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Abstract

The symmetric rendezvous problem on a network Q asks how two players, forced to use the
same mixed strategy, can minimize their expected meeting time, starting from a known initial
distribution on the nodes of Q: This minimum is called the (symmetric) �rendezvous value�of
Q:

Traditionally, the players are assumed to receive no information during the play of the
game. We consider the e¤ect on rendezvous times of giving the players some information
about past actions and chance moves, enabling them to apply Bayesian updates to improve
their knowledge of their partner�s whereabouts. We consider the case where they are placed
a known distance apart on the line graph Q (�symmetric rendezvous on the line�). These
techniques can be used to give lower bounds on the rendezvous times of the original game
(without any revealed information). Our approach is to concentrate on a general analysis of
the e¤ect of revelations, rather than compute the best bounds possible with our techniques.

MSC 2000: 90B40 Search theory
keywords: rendezvous, search, common interest games, team theory



1 Introduction

The paper considers how revealing information can a¤ect an important unsolved problem in
rendezvous theory: the symmetric rendezvous problem � on the line or line graph (whose nodes
are the integers Z) posed in [1]. (In fact, with the recent solution byWeber [24] of the symmetric
rendezvous problem on the complete graph K3; � is arguably the main unsolved problem.) The
problem � begins with a chance move, called the initial con�guration �: This move consists
both of the placement of two agents (rendezvousers) I and II at nodes of Z a known distance
(taken as 2) apart, and their orientation (facing them left or right, independently). The
random orientation models the assumption that the players do not have a common notion
of direction along the line. The players then choose paths si and sj with respect to their
forward direction, using independent randomization from a common mixed strategy �: This
constraint is what makes the game player-symmetric, modeling the assumption that the agents
cannot meet beforehand to agree a joint strategy. (If they can, this is the player-asymmetric,
or distinguishable player, version studied in [5].) Given these choices, they arrive at some
common node at a �rst (meeting) time T = T (si; sj ; �) : Their common aim is to minimize
(over �) the expected value of the meeting time T; with the expectation taken with respect
to both � and the given distribution of the initial con�gurations �: This minimum time is
called the (symmetric) rendezvous value v = v (�) of G and the minimizing distribution ��
is called the optimal mixed strategy. For such symmetric rendezvous problems, one could
equally take the viewpoint that � is chosen by a single optimizer, such as the author of a
rendezvous protocol which is routinely given to people such as hikers, or programmed into a
control unit of parallel computers to tell them when and where to exchange their information.
Such problems were �rst studied by Anderson and Weber [11] for the complete graphs Km and
a general formulation, including continuous time and more complex notions of orientation, was
subsequently given by the author [1].

Symmetric rendezvous problems on graphs [4] are traditionally studied under the assump-
tion that the players receive no information about the other�s whereabouts or strategy during
the course of the play. In this paper we vary the �no revealed information�assumption so that,
after a known number n of moves, a signal is given to both players which depends on their
actions and on chance moves up to that time. Suppose that their possible actions (n-move se-
quences of forwards or backwards) are s1; : : : ; sm and the initial chance moves are �1; : : : ; �K :
The state of the game at time n depends on the triple (si; sj ; �k) ; where si and sj are the
sequences chosen by I and II, and Nature chooses �k. For some triples, T (si; sj ; �k) � n; in
which case the game is already over at time n. For the rest, forming the uncertainty set U
= Un; the game continues. The signal received by the players consists of being told which
element P of a given partition P of U contains the state (si; sj ; �k) : If the original rendezvous
problem (game) is called �; we call this revealed information version (where the players know n
and P from the outset) � (n;P) : After learning P; and knowing si; Player I (for example) can
update his priors on � and II�s action sj ; given the knowledge of the common mixed strategy
� that both have used to pick their actions. The players then play optimally in the subgame
� (n; P ) ; which may or may not be a symmetric game, depending on P: The trick is to choose
the partition P so that optimal play in each subgame � (n; P ) can be determined. We can then
ensure that the rendezvous value v (P) of the revealed action game � (n;P) can be calculated
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(either de�nitively or in terms of v); yielding the inequality

v (P) � v;

because the additional information in P cannot increase the rendezvous time (it can always be
ignored). The same observation shows that coarser partitions P give higher v (P) and hence
stronger lower bounds on the original rendezvous value v. Such lower bounds on rendezvous
values are usually di¢ cult to come by.

We apply these notions to the symmetric rendezvous problem on the line. The literature on
this problem will be discussed in Section 2, and the application of revealed actions to it will be
analyzed in Sections 3 to 6, constituting the bulk of the paper. The only versions of revealed
information in this context seem to be the papers of Baston and Gal [14] on the line, where
the players learn their partner�s starting point if they ever reach it (by observing a marker left
there) and Anderson and Weber [11] (who mention the possibility of players leaving messages
at locations they have visited - but they do not allow this in the versions of the Km problem
that they analyze).

