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Abstract

We consider the dynamic decentralised non atomic mating game �n
over n periods, initially presented by Alpern and Reyniers (1999). We are
dealing especially with the two period mutual choice game �2(m), where
individuals can have m types.

In the Alpern and Reyniers game, two populations are randomly matched
for n periods. Players have one dimensional types which are uniformly
distributed over a continuous or a discrete interval. There exist a contin-
uum of players and no new players can enter the game in any period. In
each period, each party of a matched pair (i,j) can either accept or reject
the other. If both accept, then they form a mated couple and leave the
game, with both paying a cost of ji-jj. Otherwise, they both proceed un-
mated into the next period. This process is called �mutual choice�selection.
At the end of the game, all players prefer to be mated than to remain un-
mated. Players have similarity preferences, searching for a partner whose
type is close to their own. Hence, they try to minimise their cost of mat-
ing, de�ned above as the absolute distance between their type and the type
of their potential partner.

In the current paper, we present brie�y the analysis of the continuous-
type �n game and focus on the discrete-type �n(m) game. Our main result
is the existence of multiple equilibria in �n(m) which contrasts with the
analysis of Alpern and Reyniers and the relevant literature, since in the
latter only one equilibrium is described. Moreover, we provide a method for
determining all the possible equilibria in the discrete-type game. Finally
we comment on the e¤ectiveness and stability of the equilibrium strategies
in the game �2(m).
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1 Introduction

We focus on the analysis of dynamic decentralised games of mate search. Most
of the work in this paper has its background in the dynamic non atomic mating
games �n and �n(m) introduced by Alpern and Reyniers [1]. In the game
�n(m) that we examine, two equal populations X and Y are randomly paired
over n successive periods. For simplicity, we call the population of X males and
the population of Y females. All players have one-dimensional types, uniformly
distributed in a discrete symmetric interval Im = f�m;�m+1; :::; 0; :::m�1;mg.
Hence there is a �nite number of types, but it is assumed that there exist a
continuum of players for each type. The positive and the negative types have
symmetric preferences and behaviour and therefore the interval of the types is
taken to be symmetric around the origin 0. All types in the last period prefer
to be mated than to remain unmated.
In each period, each party of a matched pair (i; j) can either accept or reject

the other. If both accept, then they form a mated couple and leave the game,
with both paying a cost of ji� jj. Otherwise, they both proceed unmated into
the next period. This process is called �mutual choice� selection. In the last
period, all players prefer to be mated rather than remain unmated. No new
players can enter the game in any period.
The game �n has the same properties as �n(m), but in �n players have

one-dimensional types uniformly distributed in a continuous and not a discrete
interval.
In both �n and �n(m) games, the type and the preferences of each player

a¤ect his/her strategy and his/her expected utility from a matching. All players
are thought to have similarity preferences; therefore they prefer mates of a type
similar to their own. They aim at minimising their cost from a pairing, hence the
distance between their types. Similarity preferences appear frequently in real life
[1], [2], [4], [3], [5] and [10], and their analysis has applications in several settings,
such as the mating of animals or humans, the matching of tennis players, the
matching of sellers and buyers of houses etc.
In the described �n(m) game, every pairing has the same cost for both the

matched male and female. Hence if a type i male is paired with a type j female,
the mating cost for both i and j is ji� jj. Nevertheless, it is not always true
that when a female (male) accepts a male (female), the male (female) will also
accept the female (male). Whether a type i accepts another type j in some
period, depends on the average cost that i expects to receive in the following
periods. It is important to note that the expected cost di¤ers for each type,
since the type distribution changes in every period. As a result, it is possible
that a type i is choosier in a period than an other type j and not willing to
accept the latter, even though j is willing to be mated with i. In general, central
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types are choosier, since they have more types close to them and consequently
more chances to meet someone close to their own type.
Given the players�cost functions, Alpern and Reyniers use a notion of equi-

librium similar to Subgame Perfect Nash equilibrium, �nding a Subgame Perfect
Nash equilibrium in a continuum of players; at equilibrium every player accepts
those types which provide him/her with a smaller cost than his/her expected
cost in the next period. We de�ne equilibrium in the same way, and in section
2 we present the results of Alpern and Reyniers�analysis.
In [1] and in the relevant literature, it seems to be implicitly assumed that

