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Abstract

The theory of regular variation is largely complete in one dimen-
sion, but is developed under regularity or smoothness assumptions.
For functions of a real variable, Lebesgue measurability su¢ ces, and
so does having the property of Baire. We �nd here that the preceding
two properties have common combinatorial generalizations, exempli-
�ed by �containment up to translation of subsequences�. All of our
combinatorial regularity properties are equivalent to the uniform con-
vergence property.
Classi�cation: 26A03; 04A15; 02K20.
Keywords: Regular variation, uniform convergence theorem, Cauchy

functional equation, Baire property, measurability, density topology,
measure-category duality, in�nite combinatorics, subuniversal set, No
Trumps Principle.
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1 Introduction

The theory of regular variation, or of regularly varying functions, is a chapter
in the classical theory of functions of a real variable, dating from the work of
Karamata in 1930. It has found extensive use in probability theory, analysis
(particularly Tauberian theory and complex analysis), number theory and
other areas; see [BGT] for a monograph treatment, and [Kor] Chapter IV.
Henceforth we identify our numerous references to [BGT] by BGT. The the-
ory explores the consequences of a relationship of the form

f(�x)=f(x)! g(�) (x!1) 8� > 0; (RV )

for functions de�ned on R+: The limit function g must satisfy the Cauchy
functional equation

g(��) = g(�)g(�) 8�; � > 0: (CFE)

Subject to a mild regularity condition, (CFE) forces g to be a power:

g(�) = �� 8� > 0: (�)

Then f is said to be regularly varying with index �, written f 2 R�.
The case � = 0 is basic. A function f 2 R0 is called slowly varying;

slowly varying functions are often written ` (for lente, or langsam). The
basic theorem of the subject is the Uniform Convergence Theorem (UCT),
which states that if

`(�x)=`(x)! 1 (x!1) 8� > 0; (SV )

then the convergence is uniform on compact �-sets in (0;1).
The basic facts are:

(i) if ` is (Lebesgue) measurable, then the UCT holds;
(ii) if ` has the Baire property (for which see e.g. Kuratowski [Kur], Oxtoby
[Oxt]), then the UCT holds;
(iii) in general, the UCT need not hold.
Similarly, if f is measurable or has the Baire property, (CFE) implies (�), but
not in general. See BGT §§1.1, 1.2; for background on the Cauchy functional
equation, see [BOst-SteinOstr] and [Kucz], [AD].
The UCT extends easily to regularly as well as slowly varying functions;

see BGT Th. 1.5.2. The basic case is � = 0, so we lose nothing by restricting
attention to it here.
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The basic foundational question in the subject, which we address here,
concerns the search for natural conditions for the above to hold, and in
particular for a substantial common generalization of measurability and the
Baire property. We �nd such a common generalization, which is actually
both necessary and su¢ cient. See the Main Theorem in Section 3. The
paper thus answers an old problem noted in BGT p. 11 Section 1.2.5.
While regular variation is usually used in the multiplicative formulation

above, for proofs in the subject it is usually more convenient to use an additive
formulation. Writing h(x) := log f(ex) (or log `(ex) as the case may be),
k(u) := log g(eu) and, following the letter convention of BGT, the relations
above become

h(x+ u)� h(x)! k(u) (x!1) 8u 2 R; (RV+)

h(x+ u)� h(x)! 0 (x!1) 8u 2 R; (SV+)

k(u+ v) = k(u) + k(v) 8u; v 2 R: (CFE+)

Here the functions are de�ned on R; whereas in the multiplicative notation
functions are de�ned on R+:

It is convenient to describe the context of the Uniform Convergence The-
orem (UCT) by writing

�xh(u) = h(u+ x)� h(x)

and regarding �xh(u); with x as parameter, as though it were an �approximately-
additive�function of u (a term de�ned explicitly in [Kucz] p. 424). Then,
granted assumptions on the function h; (UCT) asserts that pointwise con-
vergence of the family f�xhgx2R implies uniform convergence over compact
sets of u. In this context the following dual notation is thus natural:

k(u); or , @h(u) := lim
x!1

h(u+ x)� h(x): (1)

2 In�nite combinatorics

The concepts we need for our analysis are embodied in the following def-
initions. They have been extracted from a close reading of the standard
treatment of UCT in BGT, but whilst only implicit there, here they are now
identi�ed as quintessential.
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De�nitions - 1.
(i) The "-level set (of �xh) is de�ned to be the set

H"(x) := ft : j�xh(t)j < "g = ft : jh(t+ x)� h(x)j < "g:

(ii) For x = fxn : n 2 !g an arbitrary sequence tending to in�nity, the
x-stabilized "-level set (of h) is de�ned to be the set

