadi(p) by playing a minmax strategy wheme A(K) is now
believed to be the true probability distribution over thatss. With respect to the initial probability distri-
bution, player 1 can assucav(a; (po)). This is exactly how player 1 acted in Example 1. She upddted t
beliefs of player 2 according to the true state of nature.atire chose state 1 she induced a probability
distribution settingp! = % andp? = % and similarly for state 2. This strategy guarantees her gecrd

payoff of 1.

2.2.2 The Optimal Strategy of the Uninformed Player

We have already introduced the reasoning that explains Hayepl can guarantee a payoff of at least
cav(az(po)). We will now briefly turn to player 2's strategy which guaraes him that he will pay no more
thancav(ai(po)). In other words, player 2 can get a payoff of at leastay(pg)) where theconvexification

of a function is defined in analogy to the definition of its cawvification: For a real valued functiohon
some convex spad@the convexificatiorof f, vex f), is the maximum over all convex functidn: C — R

s.t. f(c) < f(c) forallceC.

Since the uninformed player does not know his payoffs dutiegplay of the game we need a different
approachfor player 1. As after each period of the game theflstrategies are announcedto all the players,
player 2 can interpret his payoff at stage 1 as a k-dimensional vector where each entry represents the
payoffto player 2 in the gan®!; that is for each behavior strategyc B and each stage> 1 we can define
rebyre = (g3(s),...,g5(s)) wheres is thenstrategy induced hy at time t. Now set, as the average over

1

all vector payoffg up to n, that isiy = = Zri. Blackwell (1956) first studied games with vector payoffs
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and defined approachable payoff sets for player 2. A segppsoachabldor player 2 if for all strategies
of the other players, player 2 has a strategy that will guarathatv, will converge to some point in S
as n goes to infinity. Furthermore, Blackwell specified Bteckwell strategywvhich describes how player
2 should behave in order to reach the approachable set. HubBell strategy relies on the hyperplane
theorem and the fact that player 2 can base his decision at tinl on the payoff vectow. By using a

Blackwell strategy player 2 can thus reach a set S that witgutee him a payoff of at leagéxax(po)).

Hence when playing optimal, player 2 can guarantee a paydatt eastvexaz(po)) which is equal
to —cav(ai(po)). At the same time, player 1 can assure a payoff of at lem&g; (po)). The value of the

game is thusav(a;(po)) whenpy is the initial distribution of the states, as the followitgebrem states.

10



Theorem 2.4 (Aumann and Maschler) A 2-player infinitely repeated zero-sum game with inconagtet
formation on one side has a value which is given by(aa\pg)) where p is the initial probability distrib-

ution on the k states of nature.
In the next section we will apply these results to infiniteypeated nonzero-sum games with incomplete

information. We will see that some concepts of zero-sum garae be transferred but we need to adjust
others.
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2.3 2-Player Infinitely Repeated Nonzero-Sum Game with Inamplete Information

on One Side

We now drop the constraint that the one shot garGésor j € K are zero-sum games, but otherwise keep
the setup as in the last section. Due to this change in payafifices, the payoffs of the players do not
depend negatively on each other anymore. This asymmetrgsrtake aspect of cheating and punishment
more important for assuring an equilibrium. The concepth#ating was not necessary in the zero-sum
case since player 2's optimal response directly affectagignl 1's payoff. Player 1 could independently
of player 2’s actions guarantee to getv(ai(po)) and could not get a higher payoff since player 2 could
guarantee to pay not more theav(a;(pp)). This is not the case when considering the nonzero-sum case

as Example 2 given in Figure 7 illustrates.

Player 2 Player 2
L R L R
T 122 |00 T 40| 22
Player 1 Player 1
B |22 |00 B |40 | 22
G! G?

Figure 7: Example 2

When the initial distribution is given bgy = (%, %) Theorem 1.4 would suggest that the equilibrium payoff
for player 1 would beav(as (po)) which in this case is equal & (po) = % see Figure 8. First suppose that
player 1 could use her actions to signal which state of nasucteosen. Player 1 would play a completely
revealing strategy where she signals the true state ofeatith her first move and then they play (T,L)

and (T,R) in state 1 and 2, respectively. This would guaeaht#h players a payoff of 2. But this is not an

equilibrium strategy since she can profit by sending the gmaessage in state 2 and get a payoff of 4. This
intuition leads to the conclusion that in equilibrium playteshould not be able to gain by sending signals

which are not according to protocol in any states of natuhés Toncept is callethcentive compatibility

2.0
15
ai(p', p?) 1.0
05 E

O 1 1 1 1 1

0O 01 02 03 04 05 06 07 08 09
p?

Figure 8:a;(p) for Example 2

Since the informed player can always play a minmax stratedlié gameG! whenj € K is the true

state we require that the payoffs of player 1 iadividually rational This means that given an equilibrium

12



20
1.5
a(pt, p?) 1.0
05 F

O 1 1 1 1 1

0O 01 02 03 04 05 06 07 08 09
0

Figure 9:a,(p) for Example 2

strategy player 1 gets in each state of nature at least hterdgaendent minmax payoff. As the informed
player can update the beliefs over the states we define thdivrationality as follows, keeping in mind that

the uninformed player can still guarantee, using a BlackstetegyyveX (az(po))-

Definition 2.5 (Individual Rationality) For player 1 and player 2:

o V= (y{)jeK € RKis individual rational ify; - p > a;(p) forall p € AK).

e € Risindividual rationalify, > vexaz(p)), where pc A(K) is believed to be the true probability

distribution governing the states.

An equilibrium has to satisfy individual rationality for ttoplayers and incentive compatibility for the

informed player. We now describe the slightly altered efriiim concept.

2.3.1 Joint Plans and Joint Plan Equilibria

Joint Plans have first been described by Aumann and Masatdera adopt the generalized form given in

Renault (2001).

Definition 2.6 (Joint Plan) Foriin IN, a joint plan for player i is a tupléM, A, P,z y) where:

1. Mis a non empty finite set of messages (or signals).
2. A = (M)jex is a signaling strategy such that for each state ! € A(M) and ¥m € M,
Am —def [:Jj/\j > 0.
jgk oAm

3. P=(pm)mem such that for all me M, pm € A(K) is the induced probability distribution on the states
of the nature given m, withr‘{p: pé)\,%/)\m where ;én is the probability that is being assigned to state

j conditional on hearing the message m.

4. z= (zm)mem is a frequency strategy which is played after the signaliggisuch that for all n& M,
Zm € A(S).