there exists a unique equilibrium, since in the examples examined only one
equilibrium is presented. The basic contribution of this paper is to prove the
existence of multiple equilibria in some discrete games. Speci�cally, it is found
that when there are m = 3 or m = 5 positive types (and respectively 3 or 5
symmetric negative types and a 0 type), there exist 3 equilibrium strategies
in the two period game. Computer search, which was not exhaustive, shows
that the existence of multiple equilibria is possible also when the number of
periods is larger. For example, it was found that at least two equilibria exist
in the 4 period model when there are m = 8 positive types (and respectively
8 symmetric negative types and a 0 type). Furthermore, this paper o¤ers a
method for �nding all the possible equilibrium strategies in the discrete game
�2(m).
The applications of both �n and �n(m) are multiple in �elds such as biology,

evolution, economics, politics and social sciences. In biology, mate choice is one
of the basic areas of sexual selection and several game theoretical models exist
which try to predict animal behaviour, such as the models described in [3] and in
[9]. Furthermore, there are various cases in economics and social sciences where
decentralised matching is involved, such as the the matching of buyers and sellers
of cars or �nding a partner to chat with at a cocktail party [7]. Besides, mating
games can also be applied on other problems such as the matching of �rms and
underwriters [8] or the two sided "marriage" model [6]. Our goal is to explore
further the area of dynamic mate choice and to contribute to the analysis of real
life problems.
The paper is organised as follows. In the �rst section we illustrate the

symmetric continuous game �n of Alpern and Reyniers. Next, we focus on
the corresponding discrete game �n(m), where we assume having m positive
types, m negative types and a type 0. We describe a method of �nding all the
equilibrium strategies in �2(m), and then we present our numerical results for
the two period game when there arem = 1 tom = 9 positive types, analysing the
equilibrium strategies, their e¤ectiveness (in reducing mean intra-couple type
di¤erence) and their stability . Finally, we discuss the existence of multiple
equilibria in games of n periods, where n > 2; and give an example of the
existence of multiple equilibria in the 4 period game �4(m).
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2 Description of the Non Atomic Mating Game
�n

In the �n game, two identical populations of individuals, of known one dimen-
sional types, are uniformly distributed in an interval. We take this interval to be
[�1; 1]. Individuals have similarity preferences as described before (preferring
potential partners having types close to their own) and the distance between the
individuals�types jx� yj is a measure of the cost of a mating of an individual
of type x with an individual of type y. We assume that there exist a continuum
of players.
In every period, individuals are randomly paired and they form a couple if

they both accept each other; otherwise they move on to the next period, where
a random matching takes place again. The process continues until period n,
where all matchings are mutually accepted and form mated couples.
A strategy is de�ned as an acceptance rule indicating the maximum distance

sk(x) acceptable in period k to a type x individual. That is, a type x male will
accept a type y female in period k if

sk(x) � jx� yj (1)

Both sexes use same strategies in this symmetric model. Hence a type xmale
is going to use the same strategy sk(x) with a type x female in every period k.
When the population is uniformly distributed between [�1; 1], types x and

�x share the same strategy.

sk(x) = sk(�x) (2)

It follows from (1) that in period k, given that type x uses strategy sk(x)
and type y uses strategy sk(y), a mating occurs if and only if

jx� yj � minfsk(x); sk(y)g (3)

The expected cost for an individual of type x to enter in the kth period
unmated is denoted by ck(x); this depends on strategy s, so ck(x) = ck(s; x).

At equilibrium, no player can decrease his/her expected cost by using other
than the equilibrium strategy ŝ, given that the rest of the population is using
strategy ŝ. Hence at equilibrium

ŝk(x) = ck+1(ŝ; x); for 1 � k � n� 1 and � 1 � x � 1 (4)

If F is the normalised cumulative probability function of types y in the last
period, the expected cost for a type x entering in the last period is

cn(x) =

Z 1

�1
jx� yj dF (y)

Before presenting the �n(m) game and illustrating our results, it is important
to mention two theorems of Alpern and Reyniers, which are important for our
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analysis. In these theorems it is assumed that F can take any form, hence the
theorems can be applied also in the case that F is a point function as in �n(m).