T "k (x) =
T1
n=kH

"(xn) for k 2 !:

Here ! denotes the set of natural numbers 0; 1; 2; ::: . Note that

T "0 (x) � T "1 (x) � T "2 (x) � ::: and T "k (x) � T
�
k (x) whenever " < �: (2)

If h is slowly varying, then R =
S
k2! T

"
k (x):

(iii) We say that a set S is universal (resp. subuniversal) if for any
null sequence zn ! 0; there are s 2 R and a co-�nite (resp. in�nite) set Ms

such that
fs+ zm : m 2Msg � S:

We shall also say that a universal set S includes by translation the null
sequences. (Omission of �by translation�is not to be taken as implying trans-
lation.) We say that a subuniversal set traps null sequences, to abbreviate
�includes by translation a subsequence of�. Subuniversality, a property pos-
sessed by various �large�sets (see below), is linked both to compactness and
additivity through �shift-compactness�: see [BOst8] for a topological analysis.

Clearly an open interval is universal and hence also subuniversal. Indeed,
suppose z is in the interior of S, and suppose um converges to u; then with
y = z � u we see that

y + um = z � (u� um)
is ultimately in S:A subuniversal set is necessarily uncountable: see [BOst-SteinOstr].
We shall later be concerned with bounded and or convergent sequences

fung. Of course, for S subuniversal, if fung is a bounded sequence, we may
pass to a convergent subequence with limit u; for which the corresponding
subsequence zn := un � u is null, and so there are t 2 R and an in�nite set
Mt such that

ft+ um : m 2Mtg � S:
The reason that the above de�nition is phrased in terms of null sequences

is that we may wish to have s 2 S; as in the next theorem. The following
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result is due in this form in the measure case to Borwein and Ditor [BoDi],
but was already known much earlier albeit in somewhat weaker form by
Kestelman ([Kes] Th. 3), and rediscovered by Trautner [Trau] (see [BGT] p.
xix and footnote p. 10).

Theorem (Kestelman-Borwein-Ditor Theorem). Let fzng ! 0 be
a null sequence of reals. If T is measurable and non-null (resp. non-meagre),
then, for almost all (resp. for quasi-all) t 2 T; there is an in�nite set Mt

such that
ft+ zm : m 2Mtg � T:

For the proof see [BOst-SteinOstr]. In the next de�nition we use bounded
sequences.

De�nition - 2. The basic No Trumps combinatorial principle (there
are several), denoted NT(fTk : k 2 !g); refers to a family of subsets of reals
fTk : k 2 !g and means the following.
For every bounded sequence of reals fum : m 2 !g there are k 2 !; t 2 R

and an in�nite set M � ! such that

um + t 2 Tk for all m in M.

In words: the translate of some subsequence of fumg is contained in some Tk:
As with universality (resp. subuniversality), we will also say that the family
fTk : k 2 !g includes by translation (resp. traps) the bounded sequences.
(See Section 5 for the background on this terminology.)
If for some k the set Tk is subuniversal thenNT(fTk : k 2 !g) holds; thus

the latter is less restrictive, especially if, as it may happen in applications,
the family fTk : k 2 !g is increasing, as e.g. in (2).
Here again we note that if fTng is a family of sets such that for some

n the set Tn contains an interval, then the family traps sequences. This
observation ties in with the standard textbook approach to UCT, where a
number of proofs arrange to use measurability and Steinhaus�s Theorem (see
BGT Theorem 1.1.1 p. 2) to manufacture an interval that traps a convergent
sequence. One can also relate the sequence trapping property directly to the
notion of �automatic continuity�. Here the natural point of departure from
the present perspective is the limit function of (1) which, assuming it exists,
is additive. We study in [BOst-SteinOstr] the present combinatorial insights,
as they impinge on the Ostrowski and Steinhaus Theorems; there is also
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the expected connection with the natural classes A;B;C associated with
automatic continuity, as de�ned by Ger and Kuczma (see [Kucz] p. 206 or
[GerKucz], and also [BOst6], [BOst7]).
The existing literature is on universality and has mostly concentrated not

on inclusion but on exclusion, even of images of entire convergent sequences
(a¢ ne images, including translates); see for example [Kom] in regard to sets
of positive measure avoiding translates of a given convergent sequence (see
[Mil1] for additional references). Our rather di¤erent approach is motivated
by the relationship which we demonstrate between UCT and �positive�rather
than �negative�combinatorics.
To clarify the status of the weaker concept of subuniversality in its present

