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Abstract

Consider two graphs, G1 and G2, on the same vertex set V , with
|V | = n and Gi having mi edges for i = 1, 2. We give a simple algo-
rithm that partitions V into sets A and B such that eG1(A,B) ≥ m1/2
and eG2(A,B) ≥ m2/2−∆(G2)/2. We also show, using a probabilistic
method, that if G1 and G2 belong to certain classes of graphs, (for
instance, if G1 and G2 both have a density of at least 2/3, or if G1 and
G2 are both regular of degree at most (n/16) − 6 with n sufficiently
large) then we can find a partition of V into sets A and B such that
eGi(A,B) ≥ mi/2 for i = 1, 2.

1 Introduction

Throughout this paper, we shall be concerned with finite simple graphs unless
otherwise stated. Given a graph G = (V, E), with A and B disjoint subsets of
V , we denote by EG(A, B) the edges of G that have one end in A and one end
in B. Let eG(A, B) = |EG(A, B)|. For the special case when B = Ac = V/A,
EG(A, Ac) is called a cut of G. We shall sometimes refer to EG(A, Ac) as
the cut of G generated by A. The maximum degree of G will be denoted by
∆(G).
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It is well known that for any graph G with m edges, there exists a cut
of size at least m/2. This is achieved by the obvious greedy algorithm. A
sharper bound is given by Edwards in [2], [3], where it is shown that every
graph G with m edges has a cut of size at least

m

2
+

√
m

8
+

1

64
− 1

8
.

Here, the extremal graphs are the complete graphs of odd order.
Henceforth let G1 = (V, E1) and G2 = (V, E2) be any two graphs on the

same vertex set V , with |V | = n and |Ei| = mi for i = 1, 2. In this paper, we
shall consider the problem of finding A ⊆ V that generates a large cut both
in G1 and in G2. This is a problem posed originally by Bollobás and Scott
in [1]. More precisely, their problem was the following:

Problem 1 Find the largest integer f(m) such that for every pair of graphs,
G1 = (V, E1) and G2 = (V, E2), each with m edges, there exists A ⊆ V with
eGi

(A, Ac) ≥ f(m) for i = 1, 2.

For further details on this and other related problems, see Scott [6].
Bollobás and Scott suggested that perhaps f(m) = (1− o(1))m/2. Kühn

and Osthus proved this in [4], where they showed, using probabilistic meth-
ods, that if Gi = (V, Ei) with |Ei| = mi for i = 1, 2, then there exists A ⊆ V
such that

eGi
(A, Ac) ≥ mi

2
−
√

mi = (1− o(1))
mi

2

for i = 1, 2.
In Section 2, we prove the following theorem, which is based on a simple

algorithm.

Theorem 1.1 Let Gi = (V, Ei) with |Ei| = mi for i = 1, 2. Then there
exists A ⊆ V , with ||A| − |Ac|| ≤ 1, such that

eG1(A, Ac) ≥ m1

2
and eG2(A, Ac) ≥ m2

2
− ∆(G2)

2
.

A simple modification of the algorithm in Theorem 1.1 yields the following
theorem, which again proves that f(m) = (1 + o(1))m/2.

Theorem 1.2 Let G1 and G2 be graphs as in Theorem 1.1. Then there exists
A ⊆ V , with ||A| − |Ac|| ≤ 2, such that

eG1(A, Ac) ≥ m1

2
and eG2(A, Ac) ≥ m2

2
−
√

m2.
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Both theorems extend easily to graphs with weighted edges. Theorem 1.1
also proves the following conjecture made by Rautenbach and Szigeti in [5].

Conjecture 1 Let Gi = (V, Ei) with |Ei| = mi for i = 1, 2. If both
graphs have maximum degree at most ∆ then there exists A ⊆ V such
that eGi

(A, Ac) ≥ 1
2
(mi −∆) for i = 1, 2.

The following conjecture, which is implicit in [4] and [5] but not formally
stated, is a natural extension of Conjecture 1.

Conjecture 2 Let Gi = (V, Ei) with |Ei| = mi for i = 1, 2. Then there
exists A ⊆ V such that eGi

(A, Ac) ≥ b1
2
mic for i = 1, 2.