A revealed information version of the Anderson-Weber paper, published about the same
time, is the paper of Crawford and Haller [15] on �repeated coordination games�, which considers
the complete graph Km (m locations) with the players�locations (actions) revealed after each
move. For small m; there are nice simple solutions: If m = 2; the best the players can do is
randomize forever on the two locations, meeting in the Bernoulli expected time 1= (1=2) = 2
This is equivalent to Anderson and Weber�s result [11] for the complete graph K2 on two nodes,
since in that case the other player�s location is �revealed�(by non-meeting). If m = 3 and their
�rst locations are distinct, the players should both go to the unique location unoccupied in the
�rst period where they will meet at time 2 - hence the least expected meeting time is

1=3 (1) + 2=3 (1 + 1) = 5=3: (1)

If m = 5; two strategies are salient: Assuming their initial locations are distinct, they can (i)
coordinate on these two locations forever (essentially playing the m = 2 game), meeting in

expected time (1=5) (1) + (4=5) (1 + 2) =
13

5
; or they can (ii) go randomly among the three

unoccupied locations and, if these are distinct, coordinate on the �fth location - with lower
expected meeting time

1

5
(1) +

4

5

�
1 +

1

3
(1) +

2

3
(2)

�
=
7

3
:

2 The Symmetric Rendezvous Problem � on the Line

In this section we formalize the description of �; the player-symmetric rendezvous problem on
the line, and describe some of the literature giving upper bounds on the rendezvous value v of
�.

� begins with a chance move in which the two players are placed a distance D = 2 apart
on the real line (or two nodes away on the line graph Z), and randomly faced in directions
that each calls �forward�forever. From an observer�s perspective, Player I is placed on the left
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of Player 2 and Nature chooses equiprobably among the following four initial con�gurations
�k; k = 1; 2; 3; 4: Each of these gives a �1 direction d1 (k) to I and d2 (k) to II. This chance
move models the assumption that the players have no common notion of direction along the
line, so that their �rst move must be in a random direction, independent of the direction of
their partner�s �rst move.

k �k d1 d2

1  ! �1 +1

2 ! ! +1 +1

3   �1 �1
4 !  +1 �1

Figure 1: Initial Con�gurations

Since we will need to display three dimensional (i; j; k) arrays, we will often put the �nal
coordinate k into an (i; j) entry as a 2� 2 matrix in the following form

�1 :  ! �2 : ! !
�3 :   �4 : !  (2)

Figure 2: Initial con�gurations in 2� 2 matrix form

In each period t = 1; 2; : : : ; a player either moves one unit distance in his forward (F ) or
backward (B) direction. (A justi�cation of this reduction to discrete moves can be found in
[17] and for a related context in [20].) So a pure strategy is an in�nite sequence of F�s and
B�s. (By symmetry of the line, we may assume without loss of generality that strategies begin
with an F:) For numerical calculations, we take F = 1 and B = �1: If a player adopts strategy
s = (s (1) ; s (2) ; : : : ) ; with s (t) 2 fF;Bg = f+1;�1g ; his net motion at time t from his start,
in his forward direction, is given by

ŝ (t) =

tX
r=1

s (r) : (3)

If I adopts strategy s; II adopts s0; and Nature picks the initial con�guration �k; then the
directed distance from II to I at time t (II�s location minus I�s location) is given by

D
�
s; s0; �k

�
(t) =

�
d2 (k) ŝ

0 (t) + 2
�
� [d1 (k) ŝ (t)] (4)

so the players meet at time

T
�
s; s0; �k

�
= min

t

�
t : D

�
s; s0; �k

�
(t) = 0

	
: (5)

Since �k is picked equiprobably by Nature (chance), their expected meeting time is given by
the averaged function (which we give the same name T );

T
�
s; s0

�
=
1

4

4X
k=1

T
�
s; s0; �k

�
: (6)
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For example, if s begins with FFB and s0 begins with FBF; it is easy to see that the meeting
times corresponding to the four initial con�gurations �k; given in the two dimensional ordering
of (2), as

? 2
? 1

where the entry �?� signi�es that the players have not met by time 3. That is, T (s; s0; k) > 3;
for k = 1; 3:

The problem for the players (or for the author who writes a book which they each read
for instructions) is to �nd the strategy which, when simultaneously adopted by both players,
minimizes their expected meeting time. Clearly no pure strategy s is any good for this, as in
initial con�gurations �2 and �3 (the ones where they face in the same direction), their initial
distance of 2 is preserved, and they never meet. So the problem is to �nd the mixed strategy
� which minimizes the expected meeting time. (The existence of a minimizing � is guaranteed
by the analysis given in [1].)