context of measure and category we refer to the notions of Lusin set (or, to
use the modern transliteration, Luzin set), Sierpiński set, Hamel basis, and
automatic continuity. We recall that a Luzin set is one which meets any
nowhere dense set in at most a countable set. Similarly a Sierpínski set is
one which meets any set of measure zero in at most a countable set. See
[Kun], [Mil2] p. 32 (where there is a historical attribution to Mahlo, and
the two concepts are described as I-Luzin sets for the appropriate �-ideal
I), or [Mil3] for a survey of �special�subsets of the real line. An altogether
more fruitful viewpoint on the similarity comes from giving R the density
topology; in the �rst place we may interpret a Sierpiński set then as a Luzin
set in the density topology, secondly, and more thematically, the two forms
of the Kestelman-Borwein-Ditor Theorem become uni�ed, as two corollaries
of one more general theorem, the Category Embedding Theorem (for which
see [BOst-SteinOstr]), as do for the same reasons the classical category and
measure versions of the UCT (see [BOst11] for an approach to the UCT via
measure-category duality).
A Luzin set is measurable and is of measure zero; furthermore, it is of

second category, but fails to have the Baire property. See e.g. [Kucz], p. 63
for proofs. Similarly every Sierpiński set is strongly meager, see [Paw].

Proposition 1. Assume the Continuum Hypothesis (CH). There exists
a Luzin set (resp. Sierpínski set) which contains a Hamel basis and contains
all sequences up to translation. Its di¤erence set has empty interior.

See the end of the paper for a remark on the set-theoretic character of
such a set under Gödel�s Axiom of Constructibility (V = L):
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3 The UCT and its equivalents

We begin by noting the following strong property of the stabilized "-level
sets.

Proposition 2 (Sequence inclusion). Suppose the UCT holds for a func-
tion h: Let u be any bounded sequence, and let " > 0: Then, for every
sequence x tending to in�nity, the stabilized "-level set T "k (x) for some k
includes the sequence u: In particular, the stabilized "-level sets fT "k (x) : k 2
!g trap bounded sequences.
For a proof see Section 4.1. Our main result is the following �converse�

(see Section 5 for the terminology �No Trumps�).

Theorem 1 (Main Theorem, or UCT). For h slowly varying, the follow-
ing are equivalent.
(i) The UCT holds for h:
(ii) The principle 1-NTh holds: for every " > 0 and every sequence x tending
to in�nity, the stabilized "-level sets fT "k (x) : k 2 !g of h trap bounded
sequences by translation. That is:

(8" > 0)(8x) NT(fT "k (x) : k 2 !g):
(iii) For every " > 0 and for every sequence x tending to in�nity, the
stabilized "-level sets fT "k (x) : k 2 !g of h include all the bounded sequences.

That this is indeed the sought-for generalization of the UCT in BGT is
shown by the special case of the following general result. We term the latter
the No Trumps Theorem, as it justi�es the combinatorial framework of No
Trumps.

Theorem 2 (No Trumps Theorem). Let T be an interval. Suppose that
T =

S
k2! Tk; where the sets Tk are measurable/Baire. Then the sets fTk :

k 2 !g include bounded sequences by translation, i.e. NT(fTk : k 2 !g).

The idea behind the next theorem comes from a re-interpretation of what
is referred to as the �fourth proof of UCT�in BGT, p. 9, which proof is a
reworking of one due to Csiszár and Erd½os, see [CsEr].

Theorem 3 (Trapping families theorem, after Csiszár and Erd½os). Sup-
pose the slowly varying function h is measurable, or has the property of Baire.
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Let x = fxng be any sequence tending to in�nity. Then, the stabilized "-
level sets fT "k (x) : k 2 !g include bounded sequences by translation, i.e.
NT(fT "k (x) : k 2 !g).

As the proof of this theorem is only implicitly given in BGT, p. 9, being
bound up with a di¤erent context, we repeat the short proof, in isolated form,
for convenience in Section 4.3. In fact, much more is true (see [BOst6]); we
restrict attention here to the simplest case, which su¢ ces for our present
purposes. Theorem 3 combined with the Main Theorem yields as immediate
the following corollary.

Corollary (Classical UCT). Suppose the slowly varying function h is
measurable, or has the property of Baire. Then

h(x+ u)� h(x)! 0; as x!1;

uniformly for u in a compact set.

We have already seen in the discussion of subuniversality the equivalence
of trapping null sequences and bounded sequences. This simple equivalence
is re�ected in a more powerful result which is at the heart of a whole chain
of equivalent formulations of the UCT.

Theorem 4 (The Bounded Equivalence Principle). For h a slowly
varying function the following are equivalent.
(i) The UCT holds for h:
(ii) Whenever fung is a bounded sequence, and fxng tends to in�nity

lim
n!1

jh(un + xn)� h(xn)j = 0:

(iii) Whenever fzng is a null sequence, and fxng tends to in�nity

lim
n!1

jh(zn + xn)� h(xn)j = 0:

In BGT p.7 condition (iii) is derived when the slowly varying h is mea-
surable or Baire as a �rst step in a direct proof of the UCT. The broader
picture is formulated in the next theorem and in the diagram below it.