Theorem 1 (of [1]) If F denotes the �nal period cumulative probability dis-
tribution, then the �nal period cost function cn is a symmetric convex function,
minimised at 0, with the following properties:

cn(�1) = cn(1) = 1 (5)

c0n(�1) = �1, c0n(1) = 1 and c0n(0) = 0 (6)

c0n(x) = 2F (x)� 1 (7)

Theorem 2 (of [1]) In a two period model, at equilibrium, if x0 < x1 < x2,
and x0 accepts x2, then x1 also accepts x2.

Since cn is increasing in jxj by Theorem 1, the choosier individuals tend to
be nearer to the centre. As we move away from the centre, types become less
choosy, with the extreme types accepting every type between themselves and
the middle types. This fact, combined with Theorem 2, shows that in the two
period model, central types tend to do better than extreme types, as they have
more chances to be accepted in the �rst period.

3 Discrete Type 2-Period Model �2(m)

In the discrete type game �n(m), as it is described by Alpern and Reyniers, it is
assumed that there exist 2m+ 1 uniformly distributed types in the �rst period
but that there exist a continuum of players of each type; in the beginning of the
�rst period the fraction of the population having any type i is 1

2m+1 . In order
to keep the symmetry of the continuous model, every type i belongs in the set
Im = f�m;�m + 1;�m + 2; : : : ;�2;�1; 0; 1; 2; : : : ;m � 2;m � 1;mg; a type i
corresponds to a type i

m in the continuous model.
The requirement of mutual acceptance is maintained in the discrete type

model and the de�nition of a strategy s remains unchanged; sk(i) denotes the
maximum distance that any type can have from i in order to be accepted by the
latter in the kth period; it is important to note though that in the discrete type
model, a strategy sk(i) is always an integer. In the two period game �2(m),
for simplicity reasons, since a strategy is de�ned only in the �rst period and
a expected cost function is de�ned only in the second period, s(i) = s1(i) will
denote the strategy of a type i in the �rst period and c(i) = c2(i) will denote
the cost that a type i expects to get for entering in the last period unmated.
At equilibrium, the strategy of a type i in �2(m) is equal to the �oor function

of the expected cost for i in the last period. Hence

s(i) = bc(i; s)c (8)
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where c(i; s) is the cost that i expects to get if it enters in the second period
unmated, when s strategy is used.
As a result, even though two types may not have the same expected cost for

entering unmated in the last period, they can have the same strategy. For ex-
ample, if c(i; s) = 2:1 and c(j; s) = 2:9; then s(i) = s(j) = 2, for an equilibrium
strategy s.

4 Properties of Equilibrium Strategies in �2(m)

Alpern and Reyniers found an equilibrium strategy in �2(m) by seeking �xed
points of a best response function on the strategy space. In other words, start-
ing with any strategy s, they used the iterative method in order to �nd a new
strategy ~s, whose value function has the same �oor as ~s for all types. This
iterative procedure in general may miss some equilibria - especially the ones
corresponding to repelling �xed points. To ensure that we �nd all the equilib-
ria, we must adopt a more thorough method; hence for m positive types, it is
adequate to check all (m+1)m+1 possible strategies, examining which ones sat-
isfy the equilibrium condition (8). However, as the number m of types increases,
this method becomes extremely time consuming and the need to rule out some
of the strategies becomes apparent. Thus, we use Theorem 1, in order to reduce
the number of eligible equilibrium strategies.
Before enumerating the properties that an equilibrium strategy has, it is

important to stress that even if the expected cost function c is strictly convex,
it does not follow that its �oor approximation strategy s is also strictly convex.
This is due to the fact that a strategy s(i) of a type i is always an integer, but the
corresponding cost c(i) does not have to be an integer and it can be larger than
s(i); s(i) � c(i) < s(i)+1. For example, a cost function c = (1:99; 2:1; 2:4; 2:9) is
strictly convex, while its corresponding strategy s = (1; 2; 2; 2) is not. However,
we will show, that s must be "almost convex", in senses that we make precise
in Theorem 3.

Lemma 3 If s(i)� s(j) � 2, then c(i)� c(j) > 1.

Proof. By (8), c(i) � s(i) and c(j) < s(j) + 1.
Hence c(i)� c(j) > s(i)� s(j)� 1 � 1.

Lemma 4 If c(i)� c(j) � 1, then s(i)� s(j) � 1.
Proof. By (8), c(i) < s(i) + 1 and c(j) � s(j).
Hence s(i)� s(j) > c(i)� 1� c(j) � 0.
Since s(i) and s(j) are both integers, it follows that s(i)� s(j) � 1.