5. y € R is the payoff to player i such that for all stateS/J,: mea'}/lxgij (Zm).
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The essence of a joint plan is that the informed player, whaédates the joint plan can update the beliefs
of the other player by signaling a message (or messageshwehéelected according to the state dependent
probability distributionA1. These signals are then transmitted using her actions aplabet. Note that
these signals do not directly affect the payoff function aad be regarded as cheap talk. Once the signal
has been sent, the playing phase starts, where the playeesfusquency strategy dependent on the sent
message. If an informed player deviates from the frequemnateg)y she is punished to an individual rational
vector inRX. When the uninformed player deviates the informed playeighes him tovexax(pm)), where

Pm is the a posteriori probability distribution on states, ditional on message m being sent. Although it
may seem that the informed player has the upper hand whegnilegithe joint plan in equilibrium this is
surprisingly not the case. The informed player must dedigncbntract in such a way that the individual
rationality constraint for the uninformed player is saéidfiwhich places restrictions on the joint plan. In
the zero sum case the uninformed player could only guaraet¢a,(po)), where now the joint plan has to
give him a payoff ofvexay(pm)) conditional on m being sent. The reason behind this is treairtformed
player has to offer the uninformed player something in otdeommit to the contraa,. In equilibriumthe
joint plan must thus satisfy individual rationality for gllayers and incentive compatibility for the informed

player who designs the joint plan.

Definition 2.7 (Joint Plan Equilibrium ) For player 1 a joint planlM, A, P, z y1 ) describes an equilibrium
if there exists an individual rational vector ¥ R¥ such that for all me M the following conditions are

satisfied:

1. Forall j € K with Ad >0, v (zn) = ¥}
2 3 phak(zm) > vexaz(pm))
j€

3. Forall j € K with Ad =0, vl (zm) <y

Condition 1 and 2 are individual rationality conditions azahdition 3 is the incentive compatibility con-
dition for player i. Simon et. al (1995) proved the existen€gint plan equilibria for 2-player infinitely
repeated games with incomplete information on one side kvittates of nature using the concept of joint
plan equilibrium. Although the existence of joint plan dipria is known for this case, a good algorithm to
find a joint plan equilibria is not known. For Example 2 thexésts a simple joint plan for player 1 which

is given by(M,A, P,z y1) where:
o M= {]_7 2}
o A =(A%A2) whereAl = (0,1) andA? = (},3)

The signaling strategy is illustrated in Figure 10, wheme lraves correspond to the messages and

the numbers along the branches are probabilities for nanai¢he state dependent lotteries.
e P= (p17 pz) Wherepl =pP2= (%7 %)
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choice of nature

Figure 10: Signaling Strategy

e z=(71,0) wherezy =2 = (T,R)

o Y= (0,2)

We will now show that the joint plan satisfies the conditionagfoint plan equilibrium. Condition 1 is
satisfied sincg = (y1,y2) = (0,2) is an individual rational vector and sind¢ > 0 we haveyl(z) =y3. As
AZ>0andA? > 0we havef(z) =y3 andy?(z) = y2. Condition 2 is satisfied since for message 1 we have

Z( p{gé(zl) =1=vexay(p1)) and for message 2 we ha pégé(zz) = 1=vexay(pz)). The incentive
j€ j€
compatibility condition is also satisfied since @ = 0 we haveyi(z) = 0 = y}, which completes the

proof. In the next section we will add another informed pleged investigate the implications in this setup.
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2.4 3-Player Infinitely Repeated Nonzero-sum Games with Iramplete Informa-

tion on One Side

We now consider infinitely repeated games with 3 playersvhenIN = {1,2} andUN = {3}. An example
for this situation could be that a policy maker, who has inptate information, should make a decision

based on the input of his two advisers who both have full miation.

In the 2-player case the informed player, since she onlysptéaainst one uninformed player, could
guarantee at least a payoffaf(po). Now each informed player has to factor in that she is plagiga@nst
not only one uninformed player, but also against anotherméd player who knows the true state. This
will change the magnitude of the payoff which she can guaentor example, if player 1 is trying to
maximize her payoff, the other informed player can reveatthe state of nature to the uninformed player
and player 2 and player 3 play a state dependent minmaxgggrat@inst the player 1. Thus the informed
playeri can guarantee in each stgtes K, vij wherevij = min max gij (Xi,x_i). The informed

X_i €T A(Sh) X €A(S) _
players can surely defend this payoff as they only have tp @leninmax strategy in the gant& when
j € K is the true state. For the uninformed player the amount whieltan guarantee coincides with
the 2-player case and we define player 3's minmax payoff byiuhetionas : A(K) — R whereaz(p) =
min max ; pjgé(xl,xz,x3). We can now give the adjusted individual rationality coaistr

(x1,%2) €D(S1) x A(S) X3EA(Sg)
for all players.

Definition 2.8 (Individual Rationality) For the informed players& IN and for the uninformed player 3:

e the payoffy = (y)jck in R¥ is individual rational if ' > v/ forall j e K.

¢ the payoffys in R is individual rational if y3 > vexag(p)), where pe A(K) is believed to be the

true probability distribution on the states.

The added difficulty in this situation is that player 3 does alavays know who deviated. Since there are
different types of deviation, we will first introduce thenf.any player deviates from a frequency strategy,
such as specified in joint plans, the deviation is observeeMayy other player, including the uninformed
player. Thus the deviator can be identified and is therefonéshed. The second type of deviation concerns
deviating from a state dependent signaling strategy. Ssgpwat an informed player does not adhere to
the signaling strategy and sends a messagehich according to the signaling strategy would be sert wit
probability/\rj}] € (0,1) in state j, with certainty. In other words, suppose that etalyshould sent message
1 and message 2 both with probability%)fn state 1. Player 1 could deviate by always sending message 1
This type of deviation would not be observed by any other gdailote that this type of deviation should
be ruled out by the incentive compatibility constraint. Thied case is that an informed player does not
adhere to the signaling strategy in some sfateK and sends a message which would according to
the signaling strategy be sent with probability equal tazarstatej. Surely, the other informed player

can observe the deviation since she knows the true state anld Wwform the uninformed player that a
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deviation has occurred. The problem is now that the uninéatplayer does not know which player is
“lying”. It could be the case that although the correct mgsdaas been sent the other informed player will
say that a deviation has occurred. Furthermore it could beahe case that a deviation of this type occurs
and the other informed player does not announce this as itdwead to an improvement in her payoff
as well. Thus formulate a punishment strategy in this casernes more complex in comparison to the

2-player setup. This is demonstrated in Example 3 givenguiei 11.

L R L R
1,11 | 1,1,1¢ T |220 | 220
state 1
1,11 | 1,1,1F B |220 | 220
X Y
L R L R
2,20 | 22,0 T 1,12 | 1,12
state 2
2,2,0 | 2,2,0 B |112 | 1,12
X Y