Theorem 5 (Equivalence Theorem). For h a slowly varying function
the following are equivalent.
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(i) The principle 1-NTh holds: the family fT "n(x) : n 2 !g traps bounded
sequences for any real sequence x tending to in�nity, and any positive ".
That is:
(8" > 0)(8 real x) NT(fT "k (x) : k 2 !g):

(ii) Whenever fung is a bounded sequence, and fxng tends to in�nity

lim
n!1

jh(un + xn)� h(xn)j = 0: (3)

(ii)� For any sequence x tending to in�nity, and any positive ", the family
fT "n(x) : n 2 !g ultimately contains almost all of any bounded sequence
u. That is, for any bounded sequence u =fung; there is k such that

fum : m > kg � T "n(x) for all n > k: (4)

(iii) Whenever fung is a bounded sequence, and m =fmng is an integer
sequence tending to in�nity

lim
n!1

jh(un +mn)� h(mn)j = 0: (5)

(iv) 2-NTh holds: the family fT "n(m) : n 2 !g traps bounded sequences for
any integer sequence m tending to in�nity, and any positive ". That is:
(8" > 0)(8 integer m) NT(fT "k (m) : k 2 !g):

(v) 3-NTh holds: for all " > 0, the family fT "n(m) : n 2 !g traps bounded
sequences with m restricted to just the one sequence id de�ned by mn = n:
That is:
(8" > 0) NT(fT "k (id) : k 2 !g).

(vi) The UCT holds for h:
In particular, for h slowly varying, the three combinatorial principles 1-

NTh; 2-NTh; 3-NTh involving sequence trapping are all equivalent.

The assertion (ii)� , which is actually a transcription of (ii), clearly alludes
to some further variations on the i-NTh theme. The sequence fT "k (y) : k 2
!g may have one of three �inclusion properties� in relation to a bounded
sequence u. For some k; T "k (y) could:
(F) include all of u; i.e. fully include u; or,
(A) include almost all terms of u; or,
(ST) include a subsequence of u by translation, i.e. precisely NT itself.
We refer to these various strengthenings of trapping as F=A=ST analogues

of trapping. Furthermore the inclusion property might be applied to:
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(x) y ranging over real sequences x,
(m) y ranging over integer sequences m = fmng,
(id) y restricted to just the one integer sequence id de�ned by mn = n:
The implications can be summarized in a �contingency table�, shown be-

low in the style of the Cichón diagram, for which see [F2]. The minimal one
is thus NTh := 3-NTh (referring to the sequence id).
When restricted to a slowly varying function h all these properties are

equivalent.

ST (x) =) ST (m) =) ST (id) =) UCTh
* * *
A(x) =) A(m) =) A(id)
* * *

UCTh =) F (x) =) F (m) =) F (id)

Here

P (�) = F=A=ST analogue of the property 8"8(�)NT(fT "k (�) : k 2 !g);

F = Full inclusion,

A = Almost inclusion,

ST = Subsequence inclusion by translation.

Of course in combination with the Trapping families theorem, the equiv-
alence theorem contributes a �sixth�proof of UCT complementing the �ve
given in BGT, Chapter 1.
As a consequence of the equivalence principle, in the general setting of a

regularly varying function h, one may relax the de�nition of the associated
limit function in (1), that is, the limit may be taken there sequentially rather
than continuously. Other variations are possible: see the remarks at the end.

4 Proofs

4.1 Proof that UCT implies sequence inclusion

Suppose given two sequences x = fxng and u = fung with xn ! 1 and un
bounded. If the sequence fumg lies in the compact interval [a; b] then, for
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any " > 0; there is k so large that, for any u in [a; b] and any n � k, we have

jh(u+ xn)� h(xn)j < ":

This means that any such u is in T "k (x); so in particular fum : m 2 !g �
T "k (x): �

4.2 Proof of the Main theorem (UCT)

From the last Proposition we already know that (i) implies (iii) and (iii)
implies (ii). It remains to prove that (ii) implies (i).
So suppose that UCT fails for some function h:
Suppose that for the two sequences x = fxng and u = fung with xn !1

and un bounded there is an " > 0 such that for n = 1; 2; :: we have

jh(xn + un)� h(xn)j � 2": (6)

Note that if y 2 T "k (x) then we have, for n = k; k + 1; :::; that

jh(xn + un)� h(xn + y)j � ": (7)