If the players do have a common sense of direction along the line, we may take this direc-
tion to be Player I�s forward direction, so we only average over the two cases k = 2; 4: The
rendezvous value vc for this problem certainly cannot exceed v; as the players could choose to
ignore this information. It has recently been observed by Shmuel Gal, and analyzed in Alpern
and Gal [7], that if both players adopt FBB in the �rst three moves and have not met by
then, then they know that k 2 f2; 3g : That is, they they both chose their forward direction the
same. Consequently they are now playing the common-direction game �c; with value vc: It is
widely thought that in the symmetric rendezvous problem on the line, having a common sense
of direction does not help the players. Weber [24] has shown that on the triangle graph K3;
having a common notion of clockwise does not help the players, which tends to lend credence
to the following.
Common Direction Conjecture (CDC): vc = v:

In the author�s original paper [1] a very simple strategy was proposed (and naively con-
jectured to be optimal): In each three-period time interval, choose a random direction to call
forward, and move FBB: If k is 2 or 3; the respective meeting times are 1 and 3: In the
remaining cases (k = 2; 4); the players move in parallel and at the end of the last move they
again face the original game �: Hence the expected meeting time T for this mixed strategy
satis�es

T =
1

4
(1) +

1

4
(3) +

1

2
(3 + T ) ; or T = 5: (7)

Subsequent authors have successively obtained lower expected meeting times by judicious
choices of sets of longer move sequences (and appropriate probability distributions): Anderson
and Essegaier [9] used {FFBBB; FBBBFF; FBBFBB; FBFBBBg and Baston [12] used
{FBBFFBB; FBBBFFF; FBFFFBBBF; FFBBBg: Recent work by Uthaisonbut [23]
and further work by Han, Du, Vera and Zuluaga [17] have reduced the best known the upper
bound on v to 4.574. The latter have conjectured that v = vc = 4:25:
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3 Revealed Information and Partitions

Thus far, the literature of rendezvous search theory has been restricted to the case where the
players receive no additional information in the course of play - except of course that they have
not yet met their partner. So strategies are simply paths, carried out under the assumption
that no meeting has taken place. This is in contrast to most other dynamic games in which
information (about other player�s actions or chance moves) is revealed at various stages. Cards
being turned over constitute an important example of revealed information in parlour games.

Unlike Crawford and Haller, we consider games which give the players information feedback
in � only once, at a preassigned time n: Take n = 2; for example. Recalling our observation
that players may begin with an F; there are only two move sequences of length 2, namely
s1 = FF and s2 = FB: So the Action set A = A2 which describes all the player and Nature
choices up to time 2 is the 2 � 2 � 4 = 16 element set f(i; j; k) : i; j 2 f1; 2g ; k 2 f1; 2; 3; 4gg ;
where (i; j; k) stands for the actions si for Player I, sj for Player II, and initial con�guration
�k: If the players have not met by time 2; they know that actual triple (i; j; k) is one for which
T (i; j; k) � T (si; sj ; �k) > 2: This subset of A2 is called the uncertainty set U2:

The information we give the players after move 2 is described by a partition P of U2: If
(i; j; k) 2 U2 is played, the players are told the element P of P which contains it. We call such
a game � (2;P) (or more generally � (n;P) ; if they are told the element of the partition P of
Un after move n): The set U2 consists of the 10 elements with �?� as the entry in the three
dimensional array T (i; j; k) written below in (9), (with the third dimension k written as a 2�2
matrix in the ordering of (2) . That is, U2 is the set�

(1; 1; 1) ; (1; 1; 2) ; (1; 1; 3) ; (1; 2; 1) ; (1; 2; 3) ;
(2; 1; 1) ; (2; 1; 2) ; (2; 2; 1) ; (2; 2; 2) ; (2; 2; 3)

�
(8)

s1 = FF s2 = FB

s1 = FF
? ?
? 1

? 2
? 1

s2 = FB
? ?
2 1

? ?
? 1

(9)

When partitions of a �xed set are considered as a variable, the two to look at �rst are
the partition P0 into one set and the partition P1 into singletons. The �rst gives no new
information, so �

�
n;P0

�
is the same problem, or game, as �: The second, P1 gives the players

complete information, so the resulting subgame at time n is easy to optimize - simply go
towards the other player. So if the distance between the players at time n is d = D (si; sj ; �k) ;
they will optimally meet at time n+ d=2: So if we replace all the �?� entries with n+ d=2; this
represents the best the players can do in each case (i; j; k) : In fact, this is what was done by
Uthaisonbut [23] to obtain a lower bound for the value v of �; without regard to information
structures. For n = 2, this �lls in the table (9) as follows.
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s1 = FF s2 = FB

s1 = FF
2 + 6=2 2 + 2=2
2 + 2=2 1

2 + 4=2 2
2 + 4=2 1

s2 = FB
2 + 4=2 2 + 4=2
2 1

2 + 2=2 2 + 2=2
2 + 2=2 1

(10)

Averaging the values over k = 1; 2; 3; 4 gives a corresponding lower bound matrix for �
�
2;P1

�
:

B = B
�
2;P1

�
=
1

4

�
12 11
11 10

�
: (11)

Now the players know they are playing �
�
2;P1

�
so that they are facing the payo¤s B: Hence

they choose to play si with the probabilities pi so that the probability vector p = (p1; p2)
minimizes pBpT : Thus the value of the game �

�
2;P1

�
is given by

V
�
2;P1

�
= min

p
pBpT = (0; 1)B (0; 1)T = 2:5; (12)

with the pure strategy s2 = FB played exclusively. Since the players have (much) more
information in the game �

�
2;P1

�
than in the original game �; we have the lower bound of

[23],
V (�) � 2:5: (13)

Of course since P1 is the �nest partition, this will be the smallest lower bound obtainable
by our methods. By analyzing coarser partitions, we will get higher lower bounds (without
increasing n): But to do this we must have methods for analyzing the subgames corresponding
to the elements of the partitions that we consider. Some of the subgames that occur will be
analyzed in the following section.

A third general partition that we refer to is the one that tells each player the actions of the
other. We will call this partition P3: Its element are the sets Ui;j = f(i0; j0; k) 2 U : (i0; j0) = i; jg
which reveal all player actions but no chance moves. To summarize, we have de�ned three par-
titions of U = Un:

P1 partition into singletons - all actions by chance and players revealed
P2 trivial partition into single element U - nothing is revealed
P3 partition into sets Ui;j - elements reveal player actions only

(14)

4 Analysis of Subgames �� , �� (d; e)and �c

In the matrix (10) of the previous section, we labeled certain entries as n+ d=2; where d was
the distance between the players at time n: The number d=2 is trivially the value of the simple
rendezvous problem where two players are placed a distance d apart and told the direction to
the other player. This game is too simple to be given a name, but for some other subgames
that arise we give a name and analyze best play and the corresponding rendezvous value.

The �rst subgame to be considered here, called ��; is the symmetric game that arises from
� at time 1 if the players have not met by then. This is in fact a su¢ cient description of ��;
but for completeness we give an explicit de�nition as well.
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De�nition 1 In �� player I is placed at 0; facing right. Player II is placed equiprobably in
the following three situations: (i) at 2; facing right; (ii) at �2; facing right; at �4; facing left.
The initial placement is identical from both players�points of view, so the setup is symmetric,
and we require a symmetric solution.

We next consider a family of asymmetric subgames �� (d; e) ; d > e � 0; which arise from
the partition element f(i; j; 1) ; (i; j; 3)g ; with d = 2 +4i and e = j4j j ; taking II�s starting
position as the origin, and letting

4i = ŝi (n) ; (15)

be the excess of F�s to B�s in the n�move sequence si:

De�nition 2 The game �� (d; e) ; d > e � 0; is played on a (commonly) labeled line, so the
players know where they are. Player I is placed equiprobably at �d and Player II is placed
equiprobably at �e:

In the next section we will need to know the rendezvous values of these two games. They
are easy to calculate, as we do in the following.

Lemma 3 Let v denote the value of the original game �; v� the value of ��; �vd;e the value of
�� (d; e) ; and vc the value of the common-direction game �c: Then

1. v� =
4v � 4
3

; and

2. �vd;e =
3d� e
4

; for d > e:

3. vc � 2v � 5:

Proof.

1. We know by compactness (see [1]) that the value v for the original game exists. We have
shown that we can assume that the �rst move of both players is F: Consider the situation
after 1 move. In initial con�guration �4 (k = 4) the players are facing each other, and
meet in time T = 1: In the remaining con�gurations k = 1; 2; 3; T > 1: Consider the
situation from the point of view of say Player II after 1 move, who now views his current
location as 0 and the direction he has just moved as �right�. If the con�guration was
k = 1; then from his point of view the state of I is location �4 and his forward direction
must be left; if k = 2; I must be at �2 with forward direction right; if k = 3; then I must
be at location +2 with forward direction right. Since the three possibilities for k are
equiprobable, I�s relative state to II is as in ��: The same is true for II�s state relative to
I. So with probability 1=4 (if k = 4) we have T = 1 and with probability 3=4 (k = 2; 3; 4)
the minimum value of T is 1 + v� (assuming optimal play in �� starting at real time 1):
Hence we have