Figure 11: Example

Here player 1's strategy set{3,B}, player 2’s strategy set i, R}, player 3's strategy set i§X,Y} and

the initial probability distribution over the statespg = (%, %). The payoffs with added stars correspond
to the Nash equilibrium payoffs in pure strategies for eaaimgG! with j € K. To offer some intuition
for the necessary constraints on the punishment strategypgose that there exist a completely revealing
equilibrium strategy € B. Hence player 3 finds out with probability equal to one which thosen state
of nature is. If state 1 is chosen by nature then player 3 pfagsd if the selected state is 2, player 3
chooses Y. The equilibrium payoff vector foris ((1,1),(1,1),1.5). Note that the equilibrium payoffs for
players 1 and 2 correspond to their minmax payoffs in bothesta Now suppose that one of the players
deviates from the completely revealing strategy. Playeill3wat know who actually deviated. To see this
let w.l.o.g. player 1 convey with his action that the truetestia 2 and let player 2 convey that 1 is the
true state. There are 2 cases to be considered. Either dlaj@riated and the true state is 1 or player 2
deviated and the true state is 2. This is equivalent to sgylager 2 is telling the truth and state 1 is actually
the true state, the latter is equivalent to player 1 tellimgtruth and state 2 is actually the true state. The
difficulty is now to punish both players simultaneously, ther words, to find a strategye A(S) such that
01(2) < vi(2) andg3(2) < y2(2). But this constraint is not possible to satisfy. Consideritiixed strategy
ze A(S) where players assign probability p,q and | to action T,L ande¥pectively. In state 2 player 2 has
an expected payoff 3 = 2| + (1—1) and in state 1 player 1 has an expected payoffiof | +2(1—1)

andgi(2) + g5(2) = 3. As mentioned abovel = vZ = v} = vZ = 1. Hence in case of a deviation player 3
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has no viable strategy to punish both informed players a¢ ome at least one of the informed players gets
a payoff strictly larger than the equilibrium payoff, singz) + g3(z) = 3 and the equilibrium payoffs for
player 1 and player 2 are 1 in both stages. We see that it isijp@$s gain by deviating.

Example 3 suggests that we need to introduce a more regtragincept of rationality for the informed
players. Tomala (1995) first introduced the concepoiwit rationality for the informed players which states
that player 3 needs to have a strategy/A(S) which punishes both informed players at once below or equal
to their equilibrium payoff in any two staté$, j’) € K x K. In other words when player 1 signals we are in
statej and player 2 says “No, we are in stgtg player 3 will not know who deviated and therefore must
have a strategy such that he can punish both informed playersce in stategandj’. In addition to this

constraint the jointly rational payoffs must still be indiually rational for informed players.

Definition 2.9 (Joint Rationality for the Informed Player) For any couple of state§j, j’) € K x K let
JRi2(j, ) = {(yl, o) € RKx RK:3ze A(S) st. gi(z) < y{and gg(z) < y%"}. Forall j € K set:

IRu(]) = { (11, v2) € R xR : ] =i |

IRo(j) = { (1 v2) € R X R 1 > i }
A payoff vectof yi, y») € R¥ x R¥ is jointly rational for the informed players if

(v1,¥2) € IRINIR2 NJRy 2,
where IR = Njex IR1(])), IR2 = Njex IR2(]) @and IR 2 = N j)ekxk IRL2(], ')

Renault (2001) characterizes completely revealing dwiiln with the notion of joint rationality for the

informed players.

Proposition 2.10 y= ((y]j_)jeK, (yzj)je}(, ¥3)) € R¥x RK x R is a completely revealing equilibrium payoff if

and only if the following conditions are satisfied:
1. ((V{)jeKa (y2j)jg|() is jointly rational for players 1 and 2
2. 3(Z)jex € (A(S))* such that for all je K, yij = gij (Z) fori=1,2 and
V3 = EK pbgh(z) and forall je K and ¢(z1) > \&.
j€

Surely the joint rationality conditions must be satisfied afayer 3 can now guarantee his state dependent

minmaxv,, for all statesj € K as he knows the choice of nature. Before we give an equitibfar Example
3 we must adjust the definition of a joint plan equilibrium ttfie new individual rationality constraint of

the informed players.

Definition 2.11 (Joint Plan Equilibrium) For player i< IN the joint plan for player i(M,A,P,z y) de-

scribes an joint plan equilibrium for player i if:

18



1. Vj € K,Yyme M with Ah > 0, g{(zm) > v{ and dé(an) > vé
2. VeM, ; phal > vexas(pm))
j€

3. Vj e K,yme M with Ah > 0, g/ (zn) =

As before conditions 1 and 2 are individual rationality foe informed player and the third condition is the
incentive compatibility constraint for playerRenault (2001) showed that the set of joint plan equilioriu
payoffs is a subset of the uniform equilibrium payoffs. Rermore if playei designs the joint plan and
we set for any statg € K, yéfi = min{géfi(zm) ‘meM, prjn > O} then the joint plan equilibrium payoff is

jointly rational for the informed players.

For Example 3 we showed on page 17 that no completely regpadjnilibrium can exist. This is due
to the fact the payoff vector from the completely revealitrgtegy,((1,1),(1,1),1.5) is not a member of
JRy2(1,2) and thus by Proposition 2.10 this example has no completelyaling equilibrium. Although
no completely revealing equilibrium exists the game hasranewealing joint plan equilibrium for player 1

(or player 2), which is given by:
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M = {1}

e A=(ALA%)whereAl =22 =1

P={p1} is given byp; = (3,3)

z=(z)withzy =2 = 3(T,L.Y)+ 3(T.RY)+ 2(B,L,Y)+ 2(B,RY)

h= (yiy]?) = (25 1)

The equilibrium payoff is given by ((2,1),(2,1),1). The chtions for a joint plan equilibrium as we will
show are satisfied. Condition 1 is satisfied since the infdrplayers get at least their minmax payoff
in both states of nature. The individual rationality coastt for player 3 is satisfied sinaexaz(p1)) =
az(p1) = max{ p%,Zp%} =1 form= 1. The incentive compatibility for player 1 is also satisfidce

in every statej, we only send one message since the joint plan is non-reggalihe message 1 can be
interpreted as 'l am telling you nothing’. Thus the givernjoplan describes an equilibrium. We now

investigate equilibrium existence for 3-player games wken? and wherk > 3.

2.4.1 Equilibrium Existence withk =2

We have seen that for Example 3 no completely revealing ibgiailexist. But we have shown that in
Example 3 there exists a joint plan equilibrium. This relaship between completely revealing and joint

plan equilibrium holds in general as the following theoreoni Renault (2001) states.

Theorem 2.12 For a 3-player infinitely repeated game with incomplete iinfation on one side with two
states of nature, for any initial distributiongpe A(K) there exists a completely revealing equilibrium or a

joint plan equilibrium.

Renault (2001) showed that we can concretize this theoreimllas/s. There exist games where no joint
plan equilibria for either player exist. Furthermore thexést games where no completely revealing nor a

joint plan equilibrium for one of the two players exist.
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2.4.2 Equilibrium Existence withk > 3

In the case of larger state spaces, there exist games, wiegeerto completely revealing equilibrium and
no joint plan equilibrium exists for any player. We will gitke proof found in Renault (2001) since it

demonstrates the interdependencies of individual ralitgrend incentive compatibility for the players.