Given Lemmas 3 and 4, we will determine the properties of the �oor function
of a convex function.
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Theorem 5 Let s = bcc be an equilibrium strategy of �2(m), with corresponding
cost function c. Let i � 0: s is of the form s = (s (0) ; s (1) ; s (2) ; s (3) ; :::; s (m)) ;
where s(i) denotes the strategy that a type i uses at equilibrium. Then,
(i) s(m) = m
The extreme types (m and �m) must be universal acceptors.
Thus, for example when we have 5 types, s = (1; 1; 1; 1; 1) cannot be a po-

tential equilibrium strategy, while es = (1; 1; 1; 1; 5) may be.
(ii) s(i+ 1) � s(i), 8i:
A strategy s has to be a non decreasing list.
For example, a list of the form (1; 2; 1; 3; 4; 5) is not an equilibrium strategy

since type 1 (s(1) = 2) accepts more types than type 3 (s(3) = 1).
(iii) If s(i+ 1)� s(i) � 2 then s(i+ 2)� s(i+ 1) � s(i+ 1)� s(i) + 1, 8i.
For example, the following lists (1; 2; 4; 4; 5; 5) and (1; 3; 6; 7; 7; 7; 7; 7) are not

possible equilibrium strategies.
(iv) If s(i+ 2) � s(i) + 2 then s(i+ 4) > s(i+ 2), 8i.

Proof. (i) This is an immediate consequence of Theorem 1, as s(m) =
bv(m)c = m according to (5). Same way, for �m.
(ii) From (5) and (8), s is the non decreasing �oor function of a non

decreasing �oor function, hence non decreasing.
(iii) Suppose that s is an equilibrium strategy, violating this condition. Then

for some l � 2, we have s(i) = a; s(i+ 1) = a+ l and s(i+ 2) = a+ 2l� 2. For
strategy s to be an equilibrium strategy then from Theorem 1, it has to be true
that

c(i+ 1)� c(i) � c(i+ 2)� c(i+ 1)

By (8), we have

c(i) � [a; a+ 1)

c(i+ 1) � [a+ l; a+ l + 1)

c(i+ 2) � [a+ 2l � 2; a+ 2l � 1)

Consequently

l � 1 < c(i+ 1)� c(i) < l + 1
and

l � 3 < c(i+ 2)� c(i+ 1) < l � 1

Hence c(i+1)�c(i) > c(i+2)�c(i+1), which contradicts our initial claim.
(iv) By theorem 1, c(i+ 4)� c(i+ 2) � c(i+ 2)� c(i). But by Lemma 3,

if s(i+ 2) � s(i) + 2 then c(i+ 2)� c(i) > 1:
Hence c(i+ 4)� c(i+ 2) > 1 and by Lemma 4 s(i+ 4)� s(i+ 2) � 1 hence

s(i+ 4) > s(i+ 2).

Having determined the properties of the equilibrium strategies, it is then
easy to identify the potential equilibrium strategies and check which ones satisfy

7



the equilibrium condition (8). In order to do so, given a potential equilibrium
strategy s, we �rst have to �nd the set of potential types j with which every
type i can be mated according to that strategy. Then, given the initial type
distribution, we can calculate the probability of each type i remaining unmated
and moving to the last period. This probability helps us next to determine the
new type distribution in the last period and consequently the expected cost c(i)
for each type i entering the second period unmated; if s(i) = bc(i)c for every
type i, then s is proved to be an equilibrium strategy.

Table 1: Algorithm for identifying equilibrium strategies

Identify Potential Equilibrium Strategy s.

Find the set of potential types j with which every type i can be
mated.

Calculate the probability that each type i remains unmated and
moves to the last period.

Calculate the new type distribution in the last period.

Calculate the expected cost c(i) for each type i entering the second
period unmated.

If s(i) = c(i) for every i, s is an equilibrium strategy.