Indeed, otherwise we would have

jh(xn + un)� h(xn + y)j < "

and
jh(xn + y)� h(xn)j < ";

contradicting (6).
Now, by the trapping assumption, for in�nitely many m in, say M; we

have
ym = um + z 2 T "k (x) for m 2M:

Now, for any such m 2M with m > k; by (7) with y = ym; we have that
for n = m:

jh(xm + um)� h(xm + um + z)j � ":
Putting vm = xm + um this yields that

jh(z + vm)� h(vm)j � ";

which contradicts that h is slowly varying. Hence the assumption (6) is
untenable, and thus after all UCT holds. �
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4.3 The No Trumps and the Trapping families Theo-
rem

The No Trumps Theorem follows immediately from the Kestelman-Borwein-
Ditor Theorem; indeed if the interval T is the union of the measurable/Baire
sets Tk; then for some k the set Tk is non-null/non-meagre. (Compare the
remark after the de�nition of the NT combinatorial principle.) This follows
the exposition of the in�nite combinatorics of subuniversality followed in
[BOst-SteinOstr]. As to the Trapping Families Theorem, one way to derive
it is from the No Trumps Theorem by taking Tk := T "k and noting that these
are measurable/Baire if the slowly varying function h is measurable/Baire.
Alternatively, one may use the argument below extracted from the Csiszár-

Erd½os proof [CsEr] of the UCT. Without loss of generality we take T =
[�1; 1]: Now let u = fung be a bounded sequence, which we may as well as-
sume is convergent to some u0:We assume that jun�u0j � 1:We are to show
that for some z; some K; and some in�nite M � !; we have z + um 2 TK :
By assumption, each Tk is measurable [Baire], so there is K such that TK

has positive measure [is non-meagre]. Let

ZK = u(TK) :=
1\
j=1

1[
n=j

(TK � un) :

We now quote almost verbatim from BGT p. 9. �In the measurable case all
the Zn;K have measure jTK j; and as they are subsets of the �xed bounded
interval [u0 � 2; u0 + 2]; ZK is a subset of the same interval having measure

jZK j = lim
j!1

�����
1[
n=j

(TK � un)
����� � jTK j > 0:

So ZK is non-empty.
In the Baire case TK contains some set InM; where I is an open interval

of length � > 0; and M is meagre. So each set TK � un contains InnMn;
where In = I � un is an open interval of length � and Mn := Mn � un is
meagre. Choosing J so large that jui � ujj < � for all i; j � J; the intervals
IJ ; IJ+1; ::: all overlap each other, and so

S1
n=j I

n; for j = J; J + 1; :::; is a
decreasing sequence of intervals, all of length � � and all contained in the
interval [u0 � 2; u0 + 2]; hence I0 =

T1
j=1

S1
n=j I

n is an interval of length
� �. Since ZK contains I0n

S1
n=jM

n; it follows that ZK is non-meagre, so
non-empty.�Thus in either case, there is a point z 2 ZK :

12



This means that z 2 TK � un for in�nitely many n: Say that

z 2 TK � um for m 2M:

Without loss of generality, m 2M implies m > K:
Consider m 2 M. By de�nition, for some y = ym; we have z = ym � um

with ym 2 TK : But this says that

z + um 2 TK for m 2M;

as required. �

Corollary. The Trapping families theorem holds.

Proof. Let h be measurable or Baire slowly varying. Let x = fxng be a
�xed sequence tending to in�nity and let " > 0 be �xed.
By assumption of slow variation, we have

[�1; 1] =
[
k

Ik; where Ik = [�1; 1] \
[
k

T "k (x)

and

T "k (x) =
1\
n=k

fy : jh(y + xn)� h(xn)j < "g:

The corollary is now immediate, as the sets Tk := T "k (x) are, by assumption,
measurable [Baire]. �

Comment. A forcing argument due to A. Miller (quoted in Section
5) shows why there is duality present here between measure and category;
his proof tells us that the amount by which the subsequence needs to be
translated is �generic�in nature.

4.4 Proof of the Bounded Equivalence Principle

First we note that (i) implies (ii). Suppose otherwise. Then for some " > 0;
some xn !1; and some bounded fung we have

jh(xn + un)� h(xn)j � ":
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Passing to a subsequence we may now assume that un is convergent with limit
u: But now the inequality contradicts the assertion of uniform boundedness
over the compact set fun : n = 0; 1; 2; ::g:
Clearly (iii) is a special case of (ii).
Finally, we must show that (iii) implies the UCT.
Suppose otherwise. Then, for the slowly varying function h; there are

" > 0; some convergent un with limit u and some yn !1 such that

jh(yn + un)� h(yn)j � ": (8)

Write zn = un � u: Now h(yn + u) � h(yn) ! 0 (convergence at u); setting
xn := u+ yn (so that xn !1) we have xn + zn = un + yn and thus we may
apply (iii) to the sequences xnand zn to deduce that

jh(yn + un)� h(yn)j = jh(xn + zn)� h(xn)j+ jh(yn + u)� h(yn)j ! 0;

contradicting (8).