L R L R
T 0,2,0 0,2,0 T 0,0,1* 0,0,1*
state 1
-1,1,0 | -1,1,0 B |-101 | —1,01
X Y
L R L R
-1,0,3 | -1, 0,3 $,3,0 | 3,3,0
state 2
0,0,3* 0,-1,3 1,0,0 | 1,1,0
X Y
L R L R
T |[1-10| 300 T |0-11| 00,1
3 state 3
1,-1,0 | 3,00 B |1,-1,1 | 00,1
X Y

Figure 12: Example 4

For the game givenin Example 4 player 1's strategy sgTi8}, player 2's strategy setid., R}, player

3's strategy set i§X,Y} and the initial probability distribution over the stateggisen by py = (%, %, %).
Players 1 and 2 are as usual the informed players. Again tredffgdabeled with a star correspond to Nash
equilibrium payoffs inG! for all j € K. The minmax payoff for both informed players is zero in aditet

of nature. The minmax payoff for player 3 is giventmxaz(p)) = az(p) = max{3p2, pt+p3}.
Proposition 2.13 The game in Example 4 does not have a completely revealiniiegun.

Proof: We prove this by contradiction. Suppose there exists a tetelg revealing equilibrium strategy

o € B. When players abide to the informed players receive an equilibrium payoff of zerall stages

j € K. These payoffs correspond to the Nash equilibrium payofétatej. To find a contradiction we only
need to check whether the equilibrium payoffs are jointtioraal. But here no (mixed) strategy that jointly
punishes both players equal or below their equilibrium ffiagxists. To see this, suppose there exists such

a strategyz € A(S) where the players assign probability p,q and | to the actidnahd X, respectively.
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Theng?(z) = 3p—3pl — p—1 +1 andgl(z) = I(p+1) and thusg?(z) + gi(2) > 1. Likewise we have
93(2) + g3(2) > 1. Hence the payoffs generated tiyare neither il Ry 2(2, 1) norJRy »(3,1) and hence are

not jointly rational. Due to Proposition 2.10 we have dedigecontradiction, which completes the proof.
Proposition 2.14 For the game in Example 4 no joint plan equilibrium exist ftaygers 1 and 2.

Proof: Again we prove this by contradiction. Assume that a joirtrpéquilibrium(M, A, P,z y) exist for
player i. Since we have 3 states of nature we consider 3 mesgagthe joint plan. LeM be given by

M = {1,2,3}. By the definition of the a posteriori probability distribnt we have,
Vj,me {1,2,3},A,>0<pl,>0

Due to this relationship it is sufficient to consider the atpderi probability distributionP = (py, p2, p3)
for determining whether the individual rationality corsstits of the joint plan equilibrium are satisfied. Let

us now consider the implications of the individual ratiatyatonstraint of the informed players.

e pt >0, forme M implies that player 1 has to choo%en frequency strategg.
e p3, >0, forme M implies that player 1 has to chooRén frequency strategsm.
Since the a posteriori probability distributi®is a convex combination of the initial distributiop,,p, and

ps must be such that} > £, p2 > £ andp$ > 1. The implications of the individual rationality constrain

for uninformed player give:
° 3p§ > p%+ pg implies that player 2 will play X after hearing message 2.

Given player 3's action, players 1 and 2 will play B and L, mdjvely, in order to assure their minmax
payoff of zero. Given the players’ behavior frequency sggiz is given byz, = (B, L, X). With z we can
specify the payoff matrix for players 1 and 2 wheris being played,

Vi(z2) vi(z2) -1
V¥(z) ¥Bz) |=| 0 O
vi(z2) V3(z2) 1 -1

As we can see from the payoff matrix player 1 would never wamtay z, in state 1 and similarly player

2 would never want to plag in state 3. Individual rationality of the informed playerpiies that whoever
designs the joint plan it will be such thpt = (0,1,0). To see this suppose w.l.0.g. that player 1 designs
the joint plan, therp% must be zero because of individual rationality of player d pflmust be zero due

to player 2's constraint. Hence after hearing message fepiknows with certainty that the true state is

never 1 or 3.
Result I z = (B,L,X) andp, = (0,1,0)

Furthermore we know fom € {1,3}, if p}, > 0 we must haves (zy) > % as player 1 will play T and thus

player 2 can assure himself at Ieésin state 1 by playing R since player 3 must chose X with a pridibab
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greater than at Iea%t Similarly if p3, > 0 we must haveyf(zm) > % since player 2 will play R and thus
player 1 can assure himséfx % = % in state 3 by playing B. From above we know thapif > 0 then

player 1 will play T inz; and thus we need to satisﬁ(zl) > %

The next step is to determine the signaling strategy for ages4,A; = (/\11,)\12,)\f’). We have four
possible types of signaling strategies, as we can rule gnangA; = (0,0,1) andA; = (0,1,0) directly,

since the a posteriori probability distribution has to b@awex combination ofy.

1. A1 =(>0,0,0) can be ruled out since player 3 would play Y which violateaxbmstraimyzl(zl) > %
2. A1 =(>0,0,> 0) can be ruled out for the same reasons as given in case 1.

3. A1 =(>0,>0,> 0) implies that player 2 believes with some positive probapthat conditional
on hearing message 1 the true state of nature is three. Sisitef dominates the action L, player
2 chooses R and player 3 must choose X in order to satf's{fq) > % Hencez; would be given by
z = (T,R X) which gives player 1 a payoff gf(z;) = —1 which is less than her minmax of zero

in stage 2 and thus not individually rational.

4. Finally, letA; = (> 0,> 0,0) and consider; to be strategy when player 1 plays T, player mixes L

and R, and player 3 mixes X and Y. We can wegies follows,

2= al(Ta L, X) + aZ(T7 R, X) + a3(T7 RaY) + a4(Ta LaY)a

constraint for player 1 is satisfied in state 1 we must h&ya ) >0, i.e. — (a1 +az) + %(a3+ ay) >

0. Hencez; must be such that; + a» < £. Due to this constraint om, player 2 cannot design the
joint plan sincezy would give him a payoff which is strictly larger than zero tate 2. Asyg(zz) =0,
the incentive compatibility condition of player 2 would bielated as she would want to send signal

1in stage 2.

Result 2 Only player 1 can design the joint plan.

We must now specifyr, forr € {1,...,4} such thay2(z) > % which gives usxr; + az = % and the previous
constraint holds with equality. Using the individual rat#dity constraint of player 3 we can give the a
posteriori probability distribution over the states cdiugtial that message 1 was sent. We must have that
S (123} plok(z1) > max{3p%,p; + P}}. SinceA? =0 we have by definition thap; = 0 and we can
rewrite the individual rationality constraint for pIayeraS% p} + pf > max{3p§, p%} Using p} + pf =1

we find the solution ap; = (p1, p2, p3) = (3, ,0). With z as specified we can now give the payoff matrix

for players 1 and 2 when is being played

ViL(Zl) Vzl(Zl) 0 %
V@) Ba@) |=| 0 1}
V() vi(z) <1 <o

Result 3 z = a1(T,L,X) + a2(T,R X) + a3(T,RY) + as(T,L,Y), wherea; + a, = § andp; = (3, £,0)
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We have already specified andz, and now turn to the signaling stratedy and the corresponding fre-
guency strategys. This will lead to the anticipated contradiction. By simil@asoning as above we
find thatA3 can only be of the form\z = (0,> 0,> 0). We can writezz as follows,zz = B1(T,R, X) +
B2(B,R,X) + B3(T,RY) + Ba(B,RY), such thaty ;1 4 B =1, forr € {1,...,4}, B > 0. Due to the
incentive rationality condition for player 1 we need tlyr%((zg) =0, hence-; + %Bg-l— B4 =0 and we can
rewrite 31 andf, asf1 = % Bs+BsandBr=1— g‘ B3 — 2[4. With z3 as specified we can now give the payoff

matrix for players 1 and 2 wher is being played,

Vi(zs) V3(z3) ~1+3Bs+Bs 1-1Bs
V(z) Vi(z) | = 0 2B5+3Bs— 1
Bz V(z) S 2B 3Bs 0

In order to assure that the individual rationality constrér player 2 in state 2 is satisfied we ne,édzs) >