Note that Conjecture 2 is false if we replace b1
2
mic with 1

2
mi. Indeed, let

G1 be a 5-cycle on 5 vertices and let G2 be its complementary graph (also a
5-cycle). This example is given by Rautenbach and Szigeti in [5], and is the
only such example that we know of.

In Section 3, we show, using probabilistic methods similar to those used
in [4], that Conjecture 2 holds for certain classes of graphs. More precisely,
we prove the following two theorems.

Theorem 1.3 Let Gi = (V, Ei) with |V | = n and |Ei| = mi ≥ 1
3
n2 for

i = 1, 2. Then there exists A ⊆ V , with ||A| − |Ac|| ≤ 1, satisfying

eGi
(A, Ac) ≥ mi

2

for i = 1, 2.

Theorem 1.4 Let Gi = (V, Ei) with |V | = n and |Ei| = mi for i = 1, 2.
If ∆(Gi) = ri <

√
mi/8 − 2 for i = 1, 2, then there exists A ⊆ V , with

||A| − |Ac|| ≤ 1, satisfying

eGi
(A, Ac) ≥ mi

2

for i = 1, 2.

In particular, the conditions of Theorem 1.4 are met if Gi is ri-regular, with
ri ≤ n

16
− 6 for i = 1, 2, and n > 128.
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2 A Simple Algorithm

In this section, we present the proof of our main results. The proof of Theo-
rem 1.1 is based on a simple algorithm, which we later adapt to give a slightly
sharper result for the case when ∆(G2) is large. Before we proceed to the
proof of Theorem 1.1, we give one piece of notation. For G = (V, E) a graph,
v ∈ V , and A ⊆ V , let dG(v, A) denote the number of neighbours of v in A.
Let dG(v) denote the degree of the vertex v in G.

Proof (of Theorem 1.1) As before, Gi = (V, Ei), with |V | = n and |Ei| = mi

for i = 1, 2. We assume that n is even. (If n is odd then we add a vertex to
V that is isolated in G1 and G2 and apply the theorem for n even.)

For j = 0, . . . , n/2 we inductively construct disjoint subsets Aj and Bj

of V as follows. Let A0 = B0 = φ and assume that we have constructed
Aj−1 = {a1, . . . , aj−1} and Bj−1 = {b1, . . . , bj−1}.

For each v ∈ V , let

dj
1(v) = dG1(v, Bj−1)− dG1(v, Aj−1).

Choose aj to be any vertex in V \(Aj−1 ∪ Bj−1) that maximises dj
1 and set

Aj = {a1, . . . , aj}. For each v ∈ V , let

dj
2(v) = dG2(v, Aj)− dG2(v, Bj−1).

Choose bj to be any vertex in V \(Aj ∪ Bj−1) that maximises dj
2 and set

Bj = {b1, . . . , bj}. Notice, by our choices of aj and bj, that for each j, we
have

dj
1(aj) ≥ dj

1(bj) and dj
2(bj) ≥ dj

2(aj+1) ≥ dj+1
2 (aj+1).

We shall use these inequalities at the end.
After n/2 iterations, we obtain An/2 and Bn/2, sets of equal sizes that

partition V . Let A = An/2, so that Ac = Bn/2. We claim that

eG1(A, Ac) ≥ m1

2
and eG2(A, Ac) ≥ m2

2
− ∆(G2)

2
.

To see this, observe first that

mi =

n/2∑
j=1

[dGi
(aj, Aj−1) + dGi

(aj, Bj−1) + dGi
(bj, Aj) + dGi

(bj, Bj−1)]

and

eGi
(A, Ac) =

n/2∑
i=1

[dGi
(aj, Bj−1) + dGi

(bj, Aj)].
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Subtracting 1/2 of the first equation from the second yields

eGi
(A, Ac)−mi

2
=

1

2

n/2∑
j=1

(
[dGi

(aj, Bj−1)− dGi
(aj, Aj−1)] + [dGi

(bj, Aj)− dGi
(bj, Bj−1)]

)
.