4.5 Proof of the Equivalence Theorem

In what follows if we assert that a combinatorial principle holds, then it is
to be understood implicitly that it holds for all " > 0:
(a) The equivalence of (i) and (vi) is the substance of our Main Theorem

UCT.
(b) We prove that (i) implies (ii). This is the hardest part of the proof.

All the other steps are either simple, or in just one case a nearly verbatim
repetition of the current step with x replaced by m:
Suppose that (3) fails. Then for some � > 0

jh(un + xn)� h(xn)j � �; (9)

for a subsequence M0� N of n0s: As u = fung is a bounded sequence, by
passing to a subsequence M �M0, we may suppose that fumg converges for
m 2M, to u say.
We begin by establishing that, for the subsequence of fumg convergent

to u; we have
lim
m2M

jh(u+ xm)� h(um + xm)j = 0;
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where the limit is taken down the subsequence M. More precisely, we show
that, with " = �=3 > 0; there is N = N(u) such that if n > N and n 2 M;
then

jh(u+ xn)� h(un + xn)j < 2":
De�ne

yn = u+ xn;

which tends to in�nity. By the sequence trapping hypothesis, there are t; n
and M1 �M such that

um � u+ t 2 T "n(y);
provided m 2M1: Let M1 = minM1: Since h is slowly varying, we have

lim
n!1

jh(t+ yn)� h(yn)j = 0:

That is, transcribing the result, there is M2 such that, for n �M2; we have

jh(t+ um + xn)� h(u+ xn)j < ": (10)

Finally, since h is slowly varying, we also have

lim
n!1

jh(u+ xn)� h(xn)j = 0;

so there is M3 such that, for n �M3, we have

jh(u+ xn)� h(xn)j < ": (11)

Consider now any k > N(u) = maxfM1;M2;M3; ng with k 2 M1. We
have, since k > n, that

uk � u+ t 2 T "n(y) � H"
k(y):

Put v = uk � u+ t: Then

jh(v + yk)� h(yk)j < ":

Substituting in this last inequality for v and for yk; we obtain

jh((uk � u+ t) + (u+ xk))� h(u+ xk)j < ";

i.e.
jh(t+ uk + xk)� h(u+ xk)j < ": (12)
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Combining (10) and (12) we obtain

jh(u+ xk)� h(uk + xk)j � jh(t+ uk + xk)� h(uk + xk)j+ jh(t+ uk + xk)� h(u+ xk)j
< 2":

Finally, referring to (11), we obtain

jh(xk)� h(uk + xk)j � jh(u+ xk)� h(uk + xk)j+ jh(u+ xk)� h(xk)j
< 2"+ " = 3":

This contradicts (9). � (b)
(c) The assertion (ii)� is a restatement of (ii). Indeed, (3) implies that,

for every " > 0, there is k such that un 2 H(xn), for every n > k; hence
fum : m > kg � T "k (x) from the de�nition of T "k (x). So (4) follows from (2).
For the reverse direction note that (4) implies that un 2 H(xn), for every
n > k: � (c)

(d) Since (ii)� asserts that u is trapped without any need for translation,
we have a fortiori (i). � (d)

(e) We show that (ii) and (iii) are equivalent. Clearly (ii) implies (iii). To
see that (iii) implies (ii) write xn = mn + vn, where mn 2 ! and 0 < vn < 1
and wn = un + vn, then we have

h(xn + un)� h(xn) = [h(mn + un + vn)� h(mn)]� [h(mn + vn)� h(mn)]

= [h(mn + wn)� h(mn)]� [h(mn + vn)� h(mn)]

! 0� 0 = 0;

in view of (iii). � (e)

(f) We now proceed by analogy and prove that (iii) is equivalent to (iv).
Indeed (b) with x replaced by m proves that (iv) implies (iii). Now (iii) is
equivalent to the following (just as (ii) and (ii)* were):
(iii)� For any integer sequence m tending to in�nity, and any positive ",

the family fT "n(m) : n 2 !g ultimately contains almost all of any bounded
sequence fung.
That is, for any bounded sequence fung, there is k such that

fum : m > kg � T "n(m), for all n > k;
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so a fortiori 2-NTh(fT "k (m) : k 2 !g) holds for all m: � (f)

(g) Clearly if 2-NTh(fT "k (m) : k 2 !g) holds for allm, then in particular
3-NTh(fT "k (id) : k 2 !g) holds. Noting thatT1

n=mk
H"(n) �

T1
n=kH

"(mn);

we see that if 3-NTh(fT "k (id) : k 2 !g) holds, then 2-NTh(fT "k (m) : k 2 !g)
holds for all m. � (g)

Comment. If (3) holds for fung any bounded sequence, and fxng any
real sequence tending to in�nity, then one can prove directly that UCT holds
for h by repeating the proof step given in BGT p. 8. Clearly the property
(3) follows from UCT.