0 which implies that 1 233 — 334 < 0. Using this constraint we can rewrite the payoff of player 4tate 3
as3 —2B3—3Bs = (1—2B3—3Ba)+ (3 +3Bs) < 3+ 3Bs. If Bs=1we haved — 23— 3B+ = —1 and so
for all B4 € [0,1] we have% —2B3— %[34 < 1. This violates the incentive compatibility condition daper

1 asg§(23) < gf(zz) =1 and thus player 1 would prefer to send signal 2 in state 3.

Result 4 There exists no joint plan for player 1 which satisfies thedittons of a joint plan equilibrium.

This completes the proof.

We have shown that no completely revealing equilibrium ambmt plan equilibrium for neither informed
player in Example 4 can exist. In the next section we turn te@w aquilibrium concept which relies on

successive information revelation by the informed players
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2.5 Successive Information Revelation by the Informed Plagrs

We first discuss the approach suggested by Renault (2001)handexplain our own. Renault (2001)
suggests that in the game in Example 4 player 1 should seradeadgtpendent messagje= (A1,A2,A3)

such that the a posteriori probability distribution and fitegjuency strategy are as follows.
o« M={123}
o At=(M{.23.A3) = (1,0,0), A% = (AF.A3.A%) = (3. 3.3) andA® = (A3, A3,A9) = (0,0,1)
o p1=(PLPLPY) = (3.3.0). P2= (P2, 5, P3) = (0,1,0) andps = (p3, 3, p3) = (0,7, 3)
o z1=3(T,.LX)+3(T,L,Y), 2= (B,L,X), zs = 2(T,R X) + £(B,R X) + 2(B,RY)

With the frequency strategieg, z andzz we obtain the following payoffs for player 1 and player 2,

respectively.

V@) vi@) | [ o 2]
V(z) ¥@) |=| o 1}
K@) B@) | | 5 1]
i Vi(z2) vi(z2) 1 [-1 1]
V() Vi(z) | = 0 O
I ¥(z) V(z) | | 1 -1
V) vhz) | [ -F 1]
Vz) ¥Bz) |=| o0 &
K@) Bz | | 3 O]

Note that this joint plan for player 1 is not incentive conipletsince 1= y;(z) # y;(z) = % In state 3
player 1 would want to send message 2. Renault (2001) nowestsythat player 2 should have an extra
communication phase after player 1 sends message 2, in \plaghr 2 can say “OK” or “NO, the true
state is ¢”. If player 1 sends sends message 2 in state 3 @aywuld say “NO” and player 2 and 3 should
punish player 1. If the message is “OK” then the game goes tefase. But if the message is “NO” they
then play(T,R,X) forever. Renault (2001) proves that this strategy dessrimeuniform equilibrium for

the game in Example 4.

Although this strategy leads to an equilibrium it seems tsdme what “ad hoc”. In general, why
should player 3 believe in the a posteriori probability digttion if the joint plan is not incentive compat-
ible? Say that since the plan is not incentive compatiblesh®ot going to believe in the joint plan and
always play X, which would be with respect to the initial patfity distribution pg individual rational.
Concerning player 1, why would she want give control to pt&/eSuppose player 1 sends message 2 when
the true state is 2, in other words player 1 is not lying. lfyela2 is “nasty” she would always say “NO, the
true state is c” given the true state is 2. They would then flaiR, X) forever which would give player 2 a

payoff of zero and player 1 a payoff efl. Hence player 1 should be disinclined to give up controllaad
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at the mercy of player 2 especially when player 2 can play divitual rational action which would give
player 1 a payoff worse than her minmax payoff. Since we assutimat player 2 is not “nasty” this does
not pose a problem in this particular case. We now descrilifexesht equilibrium concept which is not

only individually rational but also incentive compatible.

2.5.1 Successive Joint Plans and Successive Joint Plan Hiia

In this section we consider plans where one of the informegieyk, say player, sends some state de-
pendent signal or message which is then followed by an additinformation revelation by player-3i.
Conditional on the message the players then play a messagadint frequency strategy, as usual. We
call such a plan auccessive joint plarf a successive joint plan is such that the signaling sgiieteof both
players are incentive compatible and the payoffs of all @tayare individually rational then the successive
joint plan describes an successive joint plan equilibrivve.will now define successive joint plans and the

corresponding successive joint plan equilibrium.

Definition 2.15 (Successive Joint Planforiand3—iin IN, a successive joint planis a tupl®, A ,P(A),b,Ms_j, i, P(A, L

where:

1. M is a non empty finite set of messages (or signals) for playehg will be the first to reveal

information.

2. A = ()\J)J-eK is a signaling strategy, such that for each state)jl e A(M;i) and Ym € M,
A =def pj/\j > 0.
m e j; 0'\m

3. P(A) = (Pm(A))mem such that for all me M, pm(A) € A(K) is the induced probability distribution
on the states of the nature given m, widﬂ(p) = pé)\rjn/)\m where ;in()\) is the probability that is

assigned to state j conditional on hearing message m froyeplia

4. b= (by,...,bpn) € 2Mil is defined such that if o= 1 then player3 — i will reveal some additional
information if she hears the messagem;. If b, = 0 then conditional on hearing message=riv;,

player3—i will reveal no further information.

5. Ms_j is afinite set of messages (or signals) for the pl&reii who will be able to send some message

me Ms_; if and only if a message mM; was sent by player i that satisfieg b- 1.

6. 1= (u’)jex is asignaling strategy such that for each state state j, @ipéayer i can send a message
me M; with by, = 1 with positive probabilityu’ € A(M3_j) andvm € Ma_, U =def ; pl(A )u,% >
j€
0.

7. P(A) = (Pm(A)meM;, bm=0> Pmm(A , ) mem;, b=1, mems_;) SUCh that for all me M; with b, =0, pm(A ) €
A(K) is the induced probability distribution on the states of theture given m with }p(/\) =
pé,x\%}/x\m where ;%(/\) is the probability that is being assigned to state j conditibon hearing
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the message m from player i. For all@M; with by, = 1, pra(A, 1) € A(K) is the induced proba-
bility distribution on the states of the nature given m amdvith %()\ NOES p,%()\)ur%/urﬁ where
proﬁ](/\,u) is the probability that is being assigned to state j, coruitil on hearing the message m

from player i andm from player3 —i.