v =
1

4
(1) +

3

4
(1 + v�) ; or v� =

4v � 4
3

: (16)
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2. Since d > e; Player I knows (or can infer) the direction of II (namely towards 0), and
hence moves in that direction (thin lines in Figure 3). The asymmetric solution is fairly
obvious. Assuming (without loss of generality) that II is placed at +e on a vertical line,
he goes up to met one path of Player I (starting at +d), then follows that path down
until it meets the other Player I path (starting at �d). This path is indicated by a thick
line. In general, against a �nite set of known paths (e.g. the two possible paths of Player
I), the other player�s optimal strategy is of the form where he meets one of the paths
as soon as possible, then another, and so on ([5], repeated as Theorem 16.10 of [6]). In
the present situation, this means that Player II either meets the path starting at +d and
then the one starting at �d (the best strategy, as indicated in the thick line), or the
other way around (worse). Consequently with best play the players meet equiprobably
at time (d� e) =2 and at time d; hence

�vd;e =
1

2

�
d� e
2

�
+
1

2
(d) =

3d� e
4

: (17)

Figure 3: Optimal play in � (d; e)

3. Recall that vc is the value of the common-direction game �c: Consider the strategy FBB
followed by optimal play in the common-direction game �c that results if no meeting
takes place by time 3. Clearly v cannot be more than the expected meeting time for this
strategy, so

v � 1
4
(1) +

1

4
(3) +

1

2
(3 + vc) : (18)

Solving for vc gives the required inequality.
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5 Analysis of �
�
n; ~P

�
In this section we de�ne an information partition ~P = ~Pn and �nd lower bounds for the
subgames corresponding to its elements. The partition ~P re�nes the partition P3 (see (14) )
which reveals just player actions. For n = 2; P3 is the partition of the 10 elements of U2 (the
�?�s) into the four boxes in (9). Thus in the partition ~P; the players are told the moves of the
other player and perhaps something about the chance moves. So to de�ne ~P we have to de�ne
a further partition of each element Ui;j of P3:

So �x n and for convenience number the 2n�1 n-move strategies si; i = 1; : : : ; 2n�1 (since
they all start with F ) so that if i < j then a player using si; and facing the other player who
is facing away from him (initial con�guration �2) will catch him by time n: That is,

T (i; j; 2) � n; or (i; j; 2) =2 U ; for i < j: (19)

For example, if n = 3; we have

s1 = FFF; s2 = FFB; s3 = FBF; s4 = FBB: (20)

By symmetry, we need only analyze i; j with i � j: A particular ordering of the si which
satis�es (19) and in fact gives (20) for n = 3 can be de�ned as follows: Let  =  (s; s0) �
min fr : s (r) 6= s0 (r)g (where ŝ is de�ned as in (3) ) and use the order s � s0 i¤ s () = F:
We are listing the si in dictionary (lexicographic) order (although with the convention that F
appears lexicographically before B).

Note that since T (i; j; 4) = 1 for all i; j; the set Ui;j is at most the three element set ,

using the two dimensional ordering on the left of (2). Furthermore, if i < j; it is at most

(left column), by (19).
We are now in a position to describe how ~P partitions each set Ui;j : This depends on i and

j in four cases described below.

Ui;j= f(i; j;k)g ;singleton, for some k In this case both players know the state of the game,
namely (i; j; k) ; and know the direction and distance

4i;j;k = D (si; sj ; �k) > 0 (21)

to the other player. Consequently they will go at unit speed towards each other and their
meeting time will be n + 4i;j;k=2: So if I chooses si and II chooses sj ; their expected
meeting time bi;j in the game �

�
n; ~P

�
is given by

4 bi;j = n+4i;j;k=2 +
X
k0 6=k

ti;j;k0 (22)

In the remaining cases we assume that Ui;j has at least two elements, and we describe
how they are partitioned in ~P:
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i < j By (19) and the fact that ti;j;4 = 1 for all i; j; we have Ui;j = f(i; j; 1) ; (i; j; 3)g which we
have drawn below to illustrate the fact that if we take Ui;j as a single element of ~P; then
Player I (left) knows that II is behind him (in his backwards direction).