By comparing the terms in square brackets with dj
i (aj) and dj

i (bj) respec-
tively, and noting for any vertex v that dGi

(v, Aj) ≥ dGi
(v, Aj−1), we obtain

that

eGi
(A, Ac)− mi

2
≥

{
1
2

∑n/2
j=1 (dj

1(aj)− dj
1(bj)) if i = 1;

1
2

∑n/2
j=1 (dj

2(bj)− dj
2(aj)) if i = 2.

Using that dj
1(aj) ≥ dj

1(bj) for each j, we see that the first sum is non-
negative. Using that dj

2(bj) ≥ dj+1
2 (aj+1) for each j , we see that the second

sum is at least −d1
2(a1)+d

n/2
2 (bn/2) ≥ −∆(G2) as d1

2(a1) = 0. This completes
the proof. �

Examining the proof of Theorem 1.1, we see that it is the last vertex
placed that determines the size of eG2(A, Ac)− (m2/2). In particular, we can
improve on Theorem 1.1 if we can ensure that the degree of bn/2 in G2 is
small.

Proof (of Theorem 1.2) Let v1, . . . , vn be an ordering of the vertices of V
satisfying dG2(vi) ≥ dG2(vi+1) for all i = 1, . . . , n− 1. Let V ∗ = {v1, . . . , vt},
where t is an integer to be specified later. For convenience, we ensure that
both |V ∗| and |V | are even by adding isolated vertices to V ∗ and/or (V ∗)c =
V \(V ∗) if necessary. After the addition of these isolated vertices, let t′ = |V ∗|
and n′ = |V |. We give a modified version of the algorithm in the proof of
Theorem 1.1. The only difference is that initially, we restrict our attention
to V ∗, however we describe the algorithm in full for notational convenience.

Let Vj = V ∗ for j ≤ t′/2 and Vj = (V ∗)c for j > t′/2. For j = 0, . . . , n′/2,
we inductively construct disjoint subsets, Aj and Bj, of V as follows. Let
A0 = B0 = φ and assume that we have constructed Aj−1 = {a1, . . . , aj−1}
and Bj−1 = {b1, . . . , bj−1}.

For each v ∈ Vj, let

dj
1(v) = dG1(v, Bj−1)− dG1(v, Aj−1).

Choose aj to be any vertex in Vj\(Aj−1 ∪ Bj−1) that maximises dj
1 and set

Aj = {a1, . . . , aj}.
For each v ∈ Vj, let

dj
2(v) = dG2(v, Aj)− dG2(v, Bj−1).
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Choose bj to be any vertex in Vj\(Aj ∪ Bj−1) that maximises dj
2 and set

Bj = {b1, . . . , bj}.
We iterate n′/2 times to obtain sets An′/2 and Bn′/2. We remove from

An′/2 and Bn′/2 any isolated vertices that we may have added at the beginning
to obtain sets A and B = Ac that partition V . Note that ||A| − |Ac|| ≤ 2.
This completes the description of the modified algorithm.

Notice, by our choices of aj and bj, that for each j we have dj
1(aj) ≥ dj

1(bj),
and for each j except j = t′/2, we have dj

2(bj) ≥ dj
2(aj+1) ≥ dj+1

2 (aj+1).
Mimicking the analysis of the algorithm in Theorem 1.1 and noting that

eGi
(A, Ac) = eGi

(An′/2, Bn′/2), we find that

eG1(A, Ac)− m1

2
≥ 1

2

n′/2∑
j=1

(dj
1(aj)− dj

1(bj)) ≥ 0

and

eG2(A, Ac)− m2

2
≥ 1

2

n′/2∑
j=1

(dj
2(bj)− dj

2(aj))

≥ 1

2
(−d1

2(a1) + d
t′/2
2 (bt′/2)− d

(t′/2)+1
2 (a(t′/2)+1) + d

n′/2
2 (bn′/2))

≥ 1

2

(
0−

⌊
t

2

⌋
−

⌈
t

2

⌉
− dG2(vt+1)

)
= −1

2
(t + dG2(vt+1)).