8. 2= ((Zm)mem;» (Znm)mem, mem; ;) is @ frequency strategy which is played after the signal iegi
such that for all me M; with by = 0, zn € A(S) and for all me M; with by, = 1, for all me M3_; ,
Zom € A(S).

meMs_;

9. y € R¥is the payoff to player i whergj € K, yij = max{ maxgij (Zm), z ur{;qgij (erm)}
meM;

10. y5_i € RK is the payoff to playeB— i where for all stages § K conditional on hearing any message

me M, with by, = 1 the payoff in state j igs_jjm= Am’\?x gij (Zi) -
meMa_j

As usual, if an informed player deviates from a frequencggtsgyy in statg the other informed player will
reveal the true state of nature and she will then togethdr pltyer 3 punish the deviator to her state de-
pendent minmax. Furthermore if any informed player’s sigmaot according to protocol, she is punished
to her state dependent minmax. If the uninformed playeradesifrom any frequency strategy or zym,
the informed players punish the uninformed player suchhiawill receive a payoff offlexasz(pm(A)) or

vexXas(pmm(A, 1)), respectively. We will now define a successive joint planildzium.

Definition 2.16 (Successive Joint Plan Equilibrium) The successive joint plan

(M, A,P(A),b,Ms_j, u,P(A, 1),z ¥, ys-i) describes a successive joint plan equilibrium if:

1. Vj e K,yme M; with by =0and Ah >0, g/ (zm) >V and ¢, ;(zm) >V}, |

2. VjeK,Yyme M; with b,,=1and /\rjn >0,VMme Ma_j andurln > 0,
9! (zm) > V) and @ ;(zm) > V5 .

3. ¥me M; with by = 0, Z< ph(A)gk(zm) > vexas(pm(A)))
j€
4 YMEMai, 5 Pha(A s 1) G(zam) > vexas(pma(A, 1))
j€

5. Vj e K,Yme M with by = Oand)\rjn > 0, gij(zm) = yij

6. Vj € K,Yyme M with by, = 1and)\rjn > Ogij(zm) = yij

7. Vj e K,Yyme M with by, = 1and)\,{'q > 0, VM e Ma_j with ur% >0, ggfi(zmm) = y§7i|m
Condition 1 is the individual rationality condition for plarsi and 3—i in case player sends a message
after which player 3-i sends no further message. Condition 2 is the individuabmatity condition for

playersi and 3—i in case player sends a message after which playeri3sends some further message.

Conditions 3 and 4 are the individual rationality condigdar player 3. Conditions 5 and 6 are the incentive
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compatibility conditions for player, conditions 5 in case she sends a messageM; with by, = 0 and

condition 6 wherby, = 1. Condition 7 is the incentive compatibility condition folayer 3—i.

The motivation for using successive joint plans is that we it the revelation process in two steps.
This allows us to avoid certain incentive compatibility plems as we have seen in Example 4, where it was
impossible to define a joint plan for player 1 that is incemttompatible. Using two phases of revelation

we simply let player 2 reveal the information that was noeimive compatible for player 1.

2.5.2 Properties of Successive Joint Plans

We will now analyze the properties of successive joint plang successive joint plan equilibria. Similar
to joint plan equilibria, every successive joint plan etpilm describes a uniform equilibrium. The proof
for successive joint plan equilibria is a generalizationhaf proof for standard joint plan equilibria, which
can be found in Renault (2001, p. 235). Since successiveglEns are an extension of joint plans, Lemma

2.17 follows directly.

Lemma 2.17 Let the joint plan(M, A, P,z y) for player i€ IN satisfy the conditions of a joint plan equi-
librium, then there exists a successive joint p{dfi, A,P(A),b,Ms_;, u,P(A, 1),z Vi, y5-i) which satisfies

the conditions of a successive joint plan equilibrium.

Proof: Let the successive joint plan be given@®, A, P, (0,...,0),Ms_j, U, P,z y,y5-i). Sinceb= (0, ...,0)
player 3—i will never send additional information, the choicetofndMs3_; is thus irrelevant. Furthermore
the payoff of player 3-iin statej € K is given byygj,fi =S meM p}'n(/\)géfi(zm). We now need to show that
the successive joint plan satisfies the conditions of a ssoeejoint plan equilibrium. Since= (0, ...,0)
conditions 2, 4, 6 and 7 do not have to checked since fanallM, b, = 0. Since the conditions 1,2 and
3 of the joint plan equilibrium are satisfied this impliestthanditions 1,3 and 5 of a successive joint plan

equilibrium are satisfied. This completes the proof.

Note that the following statement is not necessarily safisfilf there exists a successive joint plan
(Mi,A,P(A),b,Ms_i, u,P(A, 1),z ¥, ys—i) which satisfies the conditions of a successive joint planliegu
rium then there exists a joint pldM, AP,z y,) for playeri € IN or 3—i that satisfies the conditions of a

joint plan equilibrium.

Proposition 2.18 For the gamd™ given in Example 4 there does not exist a joint plan equilibrfor player
1 and nojoint plan equilibrium for player 2, but there exiatsuccessive joint plafMi, A ,P(A),b,Ms_i, 1, P(A, 1), Z ¥, ¥5-i)

which satisfies the conditions of a successive joint plariegum.

Proof: The first part was profen in Renault (2001) and was also givem earlier section. We now give
a successive joint plan for Example 4, where first player Hseome state dependent message and then
player 2, conditional on the message of player 1, reveal#tiaddl information about the true state of

nature.
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Let (MlaA ) P(/\ )7 b7 M27 H, P(/\ ) u)a W, W) be given by

e M;={1,2}

o M=({A3) =(10),22=(Af,A9) = (3.5) andA® = (A3,13) = (0.1)

This gives us the following a posteriori probability distition P(A) = (p'(A), p?(A)) on the states of

nature.

e P(A) = (p(A), p2(A)) wherepy (A
P2(A) = (P3(A). P3(A), P3(A)) = (

)=
0,52

In other words after hearing message 1 we know that we areﬁlvilmbability in state 1 and wit& in
state 2. This makes player 3 indifferent between chooXiagdY. After hearing message 2 we know that
we are With% probability in state 2 and Wit@ probability in state 3 but never in state 1. After hearing
message 1 player 2 does not reveal any additional informéatibconditional on hearing message 2 player
2 will reveal additional information with the following sigling strategy: = (u?, u®). Since message 2 is
sent with zero probability in state 1 we can neglect to sggetf The combined signaling strategy is given
in Figure 13. The leaves correspond to the messages. Theemsi@long the branches correspond to the

probabilities that a certain state or message gets chosen.

choice of nature

state

A= = = A2=2/3 A2=0

a b a b
Figure 13: Successive Signaling Strategy

The signaling strategy for player 2 is given by:
e b= (by,bz) =(0,1)
e My={a,b}
o u=(p? % wherep? = (U3, k) = (3,3) andu® = (13, 1) = (0,2)
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Hence after hearing message 2, player 2 sends conditiortaiag in state 2 witr’% probability message
a and likewise With% probability messagb. If player 2 hears message 2 and the true state is state 3 she

will always send messade This signaling behavior gives us the following final a padste probability
distributionP(A, 1) = (p*(A), P*(A, k), P*(A, 1)).