 !
  (k = 1; 3) (23)

(24)

Both know that I�s location at time n is distance d = 2 +4i from II�s start, and that
II is distance e = j4j j from his own start. Hence they know they are playing the game
�� (2 +4i;4j) with value �v2+4i;4j

. So in this case the meeting times corresponding to
the four initial con�gurations k are

n+ �v2+4i;4j
ti;j;2

n+ �v2+4i;4j
1 = ti;j;4

; (25)

and the expected meeting time bi;j satis�es

4bi;j = 2
�
n+ �v2+4i;4j

�
+ ti;j;2 + 1: (26)

i = j; ti;i;1� n Note that if both players use the same move-sequence si; they will not meet
if they are facing the same direction (k = 2; 3); so certainly Ui;i = f(i; i; 2) ; (i; i; 3)g :
In this case we take Ui;i as an element of ~P : If the players are told they are in Ui;i
they can conclude they are still distance 2 apart and have moved in the same direction.
Hence they are playing the common direction game �c and with best play will meet in

additional time vc: Hence the entries for the i; i matrices of this type for �
�
n; ~P

�
are

ti;i;1 n+ vc

n+ vc 1
and 4bii = ti;i;1 + 2n+ 2vc + 1; if ti;i;1 � n: (27)

i = j; ti;i;1> n; j4ij 6= 1 Since ti;i;1 > n, we have Ui;i = f(i; i; 1) ; (i; i; 2) ; (i; i; 3)g : Since ti;i;1 >
n; we must also have 4i � 0. There are two reasonable ways to partition the three

element set Uii =
 ! ! !
  :

f1; 3g ; f2g : a b
a

; or f1g ; f2; 3g : c d
d

(28)

Consider the �rst (left) case. If the players are told (a) they are in f(i; i; 1) ; (i; i; 3)g ; then
they can conclude, as above, that they are playing the asymmetric game �� (4i + 2;4i) ;
with value �v4i+2;4i

= (1 +4i) =2: If they are told (b) they are in f(i; i; 2)g ; they are
still distance 2 apart and can meet in additional time 1. Thus the sum of the additional
meeting times in the three cases (k = 1; 2; 3) are

2 ((1 +4i) =2) + 1 = 2 +4i: (29)
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Next consider the second (right) case. If the players are told (c) they are in the set
f(i; i; 1)g ; they know the other�s direction and that their distance at time n is 4i;i;1 =
2 + 24i; so they can meet in additional time 1 + 4i: If they are told they are in
f(i; i; 2) ; (i; i; 3)g ; they are in the common-direction game �c, so the additional time
is vc: Hence the sum of the three additional times is

1 +4i + 2vc: (30)

We are trying to maximize the entries (meeting times), so from this point of view we
take the �rst (left) case as our partition of Ui;i if and only if 2 +4i � 1 +4i + 2vc; or
1 � 2vc; which is false. (Note that certainly vc � 5=3 (1), the revealed information value,
and also vc � 13=4; the asymmetric rendezvous value [5].) So in the partition ~P ; we
use the second (right) partition in (28) of Ui;i: Hence we have that 4bi:i is the sum of the
four entries corresponding to the values of k = 1; 2; 3; 4; as given in

n+ 1 +4i n+ vc

n+ vc 1
; so (31)

4bi;i = 3n+ 2vc + 2 +4i; if ti;i;1 > n and j4ij 6= 1: (32)

i = j; ti;i;1 > n; i = j; ti;i;1> n; j4ij= 1 Note that j4ij = 1 implies that n is odd, so this case
can only occur for odd n:As in the previous case, we have Ui;i = f(i; i; 1) ; (i; i; 2) ; (i; i; 3)g :
Take Ui;i as an element of ~P : If the players are told that they are in this element of
~P ; they can conclude that they are in the symmetric game �� de�ned in the previous
section, and hence that the minimal remaining expected time to meet is v�: Hence we
have

4bi;i = 3 (n+ v
�) + 1; if ti;i;1 > n and j4ij = 1: (33)

Observe that this is a larger value than in the previous case (31), as

[3 (n+ v�) + 1]� [3n+ 2v + 2 +4i] (34)

�
�
3

�
n+

4v � 4
3

�
+ 1

�
� (3n+ 2v + 2) (35)

= 2v � 5 > 2 (13=4)� 5 > 0; (36)

since the value v of the symmetric game � cannot be smaller than the value 13=4 of the
corresponding asymmetric game (see [5] or Theorem 9 of [6]).