4.6 Proof of the Luzin set proposition

In the Luzin [resp. Sierpiński] case, let fN� : � < !1g list all closed nowhere
dense sets in R [all the G�-sets of measure zero] and let ffun�g : � < !1g list
all sequences. We construct, by trans�nite induction, points t� for � < !1 so
that the sets T� = ft� : � � �g avoid certain forbidden sets. The forbidden
sets will have union a �rst category set [be a set of measure zero] and so it
will be possible to select the next point in the trans�nite induction.
For more clarity we give the construction in two parts.
First part. Here we neglect the Hamel basis property; we modify the

construction to accommodate this in the second part.
To secure the Luzin [Sierpiński] property, we aim to have

T!1 \
[
�<�

N� � T�;

for � < !1; as then T = T!1 meets any N� in at most a countable set. This
can be arranged in the induction by ensuring that for � < !1we have for all
� < � that

T� \
[
�<�

N� � T�: (13)

We also require that the di¤erence set of each T� avoids Q: Thus T = T!1
is the required Luzin set and T � T avoids Q, which implies that T � T has
empty interior.
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Actually, it is more convenient to carry out the induction over limit ordi-
nals. Suppose that T� has been de�ned with � a limit ordinal, so that (13)
holds, and

T� � T� \Q = ;:
We intend to select t so that the translates t + un� shall all be included in
T�+!; that is, so that T�+! = T� [ ft+ un� : n 2 !g:
Consider our requirements. For the Luzin [Sierpiński] property at � + !

in place of � in (13), we require:

t+ un� =2
[
�<�

N� i.e. t =2
[
�<�

(N� � un�):

For the forbidden di¤erences to occur we require that for � < � we have

�(t+ un� � t�) =2 Q i.e. t =2 (Q+ t� � un�):

Thus t must be selected to avoid the �rst category set [the measure zero set]

C =
[
�<�

[
n2!

"[
�<�

(N� � un�) [ (Q+ t� � un�)
#
:

Note that it is not possible to arrange that the vectors in T�[f t+un� : n 2 !g
do not introduce linear dependencies over Q: For instance if the sequence
u� = fung is such that

un+1 2 convQfu1; ::; ung;

then for any t we have

t+ un+1 2 convQft+ u1; ::; t+ ung

and we introduce linear dependencies (over Q). The best that we can achieve
is to include a Hamel basis in our Luzin [Sierpiński] set.
Second part. Here we show how to modify the construction in the �rst

part so as to ensure that the set T contains a Hamel basis. We mimic an idea
due to Erd½os (see [Kucz] p. 267). Let fx� : � < !1g list all real numbers. We
assume, as before, that T� has been de�ned inductively with the properties
identi�ed before and in addition the property that: for � < � the points x�
are represented as rational convex combinations of members of T�.
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We suppose at stage � that x� is not a rational convex combination of
members of T�: We need to include in the construction of T�+!nT� two real
numbers u; v such that x� will be represented as

x� = u+ v:

We thus require that

fu; vg =2
[
�<�

N�; i.e. u =2
[
�<�

N� and u =2
[
�<�

x� �N�;

�(u� v) =2 Q; i.e. 2u =2 Q+ x�; and also 2u =2 Q� x�;
�(u� t�) =2 Q; i.e. u =2 Q+ t�; and also u =2 Q� t�;
�(v � t�) =2 Q; i.e. u =2 x� � t� +Q; and also u =2 Q+ t� � x�:

Again such a choice of u is clearly possible. We put t� = u; t�+1 =
x� � u; t�+n+2 = t + un� with t selected as earlier but with T�+2 replacing
T�. Evidently, this ensures that x� is represented, that T � T contains no
intervals, and T meets every nowhere dense set in at most a countable set.
�

Comment. In the absence of the assumption of (CH) the argument may
be modi�ed to give a set of reals of power continuum such that the set
(i) contains no non-empty perfect subset (so has inner measure zero),
(ii) has di¤erence set with empty interior,
(iii) contains all sequences up to translation, and
(iv) contains a Hamel basis.

