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Abstract

This paper is a sequel to both Ash, Erd½os and Rubel [AER], on
very slowly varying functions, and [BOst1], on foundations of regular
variation. We show that generalizations of the Ash-Erd½os-Rubel ap-
proach �imposing growth restrictions on the function h, rather than
regularity conditions such as measurability or the Baire property �
lead naturally to the main result of regular variation, the Uniform
Convergence Theorem.
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1 Introduction and Main Result

We work with the Karamata theory of regular and slow variation; see [BGT]
�BGT in what follows �for a monograph account. Here the main result is
the Uniform Convergence Theorem �UCT below �which asserts that the
de�ning pointwise convergence for slow variation in fact holds uniformly on
compact sets if the function h in question is either (Lebesgue) measurable,
or has the Baire property, but not in general. The outstanding foundational
question of the theory �raised and left open in [BG1], [BG2], BGT �is what
common generalization of measurability and the Baire property su¢ ces. This
question is answered in [BOst1], where we obtain two sets of conditions, each
necessary and su¢ cient. Our results are of two kinds. The �rst uses �naive
set theory�and is thus immediately accessible to analysts and probabilists,
for whom regular variation is such a necessary and useful working tool. The
second makes use of the �heavy machinery�of descriptive set theory, and so
is perhaps more easily accessible to mathematical logicians.

A very few papers in regular variation are able to make progress without
imposing regularity conditions. Foremost among these are the Ash-Erd½os-
Rubel paper [AER], where a growth condition is used instead, and the work
of Heiberg [Hei] and Seneta [Sen1], [Sen2], where side-conditions involving
the limsup are imposed instead. Informed by the viewpoint of [BOst1], we
generalize the results of these papers, but following only the ordinary or
�naive�set theory approach �that is, without use of descriptive set theory.
Our results are thus immediately accessible to the user communities of ana-
lysts and probabilists, granted only an acquaintance with BGT, the standard
work on the subject.
We will apply the Main Theorem UCT of [BOst1] to derive a new, simple,

necessary and su¢ cient condition on a function h so that it obeys the UCT.
In Section 2 we show how the simple conditions may be usefully relaxed and
then use the latter conditions to identify why the example of [AER] does not
satisfy the UCT.
We begin by de�ning the key notions of the theory of regular variation.

Then we recall the de�nitions and two theorem of [BOst1] which we will need
here. The theory is concerned with the consequences of a relationship of the
form

f(�x)=f(x)! g(�) (x!1) 8� > 0; (RV )

for functions de�ned on R+: The limit function g must satisfy the Cauchy
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functional equation

g(��) = g(�)g(�) 8�; � > 0: (CFE)

Subject to a mild regularity condition, (CFE) forces g to be a power:

g(�) = �� 8� > 0: (�)

Then f is said to be regularly varying with index �, written f 2 R�.
The case � = 0 is basic. A function f is called slowly varying, if f 2 R0;

i.e. if
f(�x)=f(x)! 1 (x!1) 8� > 0: (SV )

Slowly varying functions are often written ` (for lente, or langsam). The
basic theorem of the subject is the Uniform Convergence Theorem (UCT),
which states that under appropriate assumptions if (SV) holds, then the
convergence is uniform on compact sets of � values in (0;1). Necessary and
su¢ cient assumptions for UCT have only recently been given (in [BOst1])
and are quoted below for convenience. While regular variation is usually used
in the multiplicative formulation above, for proofs in the subject it is usually
more convenient to use an additive formulation. Writing h(x) := log f(ex)
(or log `(ex) as the case may be), the relation above becomes

h(x+ u)� h(x)! 0 (x!1) 8u 2 R: (SV+)

Here the functions are de�ned on R; whereas in the multiplicative notation
functions are de�ned on R+: We �nd it helpful to use the notation hx(u) =
h(x+ u)� h(x):
De�nitions.
(i) The "-level set (of hx) is de�ned to be the set

H"(x) = ft : jh(t+ x)� h(x)j < "g:

(ii) For x = fxn : n 2 !g an arbitrary sequence tending to in�nity, the
x-stabilized "-level set (of h) is de�ned to be the set