For the ordering (20) when n = 3; the partition and the numbers making up bi;j can be
seen from the following table. The set U3 consists of all the entries which are not written as
a single number (including entries like 3 + 8=2): The partition ~P of the non-number entries in
each 2� 2 is based on identical form entries. By symmetry of the players (and the matrix B),
we can con�ne our analysis to strategy pairs i � j:
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inj 1:FFF 2: FFB 3: FBF 4: FBB

1: FFF
3 + 8=2 3 + vc

3 + vc 1

3 + �v5;1 3

3 + �v5;1 1

3 + �v5;1 2

3 + �v5;1 1

3 + �v5;1 2

3 + �v5;1 1

2: FFB
3 + v� 3 + v�

3 + v� 1

3 + �v3;1 2

3 + �v3;1 1

3 + �v3;1 2

3 + �v3;1 1

3: FBF
3 + v� 3 + v�

3 + v� 1

3 + �v3;1 3

3 + �v3;1 1

4: FBB
3 3 + vc

3 + vc 1

(37)
If we combine all the cases, use (16) and (17) to evaluate v� and �v in terms of v; assume

the CDC (vc = c) we obtain the following.

Theorem 4 Let ~P be the partition of Un described above, and let �
�
n; ~P

�
be the game in

which the players play symmetrically as in � for n moves and if they haven�t met by then are told
the element of the ~P to which the action triple (i; j; k) belongs. If the players choose n�move
strategies si and sj and then play optimally if they haven�t met by time n, then assuming CDC,
the expected time ~bi;j to meet (i � j) is given by

~bi;j =
1

4

8>>>>>>>><>>>>>>>>:

2n+ (34i � j4j j) =2 + ti;j;2 + 4; if i < j , ti;j;1 > n; ti;j;3 > n
[n+ (4i +4j + 2) =2] + ti;j;2 + ti;j;3 + 1; if i < j , ti;j;1 > n; ti;j;3 � n
n+ (4i �4j) =2 + ti;j;1 + ti;j;2 + 2; if i < j , ti;j;1 � n; ti;j;3 > n
ti;j;1 + ti;j;2 + ti;j;3 + 1; if i < j , ti;j;1 � n; ti;j;3 � n
ti;i;1 + 2 (n+ v) + 1; if i = j; ti;i;1 � n
3n+ 2v + 2 +4i; if i = j; ti;i;1 > n; j4ij 6= 1
3n+ 4v � 3; if i = j; ti;i;1 > n; j4ij = 1

(38)

The matrix ~B = ~Bn =
n
~bi;j

o
is symmetric. It has entries which are constants or linear

functions of v; with positive coe¢ cients of v: The(rendezvous) value ~v = ~vn of the symmetric

rendezvous problem �
�
n; ~P

�
is given by

~vn = min
p:pi�0;

P
pi=1

p ~Bnp
T � v: (39)

If we don�t assume CDC the result remains the same, with v replaced by vc in the next to last
row (case) in the de�nition of ~bi;j.

We illustrate the construction of ~Bn and the calculation of ~vn by considering the case n = 3;
with the strategy ordering s1 = FFF; s2 = FFB; s3 = FBF; s4 = FBB: Using the formula
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for ~bi;j given above, the form (37), we obtain

~B = ~B(v) =
1

4

0BB@
2vc + 14 17 16 16
17 4v + 6 13 13
16 13 4v + 6 14
16 13 14 2vc + 10

1CCA (40)

=
1

4

0BB@
2v + 14 17 16 16
17 4v + 6 13 13
16 13 4v + 6 14
16 13 14 2v + 10

1CCA ; under CDC. (41)

We want to �nd the value ~v = ~v3 in terms of v; that is

~vn (v) � g (v) = min
p
p ~BpT ; (42)

over probability 4-vectors p: In particular, under the CDC (vc = c) we �nd the unique mini-
mizing q to be

p1 = 0; p2 =
4v � 5
16v � 26 ; p3 =

4v � 7
16v � 26 ; p4 =

8v � 14
16v � 26 ; (43)

g (v) =
16v2 + 160v � 303
4 (16v � 26) : (44)

Since the game �
�
3; ~P

�
gives the players more information than in �; we have v � g (v) ;

which holds for

v � 11 + 2
p
5

4
� 3: 868: (45)

So, assuming the CDC, we have v � 3: 868: The corresponding estimate if we reveal everything
(use partition P1) at time n = 3 is v � 3; as obtained by Uthaisombut [23]. A related bound
of vc > 3:5869 for n = 3 has been obtained by Han, Du, Vera and Zuluaga [17] (under the
assumption that the players have a common notion of direction along the line) by revealing
everything if di¤erent move sequences are used and telling the agents that they have used the
same move sequence, if that has occurred. Substituting this lower bound of [17] for vc for
n = 3 in (40) gives the bound

~v3 � 3: 829; (46)

which is obtained by considering only move sequences of length 3 (for both common direction
and no common direction). By formulating a relaxed version of the problem as one of semi-
de�nite programming, Han, Du, Vera and Zuluaga [17] are able to handle the large matrices
that occur for n up to 7, obtaining for n = 7 the bound vc � 4:1520: Bootstrapping their
estimates on vc obtained for these n would give higher lower bounds for ~vn in each case, but
apparently the improvement lessens for higher n: In a literal sense, we could use these bounds
to obtain better estimates for ~v3; but this would be a rather unfair estimate for comparison, as
those bounds require the analysis of long (n) move sequences, while (46), as mentioned above,
requires only the analysis of 3-move sequences.
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6 Partitions with Incomplete Information Subgames