o P(A, 1) = (p1(A), p2a(A, 1), P2o(A, 1)) where
p1(A) = (pI(A), PE(A), P3(A)) = @im
P2a(A, 1) = (P3a(A, 1), P2a(A, 1), P34(A, 1)) = (0,1,0) and
P2n(A, 1) = (Po(A, 1), P3y(A, 1), P3p(A, 1)) = (0,7, %)

We now specify the frequency strategigszy, andzyy,.

o Z= (21,24,2p) Wherez; = 2 (T,R X) + 2(T,RY), zza = (B,R X) and
Z=3(B.RX)+3(BRY)

With the frequency strategies, 2, andzy, we obtain the following payoffs for player 1 and player 2,

respectively. i i

Vi(z)  vi(z) 0 3
waz) @) |=| i o
K@) ¥a@a | | & 0
Vi(z2a) Va(2Z2a) -1
V12(22a) V22(22a) = 0

i Vi(z2a)  ¥3(2ea) ] i 1 -1 ]

i) W | [ 1 3]
V(zo) V(zw) |=| 3 O

V@) vi(zn) | | § O]

e The payoff for player 1 is given by, = (0,7, 3)

e The payoff for player 2 is given by, = (% ,0)

We will now show thatM1,A,P(A),b,My, u,P(A, 1),z v1,V>) as specified above satisfy the definition of
a successive joint plan equilibrium. We know from before tha minmax payoff for the informed players
is zero in all states; that is for dlie IN and for allj € K we havevij = 0. For player 3 the minmax payoff
is given byvexas(p)) = as(p) = max{3p?, p* + p*} whenp = (p*, p?, p?) € A(K) is believed to be the
true probability distribution governing the states of matuWe first show that condition 1 holds. Since
message 1 is the only messagé&inwhich satisfied; = 0 we need to check that the individual rationality

conditions hold in case message 1 is being sent with pogitveability.
e A >0:g}(z1) =0=v}andg}(z) = 3 >V}
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o A2>0:0%(z1) = 3 >viandgs(z) = £ > V3

Message 2 is being sent with positive probability in statasa@ 3 and satisfids, = 1. Hence player
2 will further reveal information conditional on hearing ssage 2 by player 1. Condition 2 holds

since,
o U2>0:02(za) =0=V andg3(za) = 0=V3
o pZ>0:93(zp) = 1 > V2 andg3(zp) = 0= V3

o 12> 0:93(zp) =32 > V3 andg3(zn) =0=V3
We now check conditions 3 and 4. The individual rationaliyditions for player 3 are satisfied since:

e Message 1 satisfids = 0 and withpy (1) = (p}(A), p3(A), p3(A)) = (3, 1.0) we haveZ< plM)dk(z) =
je
3 =max{3pf(A),pr(A) + p}(A)} = vexas(pi(A)))
Message 2 satisfids = 0 so

o for messag@ with pa(A, 1) = (P3,(A, 1), P2(A, 1), P3.(A, 1)) = (0,1,0) we have
> Pha(A . 1)Gh(z2a) = 3> max{3p3,(A. 1), Pha(A. 1) + PR(A, 1)} = vexas(paa(A, 1))
i€

o for messagd with pay(A, 1) = (P3(A, 1), P3,(A, 1), P3p(A, 1)) = (0,7, %) we have

Z<p2b (A1) (Z2) = & = max{3p3, (A, 1), Phy(A, 1) + P3p(A, 1) } = vexas(pav(A, 1))
Conditions 5 and 6 are satisfied since:

e Instate 1 player 1 sends message 1 with probability equalepie. Al = 1 andg%(zl) = yll. Player
1 would also not want to send message 2 in state 1 sincandzy, would give her a payoff of
0i(z2a) = —1 andgi(zz) = —1, respectively.

e In state 2 player 1 sends both messages with positive pridigabe. /\12 =3 1 and /\2 = g The

payoff from sending message 1g§(z) = 71 = y2 and the expected payoff from sending message
2is 302(za) + 30%(z2p) = 3 -0+ 3 - 1 = 1 = y2. Hence player 1 is indifferent between sending

message 1 and message 2.

e In state 3 player 1 sends message 2 with probability equaitéoice. A3 = 1 (after which player 2
sends messadewith probability equal to one) angﬁ(zﬂ,) = yi. Player 1 would also not want to

send message 1 in state 3 sizg@vould give her a payoff ogi(zl) =0.

The incentive compatibility constraint for player 1 is thaagisfied without player 2 having to say “OK” or
“NQ”. Concerning player 2 we need to check that conditiomahearing message 2 the incentive compati-

bility constraint holds:

e In state 2 player 2 sends messagendb with equal probability, i. e,u2a sz =3 andgz(zza)
05(za) = y2[2=0.
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e Instate 3 player 2 sends message b with probability equaldpie. (3, = 1 andg3(zp) = 5/2=0.
In state 3 Player 2 would also not want to send messagi¢h positive probability since,, would

give her a payoff ofs3(zza) = —1.

We have shown that all payoffs are individually rational #mat the incentive compatibility constraints for
players 1 and 2 are satisfied. Thus the successive joint gsecribes a successive joint plan equilibrium

with the equilibrium payoff vector of(0, %, ), (3,0,0),1). This completes the proof.

We have seen that the set of possible successive joint platibeia is strictly larger than the set of
“standard” joint plan equilibria. Furthermore we have shdtat the game in Example 4 has an equilibrium
realized by successive information revelation. The niagerty of this equilibrium is that player 2 does
not have to announce that player 1 is lying which can poselgnudy that is player 1 could be telling the
truth but player 2 could announce that player 1 is lying. In esse, when player 2 announces that player 1
is lying, player 3 would not necessarily know who is devigtiiThis problem is avoided in this case since
individual rationality holds for both players. We see thatentive compatibility is a strong and desirable

property of an equilibrium.

The question is now whether there exists a successive jtant gquilibrium for Example 4 where
player 2 is the first one the reveal some information follovegdplayer 1. The answer to this question
is yes. The relevance of this result will be briefly discusisethe conclusion. We now give a successive
joint plan(M2, A, P(A),b,M;, u,P(A, 1),z 5, 1) and then prove that this successive joint plans satisfies the
conditions of a successive joint plan equilibrium. Due toléngth we shall give the successive joint plan

and the proof in a more compact form, but which is closelytegldo the proof of Proposition 2.18.
(M27/\ ’ P()\ )v ba Mi ’ uv P()\ ’ u)vzv V?v Vl) iS given by
e My={1,2}

o A'=({,A3)=(1,0,A%=(A7,A7) = (§.3) andA® = (A},A3) = (0,1)

e P(A)=(py(A).p2(A)) wherepy(A) = (2. 2,0) and
P2 = (P3(A), P5(A). P3(A)) = (0.5, 3)

e b=(1,0)