Since we are free to choose t as we please, we have that

eG2(A, Ac)− m2

2
≥ −1

2
min

t
[t + dG2(vt+1)],

where we minimise over t = 0, . . . , n− 1. We claim that

min
t

[t + dG2(vt+1)] ≤ b2
√

m2c,

which proves the theorem. We prove the claim by contradiction. Suppose
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that t + dG2(vt+1) ≥ d2√m2e for all t = 0, . . . , n− 1. Then

n−1∑
t=0

dG2(vt+1) ≥
n−1∑
t=0

max[(d2
√

m2e − t), 0]

=

d2√m2e∑
t=0

t

=
1

2
d2
√

m2e(d2
√

m2e+ 1)

> 2m2,

which is a contradiction, proving the claim. �

Both Theorem 1.1 and Theorem 1.2 can be extended to graphs with
weighted edges. We simply replace each parameter with its weighted coun-
terpart (both in the statements and the proofs of the theorems).

3 Good Simultaneous Cuts For Special Classes

of Graphs

In this section, we turn to the problem of finding pairs of graphs, Gi = (V, Ei)
with |Ei| = mi for i = 1, 2, for which we can ensure the existence of A ⊆ V
such that

eGi
(A, Ac) ≥ bmi/2c

for i = 1, 2. As conjectured earlier, we believe that the above is true for all
pairs of graphs. The proofs in this section are of a probabilistic nature.

We first prove that the above is true for graphs of high density, that is,
those graphs that give the poorest bounds in Theorem 1.1 and Theorem 1.2.
We start with a general lemma.

Lemma 3.1 Let X be an integer-valued random variable with mean µ and
variance σ2. For p > 0, let r(X, p) be maximal such that

Pr(X ≤ r(X, p)) < p.

Then

r(X, p) + 1 ≥ µ−
√

1− p

p
σ.
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Proof Let Y be the two point random variable taking the value y0 =
E(X|X ≤ r(X, p) + 1) with probability p0 = Pr(X ≤ r(X, p) + 1), and
taking the value y1 = E(X|X > r(X, p) + 1) with probability 1− p0.

We have that y0 ≤ r(X, p) + 1, and an easy calculation gives

y0 = E(Y )−
√

1− p0

p0

V ar(Y ).

Noting that p0 ≥ p, E(Y ) = µ, and V ar(Y ) ≤ σ2 (the last of these follows
from the convexity of x2), we obtain

r(X, p) + 1 ≥ y0 = E(Y )−
√

1− p0

p0

V ar(Y ) ≥ µ−
√

1− p

p
σ

as required. �

The following corollary is the main probabilistic tool used in the proofs
of Theorem 1.3 and Theorem 1.4.

Corollary 3.2 Let X1 and X2 be integer-valued random variables, and let
Xi have mean µi and variance σ2

i for i = 1, 2. Then

Pr(X1 ≥ µ1 − σ1, X2 ≥ µ2 − σ2) > 0.

Proof The following easy calculation proves the corollary.

Pr(X1 ≥ µ1 − σ1, X2 ≥ µ2 − σ2)

≥ 1− Pr(X1 ≤ µ1 − σ1 − 1)− Pr(X2 ≤ µ2 − σ2 − 1)

≥ 1− Pr(X1 ≤ r(X, 1/2))− Pr(X2 ≤ r(X, 1/2))

> 1− 1/2− 1/2 = 0.

�

The idea of the proof of Theorem 1.3 is an extension of the ideas of Kühn
and Osthus in [4].

Proof (of Theorem 1.3) Given graphs G1 and G2, pick a subset A of V of
size bn/2c uniformly at random and set Xi = eGi

(A, Ac) for i = 1, 2. Let µi

and σ2
i respectively be the mean and variance of Xi. We show that if G1 and

G2 are sufficiently dense, then

µi − σi ≥
mi

2
.
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Corollary 3.2 then gives that

Pr(X1 ≥ m1/2, X2 ≥ m2/2) > 0,

hence there exists some subset of V with the desired property.
It remains only to bound µi − σi. We shall assume that n is even. The

case of n odd is proved with a similar calculation to the one below.
We start by computing the expectation and variance of the Xi. Let us

focus on X1. For each e ∈ E1, define

Xe =

{
1 if e ∈ EG1(A, Ac);

0 otherwise.