We now consider revealed information variants � (n;P) of the symmetric rendezvous problem
� on the line, without the assumption that P re�nes P3: That is, we do not assume that the
players are given information which includes the past actions of their partner. If the game is
stopped at time n; then without any revealed information the private knowledge of Player I is
simply the n�move strategy sequence he has used, namely i (for si ): He does not know the
other player�s strategy sequence j; nor Nature�s (chance) move k: If the partition P does re�ne
P3; then all the subgames � (n; P ), P 2 P, have complete information.

Suppose however, that P has an element (set) P which contains elements of the information
space Un with distinct Player I strategies, say i and i0: In the subgame � (n; P ) corresponding
to P; Player I knows his type (i or i0; he knows his previous moves), but II does not know this.
So the subgame has incomplete information. However, given the common distribution p over
n-move strategies that both players are employing, the players can update the distribution of
the other�s type. So the game � (n; P ) is a Bayesian game.

For example when n = 3 the elements of U3 for i = 1 (FFF ) and 2 (FFB) and j = 4 (FBB)
are the four elements (1; 4; 1) ; (1; 4; 3) ; (2; 4; 1) ; (2; 4; 3) : In the partition ~P of the previous sec-
tion, these four elements were partitioned into two sets f(1; 4; 1) ; (1; 4; 3)g ; f(2; 4; 1) ; (2; 4; 3)g :
That is, i and j were revealed, but not k: Recall that in the �rst instance this led to the
subgame � (5; 1) ; with value �v5;1 = 7=2; and in the second to � (3; 1) ; with value �v3;1 = 2: In
both games Player I knows the direction to II, so to him the distance is strategically irrelevant
- he simply moves in that direction. How does this uncertainty a¤ect II? Let p1 and p2 denote
the probability with which I plays s1 and s2; respectively. So II knows that with probability
p1 Player I is starting the subgame distance �ve (either direction) from II�s starting point in
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the original game. And II is distance 1 from that point (and he knows the direction).

Figure 4: II knows I starts at �3 or �5

So I�s four possible paths start at �5 or �3 as indicated by the four thin lines. If p1 is
su¢ ciently large then II clearly should take the line (which we have drawn starting at �1)
which minimize the expected time to reach the equiprobable paths of I starting from �5:
Similarly if p2 is large he should take the thick line which we have drawn starting at +1. (We
could have drawn both II�s paths starting from the same point, but it would have been less
clear.) The expected meeting times for the two paths are given by

top = p1

�
1

2
4 +

1

2
5

�
+ p2

�
1

2
1 +

1

2
3

�
=
9p1 + 4p2

2
; (47)

bottom = p1

�
1

2
2 +

1

2
5

�
+ p2

�
1

2
1 +

1

2
4

�
=
7p1 + 5p2

2
(48)

Consequently II should play the top strategy if p2 � 2p1 and the bottom strategy otherwise.
Now consider the partition ~P indicated by identical forms in (37), and change it so that

all the twelve cells with entry 3 + �v5;1 or 3 + �v3;1 form a single element of a new partition.
Player II can calculate the probability q1 that d = 5 or the probability q2 that d = 3 (in the
subgame �� (d; e) ) based on the strategy sj that he has played up to time 3: For instance, if
he has played strategy j = 4; then q1 = p1= (p1 + p2 + p3) : This partition (and generalizations
to higher n) gives Player II less information than he had in �

�
n;P3

�
, and cannot result in

smaller rendezvous values. For n = 3 it does not help any, because p1 = 0 at the optimum,
but in general this idea will give higher lower bounds than can be obtained using the bi;j from
Theorem 4.
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7 Conclusions

Giving the rendezvousers some (revealed) information during the course of their search can
be used both to describe real problems, where such information is available or can be sent,
and also to obtain lower bounds on rendezvous values of existing problems which have no such
information. In the latter case the information partition P; describing the information to be
given at time n; must be chosen carefully so that it is as coarse as possible while still having all
its subgames � (n; P ) ; P 2 P, amenable to analysis. This will probably be a useful technique
for certain rendezvous problems and not for others.

As observed by an anonymous referee, the information revelation described in this paper
is not the only sort that might be considered. We could also consider that the revealed
information depends on the mixed strategy chosen by the rendezvous team, although such a
model would take us out of the usual game tree description.
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