5 Analysis of the Two Period Discrete Type Game
�2(m) with m = 0 to m = 9 Positive Types

We used theorem 6 to identify all the potential equilibrium strategies in �2(m)
for m = 0 to m = 9 positive types and then by applying the algorithm de-
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scribed in Table 1, we managed to identify all the existing equilibria in these
games. Next we calculated the probability to get mated in the �rst period if the
equilibrium strategies are used, and the expected cost for any type i. Finally
we computed the intra-couple correlation and the inter-couple stability in each
case.
The most important result of this analysis is the existence of 3 equilibrium

strategies when there are m = 3 and m = 5 positive types, since multiple
equilibria had not been noted in �2(m) till now. However, this analysis also
helps us to get a better insight of the game itself. Connections between the
strategy, the probability to be mated and the mating cost can be made and it is
shown that correlation is not a¤ected by the number of types in the game, while
the inter-couple stability seems to be inversely correlated with the number of
types.

5.1 Equilibrium Strategies

In all the examined games there exist an odd number of equilibria, ranging
from 1 to 3, a fact that is in accordance with general theory. When there are
m = 1; 2; 4; 6; 7; 8; 9 positive types there exists a unique equilibrium strategy.
Nevertheless, when there are m = 3 and m = 5 positive types, there exist 3
equilibrium strategies. The equilibrium strategies for all the games are illus-
trated in table 2 and in plot 1.
In table 2, we list all the equilibrium strategies for m = 1 to 9, denoting

the maximum distance each type i = 0; 1; :::;m will accept in the �rst period.
For example, when m = 4, at equilibrium s(1) = 2; hence type 1 accepts types
�1; 0; 1; 2 and 3 and type �1 accepts types �3;�2;�1; 0; 1.
Plot 1 illustrates the expected cost c(i) that each type i will pay if it enters in

the last period unmated when the equilibrium strategy is used, for all examined
m. The �oor functions of c are the equilibrium strategies but c may give some
extra information in the case where there are multiple equilibria. The plotted
expected costs c are divided with m, so that c(m) = 1; by normalising c, it is
easier to make comparisons when m varies.
By looking at table 2 and at plot 1, it becomes obvious that in every game

the middle type (type 0) is the choosiest type. As we move from the middle
type (type 0) to the extreme types (m and �m), types become less choosy. The
extreme types (m and �m) are the least choosy, accepting every type in all the
cases. Moreover, it is evident that as the number of types increases, the graphs
of the strategies seem to approach each other, a fact that suggests that for very
large m we may have a unique equilibrium.
Plots 2 and 3 show the 3 equilibrium strategies when m = 3 and when m = 5

respectively, named s1, s2 and s3 in table 2. The equilibrium strategies in each
case di¤er only on the strategies used by the middle types (close to 0), while the
strategies used by the more extreme types (closer to m and �m) are the same.
Nevertheless, even when the strategies are the same for some types i, where
i 6= m;�m (Table 2) the expected cost for entering in the last period unmated
di¤ers (Plots 1, 2 and 3).
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Table 2. Equilibrium strategies in the �rst period, for m = 1 to 9.

type0 type1 type2 type3 type4 type5 type6 type7 type8 type9

m=1 1 1

m=2 1 1 2

s1 1 1 2 3
m=3 s2 1 2 2 3

s3 2 2 2 3

m=4 2 2 2 3 4

s1 2 2 3 3 4 5
m=5 s2 2 3 3 3 4 5

s3 3 3 3 3 4 5

m=6 3 3 3 4 4 5 6

m=7 4 4 4 4 5 5 6 7

m=8 4 4 4 5 5 5 6 7 8

m=9 5 5 5 5 5 6 6 7 8 9
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Plot 1. Normalised expected costs of entering in the last period unmated,

when the equilibrium srategies are used, for m 1 to 9.

m = 1 m = 2 m = 3; s1 m = 3; s2 m = 3; s3 m = 4 m = 5; s1 m = 5; s2
purple black red light green blue yellow dark grey light blue

m = 5; s3 m = 6 m = 7 m = 8 m = 9
pink light grey dark blue dark green brown
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Plot 2. Normalised expected costs of entering in the last period unmated,

when the equilibrium strategies are used, for m 3:

s1: red, s2: light green and s3: blue
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Plot 3. Normalised expected costs of entering in the last period unmated,

when the equilibrium strategies are used, for m 5:

s1: dark grey, s2: light blue and s3: pink

5.2 Probability of Getting Mated in the First Period

In many cases, it is important to explore how the probability of getting mated
in the �rst period changes, depending on the type and on m. In that way, we
can estimate which types we expect to �nd a partner more quickly. Table 3
illustrates the probability for each type to be mated in the �rst period. It is ob-
vious that the types closer to the middle (type 0) always have higher probability
to be mated in the �rst period (higher than 0.5 in most cases except for m = 5
and m = 3), while the more extreme types (close to m and �m) have lower
chances to �nd a mate in the initial period (lower than 0.5 in every case, except
when m = 1). Additionally, it is apparent that in the cases where there are
multiple equilibria, when the middle types are less choosy it is more probable
to be mated in the �rst period, while whether the extreme types have a smaller
chance of being mated, depends not only on the behaviour of the middle types
(type 0), but also on the behaviour of the types between the extreme (m and
�m) and the middle (type 0).
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Table 3. Probability of getting mated in the �rst period, when the equilibrium strategy is used

type0 type1 type2 type3 type4 type5 type6 type7 type8 type9

m=1 1 0.667

m=2 0.6 0.6 0.4

s1 0.429 0.429 0.429 0.286

m=3  s2 0.429 0.714 0.429 0.429

s3 0.714 0.714 0.571 0.429

m=4 0.556 0.556 0.556 0.444 0.333

s1 0.455 0.455 0.545 0.455 0.364 0.364

m=5  s2 0.455 0.636 0.636 0.455 0.455 0.364

s3 0.636 0.636 0.636 0.545 0.455 0.364

m=6 0.538 0.538 0.538 0.538 0.462 0.385 0.308

m=7 0.6 0.6 0.6 0.6 0.533 0.467 0.4 0.467

m=8 0.529 0.529 0.529 0.588 0.529 0.471 0.412 0.353 0.353

m=9 0.579 0.579 0.579 0.579 0.579 0.526 0.474 0.421 0.368 0.316

5.3 Total Expected Cost

For each equilibrium strategy found in Table 2, individuals of each type i have
an expected total cost C(i) = C(i; s) for entering the game, that is the expected
distance ji� jj from their eventual mate j. The total expected cost C(i) for a
type i, depends on the probability p1(i) of i being mated in the �rst period, the
expected cost d1(i) of i being mated in �rst period and the expected cost d2(i)
of i being mated in second period. Hence

C(i) = p1(i)d1(i) + (1� p1(i))d2(i)

It is expected that types having a greater probability of being mated in the
�rst period will have a bigger cost in the �rst period, but probably a smaller
total cost. Therefore, since the probability of getting mated in the �rst period
is higher for the middle types (type 0), they have the lowest cost of mating
in total, but a large cost in the �rst period. The total mating cost tends to
increase as we move from the middle types (type 0) to the extreme types (m
and �m), which is probably explained by the fact that the mating probability
in the �rst period tends to decrease as the types increase. Furthermore, the
di¤erence between the cost in two periods increases as we move from the middle
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types (type 0), to the extreme types (m and �m) and as we add more types in
the game.
In the case of multiple equilibria, table 4 shows which strategy is preferred

by each type, since it illustrates which strategy has the smallest expected total
cost for a type. Thus, for m = 3, it becomes obvious that s1 = (1; 1; 2; 3) is
better for middle types -1, 0 and 1, s2 = (1; 2; 2; 3) is better for types -2 and 2
and both s2 = (1; 2; 2; 3) and s3 = (2; 2; 2; 3) are equally good for extreme types
3 and -3. For m = 5, s1 = (2; 2; 3; 3; 4; 5) should be preferred by -2.-1,0,1 and
2, s2 = (2; 3; 3; 3; 4; 5) should be preferred by -4 and 4 and s1 = (3; 3; 3; 3; 4; 5)
should be favoured by -3 and 3, while the extreme types -5 and 5 should be
indi¤erent between the equilibrium strategies.
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Table 4. Total expected cost when the equilibrium strategy is used

type0 type1 type2 type3 type4 type5 type6 type7 type8 type9 average

1rst period 0.667 0.333 0.444
m=1 2nd period 0 0.333 0.222

total 0.667 0.667 0.667

1rst period 0.4 0.4 0.2 0.32
m=2 2nd period 0.533 0.6 1.2 0.827

total 0.933 1 1.4 1.147

1rst period 0.286 0.286 0.286 0.143 0.245
s1 2nd period 1.029 1.105 1.333 2.143 1.456