5 Complements

This section is devoted to some open problems, thoughts on directions of
generalization, and comments to the main material which would have been
out of place elsewhere.
Beyond the real line. The theory as presented here is, to quote the preface
of BGT, �essentially a chapter in real variable theory�. We mention here the
availability of a well-developed theory going beyond the real line, for which
see [DW]. We raise the possibility of extending the theory of regular variation
in this direction.
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No Trumps. The term No Trumps in De�nition 2, a combinatorial principle,
is used in close analogy with earlier combinatorial principles, in particular
Jensen�s Diamond � [Je] and Ostaszewski�s Club | [Ost] and its weaken-
ing in another direction: �Stick�in [FSS]. The argument in the proof of the
No Trumps Theorem is implicit in [CsEr] and explicit in [BG1], p.482 and
[BGT], p.9. The intuition behind our formulation may be gleaned from forc-
ing arguments in [Mil1], [Mil2], [Mil3].

E¤ective versions of the trapping property. Are there �e¤ective�versions (see
[Mos] Chapter 3) of the Existence Theorem (for trapping families, cf. Sec-
tion 1)? Here we refer to the light-face versions of the bold-face projective
classes introduced in Section 2, so that the hyper-arithmetic sets are e¤ective
versions of the Borel sets. For example, what may be said about a �11 set
trapping by translation a hyperarithmetic sequence?

The NT� property. Let NT� be the statement that 3-NTh holds, i.e.
(8" > 0)NT(fT "k (id) : k 2 !g), for all functions h of a class �: The state-
ment holds in the models of Solovay [So] and of Shelah [She] for any �: One
natural candidate is the ambiguous class of the second level in the projective
hierarchy, the class �1

2 (see [Kech] for a de�nition in terms of universal and
existential quanti�ers of type 1). This, as we argue in the companion paper
[BOst-RVWL], is a natural class for analysts to work in whenever the lim sup
operation is in use. We know that the class of models of (PD) with � =�1

2

satis�es NT�:What other classes of models of (ZF ) and classes � have this
property?

Similar sequences: generic arguments. One can see that a non-meagre set
A with the Baire property traps sequences by an amendment of a forcing
argument given by Miller in [Mil1]. Let fung be a convergent sequence with
limit u. Speci�cally, suppose that A is co-meagre in the interval (a; b): Choose
" > 0 and a rational q so that a + " < q < b � ": Thus for some N we have
that a + " < q + (un � u) < b � " for all n > N: Let x 2 (�"; ") be a
Cohen real. Then for every n 2 !; the number q + (un � u) + x is a Cohen
real. Since a < q + (un � u) + x < b we deduce that for n > N we have
q + x � u + un 2 A: Thus a translate of almost all of the sequence fung is
in A: A similar argument may be given replacing �Cohen real�by (Solovay)
�random real� to show that a translate of almost all of any sequence fung
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is contained in a measurable set A of positive measure. This pin-points the
�generic�nature of the arguments in Section 4.3.

Non-duality between measure and category. We have been lucky in the Exis-
tence Theorem (for trapping families) in that the measure/category analogy
holds. See [DoF], [Bart], [BGJS] for its limitations.

Continuum Hypothesis. In elucidating the sequence trapping property we re-
stricted ourselves to the simplest context, that of assuming CH. We draw the
reader�s attention to two alternative hypotheses: Martin�s Axiom (see [F1])
and the Covering Property Axiom CPA (see [CP]). We note also that the
example of Section 4.6, derived under the continuum hypothesis, may be de-
rived to be in the class�1

2 (see above) when making the stronger assumption
of Gödel�s Axiom V = L; cf. [Dev].

Multi-dimensional regular variation. As mentioned earlier, the theory in
BGT deals with regular variation in one dimension. In recent years, much
e¤ort has been devoted to extensions of this theory to many dimensions,
including in�nitely many dimensions. Since the motivation is mainly proba-
bilistic, we give the probabilistic formulation:

nP (X=an 2 �)! �(�);

where X is a random vector (possibly in�nite dimensional), an is a sequence
and � is a measure. For background here, see e.g. [HLMS]. See e.g. [BOst14]
for a development along these lines.

Postscript.
This paper is, for the �rst author, a return to the foundational �rst sec-

tions of BGT with the bene�t of twenty-one years�worth of hindsight �or,
in the case of [BG1], [BG2], twenty-six. It may be regarded as �the missing
zeroth chapter�of BGT. For a similar return to the motivating last chapter
of BGT, on probability theory, see [Bin].
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Archive for Mathematical Logic 35 (1996), 281-285.

[She] S. Shelah, Can you take Solovay�s inaccessible away?, Israel
J. Math. 48 (1984), 1-47.

[So] R. M. Solovay, A model of set theory in which every set
of reals is Lebesgue measurable, Ann. of Math. 92 (1970),
1-56.

[Trau] R. Trautner, A covering principle in real analysis, Quart.
J. Math. Oxford (2), 38 (1987), 127- 130.

25