Note that X1 =
∑

e∈E1
Xe. Using this and the linearity of expectation, we

have

E(X1) =
∑
e∈E1

E(Xe) =
∑
e∈E1

Pr(e ∈ EG1(A, Ac)) =
1

2
m1

(
1 +

1

n− 1

)
,

since Pr(e ∈ EG1(A, Ac)) = 1
2
(1 + 1

n−1
).

Next we compute E(X2
1 ). Again, writing X1 as a sum of indicator func-

tions and expanding, we get

E(X2
1 ) =

∑
e∈E1

E(Xe) +
∑

e,f∈E1
e6=f

E(Xe ·Xf )

= E(X) +
∑

e,f∈E1
e6=f

Pr(e, f ∈ EG1(A, Ac)).

For two edges, e and f , of a graph, with e 6= f , we write e inc f if the edges
are incident (meet at exactly one vertex), and we write e ind f if they have
no common vertices, that is, they are independent. We split the sum above
according to whether or not e and f are incident. Using that

Pr(e, f ∈ EG1(A, Ac)) =


1
4

(
1 + 1

n−1

)(
1 + 1

n−3

)
, if e ind f ;

1
4

(
1 + 1

n−1

)
, if e inc f ,
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we obtain

E(X2
1 ) = E(X) +

∑
e,f∈E1
e ind f

Pr(e, f ∈ EG1(A, Ac)) +
∑

e,f∈E1
e inc f

Pr(e, f ∈ EG1(A, Ac))

=
1

2
m1

(
1 +

1

n− 1

)
+ [m1(m1 − 1)− P2(G1)]

1

4

(
1 +

1

n− 1

)(
1 +

1

n− 3

)
+ P2(G1)

1

4

(
1 +

1

n− 1

)
=

1

4

(
1 +

1

n− 1

)(
2m1 +

(
1 +

1

n− 3

)
m1(m1 − 1)− P2(G1)

n− 3

)
,

where P2(G1) denotes the number of (ordered) pairs of incident edges in G1.
Alternatively, P2(G1) is twice the number of paths of length 2 in G1, and we
can bound it as follows. Let v1, . . . , vn be the vertices in V and let di be the
degree of vi in G1. Then

P2(G1) =
n∑

i=1

di(di − 1)

=
n∑

i=1

d2
i − 2m1

≥ n
( 1

n

n∑
i=1

di

)2

− 2m1 (Cauchy-Schwarz inequality)

=
4m2

1

n
− 2m1.

Using this bound, together with the expressions for E(X2
1 ), we find that

E(X2
1 ) ≤ 1

4

(
1 +

1

n− 1

)(
m1 +

(
1 +

1

n− 3

)
m2

1 −
4m2

1

n(n− 3)
+

m1

n− 3

)
.

Using our expression for E(X1), we obtain

V ar(X1) ≤
1

4

(
1 +

1

n− 1

)(
m1 +

2m2
1

(n− 1)(n− 3)
− 4m2

1

n(n− 3)
+

m1

n− 3

)
,

and similarly for V ar(X2). It is sufficient to show that

V ar(Xi) ≤
(
µi −

mi

2

)2

.

Substituting the expression for µi and the bound for σ2
i , we find it is sufficient

to show that

1

4

(
1 +

1

n− 1

)(
mi +

2m2
i

(n− 1)(n− 3)
− 4m2

i

n(n− 3)
+

mi

n− 3

)
≤ m2

i

4(n− 1)2
.
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For n ≥ 3 and mi > 0, the above inequality holds if and only if

mi ≥
n(n− 1)(n− 2)

3n− 7
,

which holds if mi ≥ 1
3
n2 for i = 1, 2. �

Next we prove a theorem showing that pairs of graphs with small max-
imum degree (relative to the number of edges in the graphs) also satisfy
Conjecture 1. The proof of the theorem broadly follows that of the previ-
ous theorem, the only difference being the way in which the random cut is
constructed.

Going into more detail, the random cut is constructed as follows. We
first deterministically pair up the vertices of our vertex set V so that a
large proportion of the pairs form edges of our graphs. We then partition V
randomly, ensuring that vertices of each pair are in different parts.

This motivates the following lemma and its corollary.