total 1.314 1.39 1.619 2.286 1.701

1rst period 0.286 0.857 0.286 0.429 0.49
m=3  s2 2nd period 1.048 0.571 1.333 1.714 1.184

total 1.333 1.429 1.619 2.143 1.673
1rst period 0.857 0.857 0.571 0.429 0.653

s3 2nd period 0.571 0.6 1.029 1.714 1.037
total 1.429 1.457 1.6 2.143 1.69

1rst period 0.667 0.667 0.667 0.444 0.333 0.545 0.543
m=4 2nd period 1.079 1.122 1.249 1.825 2.667 3.182 1.645

total 1.746 1.788 1.915 2.27 3 3.727 2.188

1rst period 0.545 0.545 0.818 0.545 0.364 0.545 0.562
s1 2nd period 1.556 1.604 1.457 1.973 2.676 3.182 2.122

total 2.102 2.15 2.275 2.519 3.04 3.727 2.684

1rst period 0.545 1.09 1.09 0.545 0.636 0.545 0.76
m=5  s2 2nd period 1.618 1.115 1.2 2 2.309 3.182 1.93

total 2.164 2.206 2.291 2.545 2.945 3.727 2.69
1rst period 1.09 1.09 1.09 0.818 0.636 0.545 0.86

s3 2nd period 1.117 1.143 1.221 1.688 2.318 3.182 1.838
total 2.208 2.234 2.312 2.506 2.955 3.727 2.698

1rst period 0.923 0.923 0.923 0.923 0.692 0.538 0.462 0.757
m=6 2nd period 1.62 1.651 1.744 1.897 2.465 3.2 4.154 2.449

total 2.544 2.574 2.667 2.82 3.157 3.738 4.615 3.207

1rst period 1.333 1.333 1.333 1.333 1.067 0.867 0.733 0.667 1.067
m=7 2nd period 1.658 1.68 1.745 1.855 2.342 2.948 3.709 4.667 2.637

total 2.992 3.013 3.079 3.188 3.408 3.815 4.442 5.333 3.703

1rst period 1.176 1.176 1.176 1.47 1.176 0.941 0.765 0.647 0.882 1.038
m=8 2nd period 2.149 2.173 2.248 2.075 2.539 3.1 3.785 4.623 5.176 3.152

total 3.325 3.35 3.424 3.546 3.715 4.041 4.55 5.27 6.059 4.19

1rst period 1.579 1.579 1.579 1.579 1.579 1.316 1.105 0.947 0.842 0.789 1.274
m=9 2nd period 2.198 2.216 2.272 2.364 2.494 2.993 3.586 4.294 5.143 6.158 3.433

total 3.777 3.795 3.851 3.943 4.073 4.309 4.691 5.242 5.985 6.947 4.708
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5.4 Intra-Couple Correlation

We are also interested in analysing the intra-couple correlation, since it shows
how alike mated couples are. In order to �nd the intra-couple correlation co-
e¢ cient, we have to �nd �rst the fraction of couples (i; j) in periods 1 and
2.
FIRST PERIOD
Given that i,j accept each other, the fraction of couples (i; j) created in the

�rst period is 1
2m+1

1
2m+1 . Initially,the fraction of individuals of type i is

1
2m+1

and the fraction of individuals of type j is 1
2m+1 . Hence,

1
2m+1 of the individuals

of type i are mated with an individual of type j.

SECOND PERIOD
Given that strategy s is used, we de�ne as q(i; s) the probability that an

individual of type i remains unmated in the �rst period and enters in the second
period. Hence in the second period, there are 1

2m+1q(i; s) individuals of type i
and 1

2m+1q(j; s) individuals of type j. Every individual accepts anyone he/she
is paired with in the last period. Hence the probability of a type i being mated
with a type j is q(j;s)Pk=m

k=�m q(k;s)
. Thus, the proportion of couples (i; j) in the second

period when strategy s is used is

1

2m+ 1
q(i; s)

q(j; s)Pk=m
k=�m q(k; s)

We de�ne the function

a(s; i; j) =

�
0; if i and j are not mated in the �rst period, hence if ji� jj > s(i) or ji� jj > s(j)
1; if i and j are mated in the �rst period, hence if ji� jj � s(i) and ji� jj � s(j)