T "k (x) =
T1
n=kH

"(xn) for k 2 !:

Here ! denotes the set of natural numbers 0; 1; 2; ::: . Note that

T "0 (x) � T "1 (x) � T "2 (x) � ::: and T "k (x) � T �k (x) whenever " < �: (1)
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If h is slowly varying, then R =
S
k2! T

"
k (x):

(iii) The basic No Trumps combinatorial principle (there are several),
denoted NT(fTk : k 2 !g); refers to a family of subsets of reals fTk : k 2 !g
and means the following.
For every bounded sequence of reals fum : m 2 !g there are k 2 !; t 2 R

and an in�nite set M � ! such that

um + t 2 Tk for all m in M.

In words: the translate of some subsequence of fumg is contained in some Tk:
We will also say that fTk : k 2 !g traps sequences by translation.

Main Theorem (UCT). For h slowly varying, the following are equivalent.
(i) The UCT holds for h:
(ii) The principle 1-NTh holds: for every " > 0 and every sequence x tending
to in�nity, the stabilized "-level sets fT "k (x) : k 2 !g of h trap bounded
sequences by translation.
In loose notation:(8" > 0)(8x) NT(fT "k (x) : k 2 !g):

(iii) For every " > 0 and for every sequence x tending to in�nity, the
stabilized "-level sets fT "k (x) : k 2 !g of h contain all the bounded sequences.

The property in (iii) is called the full-inclusion or F -analogue of 1-NTh.
For the proof see [BOst1], where it is also shown that either of the conditions
(ii) or (iii) holds for measurable h; and also for h with the Baire property.
We will also need the following result from [BOst1].

Theorem (Bounded Equivalence Principle). For h a slowly varying
function the following are equivalent.
(i) The family fT "n(x) : n 2 !g traps bounded sequences for any sequence

x tending to in�nity, and any positive ".
(ii) Whenever fung is a bounded sequence, and fxng tends to in�nity

lim
n!1

jh(un + xn)� h(xn)j = 0: (2)

(iii) For any sequence x tending to in�nity, and any positive ", the family
fT "n(x) : n 2 !g ultimately contains almost all of any bounded sequence fung.
That is, for any bounded sequence fung there is k such that

fum : m > kg � T "n(x) for all n > k: (3)
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(iv) The UCT holds for h:

De�nition. We say that h satis�es the Heiberg-Lipschitz condition
if there are two positive functions '; g de�ned on R+ such that:
(i) g(x) is decreasing to 0 as x!1;
(ii) '(t)!1 as t!1;
(iii) for all x; t > 0, there is x(t) between x and x+ t such that

jh(t+ x)� h(x)j = '(t)g(x(t)): (4)

The �nal condition is modelled after the mean-value theorem. Note that
the assumptions imply that for all x; t > 0

'(t)g(x+ t) � jh(t+ x)� h(x)j � '(t)g(x):

This is the information which makes the proof of our main theorem trans-
parent; we show later how to relax these assumptions to obtain a more useful
formulation of the basic paradigm. When studying slowly varying functions
h in the context of the Uniform Convergence Theorem (UCT) it helps to
paraphrase the concepts by reference to the notation introduced earlier:

hx(u) = h(u+ x)� h(x):

Regarding x as a parameter and hx(u) as an �approximately-additive�func-
tion of u; slow variation is just pointwise convergence to zero of the family
fhxg as x!1 (at all single points u). Thus UCT is the quali�ed assertion
that pointwise convergence of the family fhxg implies uniform convergence
over compact sets of u. In this language, the simple Heiberg-Seneta condition
4 �factorizes out of hx its dependence on x�locally. The original (i.e. First
�see below) Heiberg-Seneta Theorem factorizes out �dependence on x at in-
�nity�, studying in essence an appropriate application of L�Hospital�s Rule.
Our Generalized Heiberg-Seneta Theorem of Section 2 is then the �direct
comparison�analogue.