Lemma 3.3 For graphs G1 = (V, E1) and G2 = (V, E2), let Ai ⊆ Ei be sets
of independent edges for i = 1, 2. Then there exists a set, A ⊆ A1 ∪ A2, of
independent edges such that

|A ∩ Ai| ≥
⌊

1

2
|Ai|

⌋
− 1.

Proof Observe that each edge of A1 ∩ A2 is independent of all other edges
in A1 ∪ A2. Let Bi = Ai\(A1 ∩ A2). Then it is sufficient to find a set
B ⊆ B1 ∪ B2 of independent edges such that |B ∩ Bi| ≥ b|Bi|/2c − 1 (then
set A = B ∪ (A1 ∩ A2)).

We construct B as follows. Assume, without loss of generality, that |B2| =
|B1| + b where b is a non-negative integer. Note that B1 ∪ B2 is a disjoint
union of paths and cycles where edges alternate between being in B1 and
being in B2. Let S be the set of these paths and cycles.

A path in S whose first and last edges are both in B1 (resp. B2) will
be referred to as a 1-path (resp. 2-path). Let P 1 (resp. P 2) be the set of
1-paths (resp. 2-paths). Any other path in S is necessarily a path with an
even number of edges, so we call it an even path. Let P e be the set of even
paths in S. Let C be the set of cycles in S (each of which necessarily has an
even number of edges).
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We have that S is the disjoint union of C, P e, P 1 and P 2. For s ∈ S, |s|
refers to the number of edges in s. Let

C = {c1, c2, . . . , cj} with |c1| ≥ |c2| ≥ . . . ≥ |cj|,
P e = {pe

1, p
e
2, . . . , p

e
k} with |pe

1| ≥ |pe
2| ≥ . . . ≥ |pe

k|,
P 1 = {p1

1, p
1
2, . . . , p

1
l } with |p1

1| ≥ |p1
2| ≥ . . . ≥ |p1

l |,
P 2 = {p2

1, p
2
2, . . . , p

2
m} with |p2

1| ≥ |p2
2| ≥ . . . ≥ |p2

m|,

and note that the number of 2-paths exceeds the number of 1-paths by b =
|B2| − |B1|, hence l + b = m. We order the elements of S as follows,

c1, c2, . . . , cj, p
e
1, p

e
2, . . . , p

e
k, p

2
1, p

1
1, p

2
2, p

1
2, . . . , p

2
l , p

1
l , p

2
l+1, p

2
l+2, . . . , p

2
m

and call this ordering OS. For each s ∈ S, fix an ordering, f1, . . . , fq, of the
edges of s such that fi and fi+1 are incident for i = 1, . . . , q−1, and if s is an
even path or cycle, then f1 ∈ B2. Concatenate these orderings of elements
of S according to Os to give an ordering, e1, . . . , et, of the edges of B1 ∪ B2.
Note that the edges in our ordering e1, . . . , et alternate between B1 and B2

except at a transition between P 2
l+z and P 2

l+z+1 (z = 1, . . . , b − 1), where we
have two consecutive edges in B2. We call such a transition, a P 2-transition.

Choose x minimal such that |{e1, . . . , ex} ∩ B1| = b|B1|/2c − 1 and let
B′

1 = {e1, . . . , ex} ∩ B1. Let B′
2 = {ex+2, . . . , et} ∩ B2 and let B = B′

1 ∪ B′
2.

It is not too difficult to see that B is a set of independent edges.
It remains only to show that |B ∩ B2| = |B′

2| ≥ b|B2|/2c − 1. Let y
be the number of P 2-transitions in e1, . . . , ex. Since p2

l+1, . . . , p
2
m are ordered

according to size in Os, we find that y ≤ b/2 − 1, otherwise |B′
1| ≥ |B1|/2.

Using this, we get

|B′
2| = |B2| − |{e1, . . . , ex} ∩B2}| − 1

= |B2| − (|B′
1|+ y)− 1

≥ |B2| −
1

2
(|B1|+ b)− 1

≥
⌊

1

2
|B2|

⌋
− 1

as required. �

Corollary 3.4 Let G1 = (V, E1) and G2 = (V, E2) be graphs with |V | = n
and |Ei| = mi. If ∆(Gi) = ri for i = 1, 2, then there exists a pairing,
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P = {(v1, w1), . . . , (vbn/2c, wbn/2c)}, of the vertices in V such that for i = 1, 2,
we have

|P ∩ Ei| ≥
⌊

mi

2(ri + 1)

⌋
− 1.