Hence the total fraction n(s; i; j) of couples (i; j) in the �rst and second
period, given that strategy s is used is

n(s; i; j) = a(s; i; j)

�
1

2m+ 1

�2
+

1

2m+ 1
q(i; s)

q(j; s)Pk=m
k=�m q(k; s)

(9)

Knowing the fraction of couples (i; j) in every period, it is easy then to
calculate the correlation coe¢ cient r.
The intra-couple correlation r seems to be quite small in all the games

analysed, taking values between 0.306 and 0.36, probably due to the fact that
all types are willing to accept a range of types including theirs. There are no
signi�cant di¤erences between the di¤erent games or in the same game between
di¤erent equilibria. r would probably grow with the number of periods n.
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Table 5. Intra-couple correlation coe¢ cient r, when the equilibrium strategy is used

m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9

s1 0.36 0.306 0.337 0.34 0.33 0.34 0.34 0.336

s2 0.357 0.347

s3 0.357 0.347

5.5 Instability of Created Couples

Often, it is important to know how stable are the couples created given a speci�c
strategy used. We need to know how willing the players would be to change
partners after the end of the game. Assuming still that in every couple (i; j)
created, i represents a male and j a female, we choose two couples (i; j) and
(k; l) at random, where i and k are males and j and l are females. We de�ne
instability as the probability that either i prefers l better than j and l prefers i
better than k, or that j prefers k better than i and k prefers j better than l.
We de�ne the function w, such as

w(s; (i; j); (k; l)) =

8>>>>>><>>>>>>:
1;

8>>>><>>>>:
if i prefers l than j and l prefers i than k,
hence if ji� jj > ji� lj and jl � kj > ji� lj

or
if j prefers k than i and k prefers j than l,
hence if ji� jj > jj � kj and jk � lj > jk � jj

0; otherwise

Given that initially we have �xed cohorts of males and females, the popula-
tion of each type of male or female is in�nite and the probability of choosing 2
random couples (i; j) and (k; l) is n(s; i; j)n(s; k; l) from (9): Hence

instability(s) =

i=mX
i=�m

j=mX
j=�m

k=mX
k=�m

l=mX
l=�m

w(s; (i; j) ; (k; l))n(s; i; j)n(s; k; l)

It becomes apparent from table 6, that as we add more types to the game,
the couples created become more unstable. Focusing on the games with multiple
equilibria, we can observe that there are no important di¤erences between the
di¤erent strategies. In any case, when m = 3, s1 = (1; 1; 2; 3) seems to be the
most stable strategy and s3 = (2; 2; 2; 3) the most unstable and when m = 5,
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s1 = (2; 2; 3; 3; 4; 5) seems to be the most stable strategy and s3 = (3; 3; 3; 3; 4; 5)
the most unstable.

Table 6. Instability index

m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9

s1 0.181 0.20634 0.24468 0.25714 0.2753 0.29297 0.29574 0.30691

s2 0.22326 0.26672

s3 0.23819 0.27213

6 Multiple Equilibria in an n-Period Game �n(m),
where n > 2

In the two period discrete games analysed, we were able to �nd all the equilib-
rium strategies and comment on their e¢ ciency. Nonetheless, as we add more
periods in the game, it becomes complicated to �nd all the existing equilib-
rium strategies, since even the method described before and used in the two
period games becomes time-consuming. Nevertheless, the 3 period game and
the 4 period game, where there exist m = 8 positive types (and 8 symmetric
negative types and a 0 type) were analysed by using computer search methods,
and the list below shows that in the case of the 4 periods, there exist at least 2
equilibrium strategies, namely
s1 = ((2; 2; 2; 2; 2; 3; 3; 4; 4) ; (3; 3; 3; 3; 3; 4; 4; 5; 5) ; (4; 4; 4; 5; 5; 5; 6; 7; 8)) and
s2 = ((2; 2; 2; 2; 3; 3; 3; 3; 4) ; (3; 3; 3; 3; 3; 4; 4; 5; 5) ; (4; 4; 5; 5; 5; 6; 6; 7; 8)).
This fact illustrates that the equilibrium in the discrete game may not be

unique even in discrete type games of more than 2 periods. Thus, it becomes
apparent that it is possible that there exist multiple equilibria in any number
of periods n, even though this is not investigated thoroughly at this point and
further research needs to be done.
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