Remark. The preceding de�nition subsumes the case of any increas-
ing, di¤erentiable concave function h(x) satisfying the celebrated �Inada
conditions�of Economic Theory, introduced in [Inada]. This class includes
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log x and the power functions x� with 0 < � < 1: Indeed, for h satisfy-
ing the Heiberg-Lipschitz condition, we have, for t > 0; for some x� with
x < x� < x+ t; that

0 < h(x+ t)� h(x) = h0(x�)t:

Thus with g(x) = h0(x) and x(t) = x� the conditions are met since g(x) is
decreasing to 0 as x!1:

Observation. If h satis�es the Heiberg-Lipschitz condition, then h is
slowly varying.
For,

lim
x!1

jh(t+ x)� h(x)j � lim
x!1

'(t)g(x) = 0:

Our main result follows (for details of the First Heiberg-Seneta Theorem
see the closing discussion in Section 3). This new theorem thus complements
[Hei], [Sen1], [Sen2], cf. BGT Theorem 1.4.3 p. 18-19.

Theorem (Second Heiberg-Seneta Theorem). For h satisfying the
Heiberg -Lipschitz condition the following are equivalent.
(i) UCT holds for h:
(ii) The family f'�1((0; n)) : n 2 !g traps sequences by translation.
(iii) The family f'�1((0; n)) : n 2 !g contains almost all terms of every

bounded sequence.
(iv) The family f'�1((0; n)) : n 2 !g contains every bounded sequence.

Proof. We will show �rst (a) that (ii) implies (i), and then (b) that (i)
implies (ii).
Clearly (iv) implies (iii) and (iii) implies (ii). The proof will thus be

complete when in (c) we explain how to adapt the notation used in the proof
of (b) so that it reads as a proof of (i) implies (iv).
(a) Proof that (ii) implies (i).
Let x = fxng be any sequence tending to in�nity, let u = fumg be any

bounded sequence and suppose that the condition of the Bounded Equiva-
lence Principle, namely

lim
n!1

jh(un + xn)� h(xn)j = 0;
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fails. Thus we suppose that for some " > 0 and for n = 1; 2; ::: we have

jh(xn + un)� h(xn)j > 2": (5)

Working by analogy with "-level sets, de�ne the reduced level sets by

H�
n = ft : '(t) < "=g(xn)g:

Thus

H�
n � fy : jh(xn + y)� h(xn)j < "g = H"(xn):

Observe next that

H�
n � um = fy : (9t)[y = t� um & t 2 H�

n ]g = fy : (9t)[t = um + y & '(t) < "=g(xn)]g
= fy : '(um + y) < "=g(xn)g:

Since f'�1((0; n)) : n 2 !g is sequence trapping, there are N; y and in�nite
M such that

fum + y : m 2Mg � '�1((0; N)); i.e. f'(um + y) : m 2Mg � (0; N):

But, for some k large enough, we have "=g(xk) > N: Hence, for this y, we
have, for n � k; that

f'(um + y) : m 2Mg � (0; N) � (0; "=g(xn)):

Thus by de�nition of Hn we have, for all m 2M, that

y 2 \1n=kH�
n � um:

We now claim that, for any n � k with n 2M, we have

jh(xn + un)� h(xn + un + y)j � ": (6)

Indeed, we would otherwise have, for any such n; that

jh(xn + un)� h(xn + un + y)j < ": (7)

But referring to x = xn and t = un+y in clause (iii) of the Heiberg-Lipschitz
condition we have, since y 2 H�

n � un; that

jh(un + y + xn)� h(xn)j � '(un + y)g(xn) < ";
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and this combined with (7) yields

jh(xn + un)� h(xn)j < 2";

a contradiction to our standing assumption (5).
De�ne vn = xn+un (which tends to in�nity). Then the relation (6) yields

that

jh(vn + y)� h(vn)j � ";

for in�nitely many n; which contradicts that h is slowly varying. � (a)

(b) Proof that (i) implies (ii).
Let x = fxng be any sequence tending to in�nity and let u = fumg be

any positive bounded sequence (otherwise pass to a subsequence). Assume
for some b > 0 that for all m 2 ! we have

0 � um � b:

Again working by analogy with "-level sets, de�ne the expanded level sets by

H+
n = ft : '(t) < "=g(xn + t)g.