Proof By Vizing’s Theorem, we can find an (ri + 1)-colouring of the edges
of Gi and so, in each of the graphs Gi, we can find an independent set of
edges of size at least mi/(ri + 1). Let Ai be such a set of independent edges
for graph Gi. By Lemma 3.3, we know there exists a set A ⊆ A1 ∪ A2 of
independent edges such that |A∩Ai| ≥ b|Ai|/2c−1. This proves the corollary
since the edges in A induce a partial pairing of V and we extend this (in any
way) to a total pairing, P , with the desired property. �

We are now ready to prove Theorem 1.4.

Proof (of Theorem 1.4) Assume n is even (if n is odd, add a vertex to V
(isolated in G1 and G2), and apply the theorem for the case when n is even).
By Corollary 3.4, there exists a pairing P = {(v1, w1), . . . , (vn/2, wn/2)} of
the vertices of V such that ki = |P ∩ Ei| ≥ b mi

2(ri+1)
c − 1 for i = 1, 2. Let A

be a random subset of V constructed as follows. For each pair (vi, wi) of P ,
we either choose vi ∈ A, wi 6∈ A or vi 6∈ A, wi ∈ A, each with probability
1/2. The choices for each i = 1, . . . , bn/2c are made independently of one
another. Let Xi = eGi

(A, Ac) and let Xi have mean µi and variance σ2
i . By

Corollary 3.2, it is sufficient to prove that

µi − σi ≥
1

2
mi,

for i = 1, 2. As before we compute µi and σ2
i .

Let G′
i = (V, E ′

i) = (V, Ei\P ) with m′
i = |E ′

i| = mi − ki, and let X ′
i =

eG′
i
(A, Ac). Let X ′

i have mean µ′
i = µi − ki and variance σ′

i
2 = σ2

i .
For e ∈ E ′

i, we have that

Pr(e ∈ EGi
(A, Ac)) = 1/2,

so as in Theorem 1.3, we have

E(X ′
i) =

∑
e∈E′

i

Pr(e ∈ EG′
i
(A, Ac)) =

m′
i

2
.

Two edges e, f (e 6= f) in E ′
i are said to be linked if there exists p1, p2 ∈ P

such that e ∪ f ⊆ p1 ∪ p2. For e, f ∈ E ′
i, we have

Pr(e, f ∈ EGi
(A, Ac)) =


1
2

if e, f are linked and not incident;

0 if e, f are linked and incident;
1
4

otherwise.
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For any edge e ∈ E ′
i, there is at most one edge f ∈ E ′

i that is linked and not
incident to e. Hence there are at most m′

i (ordered) pairs of edges of E ′
i that

are linked and not incident. As in the proof of Theorem 1.3, we have

E(X ′2
i ) = E(X ′

i) +
∑

e,f∈E′
i

e6=f

Pr(e, f ∈ EG′
i
(A, Ac))

≤ 1

2
m′

i +
1

4
[m′

i(m
′
i − 1)−m′

i] +
1

2
m′

i

=
1

4
m′2

i +
1

2
m′

i,

and

σ′2
i = E(X ′2

i )− E(X ′
i)

2

≤ 1

2
m′

i.

Therefore µi = 1
2
(mi + ki) and σ2

i ≤ 1
2
(mi − ki). We find that µi − σi ≥ mi/2

if σ2
i ≤ 1

4
k2

i , i.e. if

mi ≤
1

2
k2

i + ki.

Given that ki ≥ b mi

2(ri+1)
c − 1, it is easy to check that the above holds if

ri ≤
√

mi/8− 2. �

Note that the condition ∆(Gi) ≤
√

mi/8 − 2 is only used at the end of the
proof in order to bound ki. More generally, any pair of graphs Gi, i = 1, 2,
satisfying the condition that mi ≤ 1

2
k2

i + ki will satisfy Conjecture 2.
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