. Mlz{a,b}

o p=(ptp?) wherep' = (13, py) = (1,0) andp? = (p3, 13) = (3, 3)
The successive signaling strategy is illustrated in Figure

i P(/\ ’ IJ) = (pla(A ) “)7 plb(A ) “))7 p2(/\ )) Wherepla(/\ ’ IJ) = (%7 %11 O), plb(/\ ’ IJ) = (07 17 0) ande(A ) =
0,%,7)

o Z= (Za,zp, 2) Wherezy, = 3(T,R X) + 3(T,R)Y), z3p = (B, L, X) and
2= 5(B,RX)+15(B,RY)

Alw

)

ENT

e The payoff for player 2 is given by, = (4, 3,0)
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choice of nature

state state

A=0 A2=2/3

A2=1/3 A3=0

Figure 14: Successive Signaling Strategy

e The payoff for player 1 is given by = (0, %, 2)

With the frequency strategies,, zi, andz, we obtain the following payoffs for players 1 and player 2

respectively. i ) ) )
Vi(zia) V(1) o 2
Vlz(zla) VS(Zla) = 0 %
L Vi(212) 3(21a) 11 § 0 i
Vi(zin)  v3(zi) -1 1
V(@) Vs(zp) |[=] O O
V(@) (@) | | 1 -1]
iz v(z) -1 3
Kz ¥z |=| & 4
V@ B@ | | § o

We now prove thatMz, A, P(A),b,My, 4, P(A, 1),z v, y1) as given above satisfies the conditions of a suc-
cessive joint plan equilibrium.
We first show that condition 1 holds. Since message 2 is thernaksage i, which satisfied, = 0 we

need to check that the individual rationality conditionsdsdn case message 2 is being sent.

A 2

o A2>0:¢3() = & > V2 andg3(z) = & > V3

1
o A3>0:03(z) = 3 >V} andg3(z) =0=\3

Message 1 is being sent with positive probability in statasd 2 and satisfids; = 1. Hence player
1 will reveal further information conditional on hearing ssage 1 by player 2. Condition 2 holds

since:
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o pt>0:g}H(z14) = 0=V} andg}(zia) = § > V3

o p2>0:0%(z1a) = 0=V2 andg3(za) = 3 > V3
o U2 >0:9%(z1p) = 0= V2 andg3(zp) = 0=V3

We now check conditions 3 and 4. The individual rationaliyditions for player 3 are satisfied since:

e Message 2 satisfids = 0 and withpp(A ) = (0,7, 3) we have}K ph(A)gh(z2) = 2 =max{3p3(A), ps(A) + P3(A)} =
j€
vexag(pz(2)))

Message 1 satisfidg = 1 so

o for message with pia(A, 1) = (2,,0) we have

> Pla(A s 1)0h(z1a) = § = max{3pf,(A, 1), PLa(A, 1) + Pa(A, 1) } = vex@s(paa(A, 1))
IE

o for messag® with pip(A, u) = (0,1,0) we have
> Plo(A, 1)Gh(z1b = 3> max{3p3,(A, 1), Ply(A. 1) + PFo(A, 1) } = veXas(pin(A, 1))
j€

Conditions 5 and 6 are satisfied since:

e In state 1 player 2 sends message 1 with probability equahég ice. /\11 = 1 (after which player
1 sends messagewith probability equal to one) angﬁ(zla) = y21. Player 2 would also not want

to send message 2 in state 1 sizgewould give her a payoff ofi}(z) = 1% which is less that
0i(za) = §.

e In state 2 player 1 sends both messages with positive pridgabe. A2 = 3 2 and A2 = % The
payoff from sending message 29% (25) = 6 = y22 and the expected payoff from sending message
1is 303(z1a) + 303(z1n) = 3 3+ 3-0= % = 2. Hence player 1 is indifferent between sending

message 1 and message 2.

e In state 3 player 2 sends message 2 with probability equalépie®.A3 = 1 andg2 )= y3 Player
1 would also not want to send message 1 in state 3 sipcandz, would give her a payoff of

03(z1a) = 0 andg3(z1p) = —1, respectively.
Condition 7 is satisfied since:

¢ In state 1 player 1 sends messageith probability equal to one, i. eyla =1 andg1 Zj5) = y1|1 0.
In state 1 player 1 would also not want to send messagith positive probability sincey, would
give her a payoff ot} (zp) = —1.

e In state 2 player 1 sends messagandb with equal probability, i. e,u1a ulb =3 andgl(zla)
91 Z1a) = V2|1

We have shown that all payoffs are individual rationally #mat the incentive compatibility constraints for
players 1 and 2 are satisfied. Thus the successive joint gscribes a successive joint plan equilibrium

with the equilibrium payoff vector of(0, %, 3). (4, 3,0),1). This completes the proof.
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Due to the existence of successive joint plan equilibriaBgample 4, where neither a completely
revealing equilibrium nor a joint plan equilibrium for play1 nor a joint plan equilibrium for player 2
exist, the question arises if this result can be generaliaesll 3-player infinitely repeated games with
incomplete information on one side and any finite numberatkst In other words does there always exist

a successive joint plan equilibrium for this class of games?
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3 Conclusion

We have shown that there exist 3-player infinitely repeatedes with incomplete information on one side
and three states of nature where no joint plan equilibristéar neither player 1 nor player 2. We have then
introduced and defined a more general concept, successNgians, where both informed players take
part in the revelation process. Using successive jointglem have then profen the existence of equilibria
for a particular game where no joint plan equilibrium exi$tle have found two successive joint plant
equilibria, one where player 1 is the first to reveal somerimfation and the other one where player 2 is the

first player to send some signal.

The fact that there exist two successive joint plan equditas described above, not only supports our
approach but also gives a positive outlook that the answtret@osed question will be a positive one. If
the existence of successive joint plan equilibria for afil&yer infinitely repeated games with incomplete
information on one side and with arbitrary many states caprbéen, the general proof should give the
existence of two successive joint plan equilibria, one wh@ayer 1 is the first to reveal some information

and the other one where player 2 is the first player to send sanal.

We now give a possible approach to answer the question postteilast chapter. If the number
of states is 2 then there exist either a completely reveaiglibrium or a joint plan equilibrium for
one of the two informed players. For an arbitrary number afest we should first check whether there
exists a completely revealing equilibrium. If the existerad completely revealing equilibria fails Propo-
sition 2.10 imposes restrictions on the equilibrium pagofKeeping this restriction and the individual
rationality constraints in mind we now could define a coroestenceF : A(K) — R x R¥ by F(p) =
g2 -vi %@ -v;

:2e A(S),ys > vexas(p)) p- If there exists & € A(S) such that~(pg) N

>0 >0
# 0 then there exists a joint plan with one message and onlgt@mge of revelation for one
| >0 >0
>0 >0
of the informed players. Now |€& be the connected componentop € A(K) : F(p) N : =0
>0 >0
<0 >
containingpg. We can characterizeby settingC = UCi whereC; is of theformCi=< peC:F(p)n 70 =
i
>0 <O

In all setsC; the individual rationality constraint is violated for sorimormed player. But by considering
the relative frontier of some of thg and using the convexity & we should be able to prove the existence

of a successive joint plan equilibrium.
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