Thus
H"(xn) = fy : jh(xn + y)� h(xn)j < "g � H+

n ;

since, for t 2 H"(xn);

'(t)g(xn + t) � jh(t+ xn)� h(xn)j < ":

Now if UCT holds, then by the Main Theorem of [BOst1] fT "k (x) : k 2 !g
traps sequences, so for some y; in�nite M and k 2 !; we have

fy + um : m 2Mg � T "k (x) =

1\
n=k

H"(xn) � H"(xk) � H+
k = ft : '(t) < "=g(xk + t)g;

i.e.

fy + um : m 2Mg � ft : '(t) < "=g(xk + t)g:

Thus we have, for m 2M, that

'(y + um) < "=g(xk + y + um) � "=g(xk + y + b):
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Choose an integer N such that, for all t > N; we have '(t) > "=g(xk +
y + b): Then we have

fy + um : m 2Mg � '�1(0; N);

as required. � (b)

(c) Modi�cation to (b). Given the Main Theorem UCT of [BOst1]
we may clearly adapt the proof just given in (b) to show that (i) implies (iv)
by putting y = 0 and M = !: � (c)

2 A generalization

In this section we show one possible way to move away from the context
dictated by the mean-value theorem and still have a corresponding Second
Heiberg-Seneta Theorem. Some further alternative formulations are dis-
cussed in Section 3.

De�nition. We say that h satis�es the generalized Heiberg-Lipschitz
condition if
(a) there is a function ' de�ned on R+ such that: '(t)!1 as t!1;
(b) there are functions g+; g� de�ned on R2+ such that, for x; t > 0; we

have
g�(x; '(t)) � jh(x+ t)� h(x)j � g+(x; '(t)); (8)

(c) and, for all " > 0 small enough, the solution sets of

g�(x; y) < "

are bounded and, for some functions  �(x; "); take the form fy : y <
 �(x; ")g;
(d) limx!1  +(x; ") =1:

Observation. If h satis�es the generalized Heiberg-Lipschitz condition,
then h is slowly varying.
Indeed, given t; " > 0 there exists X > 0, by condition (d), such that

 +(x; ") > �(t) for x > X; or equivalently, from the condition (c), such that
g+(x; '(t)) < " for x � X: In this case we conclude, for x > X; that

jh(x+ t)� h(x)j < ":
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Note that the observation relies only on the right-hand inequality in (8).

Theorem (Generalized Heiberg-Seneta Theorem). For h satisfying
the generalized Heiberg-Lipschitz condition the following are equivalent.
(i) UCT holds for h:
(ii) The family f'�1((0; n)) : n 2 !g traps sequences by translation.
(iii) The family f'�1((0; n)) : n 2 !g contains almost all terms of every

bounded sequence.
(iv) The family f'�1((0; n)) : n 2 !g contains every bounded sequence.

Proof. We follow the proof structure of the Second Heiberg-Seneta The-
orem.
(a) Proof of UCT from (ii) . As before, suppose for some " > 0 and

for n = 1; 2; :: that we have

jh(xn + un)� h(xn)j � 2": (9)

As expected, put

H�
n = ft : g+(xn; '(t)) < "g:

Thus

H�
n = fy : jh(y + xn)� h(xn)j < "g � H"(xn);

since

jh(y + xn)� h(xn)j � g+(xn; '(y)) < ":

As before,

H�
n � um = fy : g+(xn; '(um + y)) < "g � fy : '(y + um) <  +(xn; ")g:

Since f'�1((0; n)) : n 2 !g is sequence trapping, there are N; y and in�nite
M such that

fum + y : m 2Mg � '�1((0; N)); i.e. f'(um + y) : m 2Mg � (0; N):

Since limx!1  +(x; ") =1; for some k large enough, we have  +(xn; ") > N
for all n � k: Hence, for this y we have, for n � k; that

f'(um + y) : m 2Mg � (0; N) � (0;  +(xn; ")):
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Thus by de�nition of H�
n we have, for all m 2M, that

y 2 \1n=kH�
n � um:

We now claim that, for any n � k with n 2M, we have

jh(xn + un)� h(xn + un + y)j � ": (10)

Indeed, we would otherwise have for any such n that

jh(xn + un)� h(xn + un + y)j < ": (11)

But referring to x = xn and t = un + y in clause (b) of the generalized
Heiberg-Lipschitz condition we have, since y 2 H�

n � un; that

jh(un + y + xn)� h(xn)j � g+(xn; '(y + un)) < ";

and this combined with (11) yields

jh(xn + un)� h(xn)j < 2";

a contradiction to our standing assumption (9).
De�ne vn = xn+un (which tends to in�nity); then the relation (10) yields

that

jh(vn + y)� h(vn)j � ";

for in�nitely many n; which contradicts that h is slowly varying. � (a)

(b) Proof that UCT implies condition (ii). As expected put

H+
n = ft : g�(xn; '(t)) < "g:

Thus

H"(xn) = fy : jh(y + xn)� h(xn)j < "g � H+
n ;

since, for y 2 H"(xn);

g�(xn; '(y)) � jh(y + xn)� h(xn)j < ":
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Now if UCT holds then, by the No Trumps Theorem of [BOst1], fT "k (x) :
k 2 !g traps sequences, so for some y; in�nite M, and k we have, as before,
that

fy + um : m 2Mg � T "k (x) � H"(xk) � H+
k = ft : g�(xk; '(t)) < "g ;

i.e.

fy + um : m 2Mg � ft : '(t) <  �(xk; ")g:

Thus we have, for m 2M, that

'(y + um) <  �(xk; "):

Choose an integer N such that, for all t > N; we have '(t) >  �(xk; "):
Then we have

fy + um : m 2Mg � '�1(0; N);

as required. � (b)

(c) Modi�cations to (b). Now if UCT holds then, by part (iii) of the
Main Theorem of [BOst1] (see Section 1 above), fT "k (x) : k 2 !g contains all
sequences, so the proof in (b) may be re-read with y = 0 and M = !: � (c)

We now take the view that R is a vector space over the �eld Q: For the
purposes of the next result, we need to assume the existence of a (Hamel)
basis in this vector space. Its existence is assured by the Axiom of Choice
(AC); as is well-known, (AC) implies that every vector space has a basis. We
note in passing the converse is also true; see [Bl].
Fix a Hamel basis H which includes 1. Let n(t) be the cardinality of the

smallest subset of H which spans t (over Q): We now use the last theorem
to explain why the following slowly varying function, introduced in [AER],
does not obey UCT. Whilst our proof is slightly longer than that in BGT p.
10-11, we feel that it casts rather more light on what is happening.

Proposition. The slowly varying function h(x) = log(x+n(x)) does not
satisfy UCT.

Proof. We begin by establishing the left inequality (8) for all rational x
and the right inequality for all x: (The latter implies that h is slowly varying.)
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Applying the mean-value theorem to the logarithm function, we have for
h(x) = log(x+ n(x)) that

t+ n(x+ t)� n(x)

x+ t+ n(x+ t)
� jh(t+ x)� h(x)j � t+ n(x+ t)� n(x)

x
� t+ n(t)

x
;

since n(x+ t) � n(x) + n(t): Now for x 2 Q we have n(x) = 1 and so

n(t) � n(x+ t) � n(t) + 1:

Thus putting '(t) = t + n(t) and noting that '(t) tends to in�nity we have
for x 2 Q

'(t)� 1
x+ '(t) + 1

=
t+ n(t)� 1

x+ t+ n(t) + 1
� jh(t+ x)� h(x)j � '(t) + 1

x
:

Putting

g�(x; '(t)) :=
'(t)� 1

x+ '(t) + 1
; g+(x; '(t)) :=

'(t) + 1

x
;

we therefore have

g�(x; '(t)) � jh(t+ x)� h(x)j (x 2 Q+) and jh(t+ x)� h(x)j � g+(x; '(t)) (x 2 R+):

Let 0 < " < 1: The solution set g�(x; y) � " is bounded by the line

y =  �(x; ") =
"(x+ 1) + 1

1� "
:

With (8) established for x 2 Q, we may now apply the general theorem
to show that UCT fails. This we may do by restricting attention to any
sequence of rationals fxng that tends to in�nity. By the Main Theorem in
[BOst1] all we need do is check that the family of sets Tk = ft : '(t) � kg
is not sequence trapping. Indeed choose tm in [0; 1] so that n(tm) = m: By
passing to a subsequence we may, without loss of generality, assume that tm
converges. But for any y and any in�niteM the subsequence '(tm+y) for m
inM is unbounded, since tm+y+n(tm) � '(tm+y): Hence ftm+y : m 2Mg
is not trapped by Tk for any k: �
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3 Complements

De Haan theory. The study of functional relations of the form (RV ), or
(RV+), is Karamata theory, in the terminology of BGT Ch. 1,2. Related is
the study of de Haan theory �that of relations of the form

f(�x)� f(x)

g(x)
! h(�) (x!1) 8� > 0 (deH)

(BGT, Ch. 3). See BGT §3.0 for the inter-relationships between the two
(de Haan theory both contains Karamata theory, and re�nes it by �lling in
�gaps�). Our approach here to Karamata theory extends to de Haan theory
along similar lines.
In de Haan theory, the relevant limit function in (deH) is

h(�) =

�
���1
�
; � 6= 0;

log �; � = 0:

The Ash-Erdös-Rubel results [AER] and Heiberg-Lipschitz condition have
something of a de Haan rather than a Karamata character. See e.g. BGT
Th. 3.1.10a,c for illustrations of this.

Weakening quanti�ers. It is both interesting and useful to see to what ex-
tent the quanti�er 8 in (RV ), (deH) may be weakened to �for some�, plus
some side- condition. The prototypical result here is (BGT Th. 1.4.3 in the
Karamata case �cf. Th. 3.2.5 in the de Haan case) the following result.

Theorem (First Heiberg-Seneta Theorem). Write

g�(�) := lim sup
x!1

f(�x)=f(x);

and assume that

lim sup
�#1

g�(�) � 1:

Then for a positive function f , the following are equivalent:
(i)(RV ) and (�) hold for some �.
(ii) The limit g(�) in (RV ) exists for all � in a set of positive measure, or
a non-meagre Baire set.
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(iii) The limit g(�) in (RV ) exists, �nite, for all � in a dense subset of
(0;1).
(iv) The limit g(�) in (RV ) exists, �nite, for � = �1, �2 with (log �1)=(log �2)
�nite and irrational.

This question of weakening of quanti�ers is treated in detail in [BG1]
(where the above is Th. 5.7). The original motivation was the study of Frul-
lani integrals; see [BG2] §6, BGT §1.6.4, Berndt [Ber], p. 466-467.

Further generalizations. We note that the lower bound may be taken in the
form

g�(x+ '(t))'(t);

provided that for all " > 0 small enough, the solution set of

g�(x+ y)y < "

is bounded and takes the form fy : y �  �(x; ")g: Rewriting the solution set
as

S(x; ") =

�
y : 0 � y < G(y) =

"

g�(x+ y)

�
;

we see that 0 2 S. Thus  �(x; ") is well-de�ned i¤ supS(x; ") <1: Geomet-
rically, the assumption requires the graph of G(y) to cross the ray of slope 1
from the origin once so as to be to be ultimately below it. The condition is
satis�ed in the quoted example of [AER]. Putting '(t) = t� 1 + n(t); again
a function tending to in�nity, we have that for x 2 Q

'(t)

x+ '(t) + 2
=

t+ n(t)� 1
x+ t+ n(t) + 1

� jh(t+ x)� h(x)j:

Let 0 < " < 1: The required solution set is thus bounded by the line

 �(x; ") =
"(x+ 2)

1� "
;

with slope less than unity.
One can introduce other conditions relaxing the location of the term x(t)

of the simple Heiberg-Lipschitz condition (4), say by bounding jh(t+x)�h(x)j
above and below �functionally�, i.e. in terms of functions of x and functions
of t, so long as one can recover corresponding �nite functions  �(x; ") with
limx!1  +(x; ") =1:
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