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Abstract: A multi-partition with evaluations is defined by two sets S and
X, a collection P1, . . . ,Pn of partitions of S and a function ψ : S → {0, 1}X .
To each partition Pj corresponds a person j who cannot distinguish between
any two points belonging to the same member of Pj but can distinguish
between different members of Pj. A cell of a multi-partition is a minimal
subset C such that for all j the properties P ∈ Pj and P ∩ C 6= ∅ imply
that P ⊆ C. Construct a sequence R0,R1, . . . of partitions of S by R0 =
{ψ−1(a) | a ∈ {0, 1}X} and x and y belong to the same member of Ri if and
only if x and y belong to the same member of Ri−1 and for every person i
the members Px and Py of Pj containing x and y respectively intersect the
same members of Ri−1. Let R∞ be the limit of the Ri, namely x and y
belong to the same member of R∞ if and only if x and y belong to the same
member of Ri for every i. For any set X and number n of persons there is a
canonical multi-partition with evaluations defined on a set Ω such that from
any multi-partition with evaluations (using the same X and n) there is a
canonical map to Ω with the property that x and y are mapped to the same
point of Ω if and only if x and y share the same member of R∞. We define a
cell of Ω to be surjective if every multi-partition with evaluations that maps
to it does so surjectively. A cell of a multi-partition with evaluations has
finite fanout if every P ∈ Pj in the cell has finitely many elements. All cells
of Ω with finite fanout are surjective, but the converse does not hold.

Key words: Kripke Structures, Common Knowledge, Baire Category, Can-
tor Sets



1 Introduction

Common knowledge by persons 1, 2, . . . , n of the event E means that for every
string of persons i1, i2, . . . , ik it holds that ik knows that ik−1 knows that ...
i1 knows that the event E has occurred (Lewis 1969). Formally, what is the
definition of knowing an event and what are the collection of events that can
be known?

One way to define knowledge and common knowledge is through semantic
models, for example through multi-partitions with evaluations, as defined
in the abstract. (See also Aumann, 1976.) Let (S,P , J,X, ψ) stand for a
multi-partition with evaluations, where S is the set on which the partitions
P = (P i | i ∈ J) are defined, J is the index set of persons, and ψ : S →
{0, 1}X are the evaluations, with ψx standing for the function ψ projected
to the x coordinate. Applying the above definition of common knowledge
to the context of multi-partitions with evaluations, a subset A is known in
common by all the persons in J at the point x ∈ A if the cell containing x is
contained in the set A.

Before we can describe our main result, we must define Ω, the canonical
multi-partition with evaluations.

Let X be a set of primitive propositions, and let J be a set of agents. Al-
though it is legitimate to consider the case of either X or J infinite, for this
paper we will assume throughout that both X and J are finite. Construct
the set L(X, J) of formulas using the sets X and J in the following way:
1) If x ∈ X then x ∈ L(X, J),
2) If g ∈ L(X, J) then (¬g) ∈ L(X, J),
3) If g, h ∈ L(X, J) then (g ∧ h) ∈ L(X, J),
4) If g ∈ L(X, J) then kjg ∈ L(X, J) for every j ∈ J ,
5) Only formulas constructed through application of the above four rules are
members of L(X, J).
We write simply L if there is no ambiguity. ¬f stands for the negation of f ,
f ∧ g stands for both f and g. f ∨ g stands for either f or g (inclusive) and
f → g stands for ¬f ∧ g.
If K = (S,P , J,X, ψ) is a multi-partition with evaluations then define a map
αK from L(X, J) to 2S, the subsets of S, inductively on the structure of the
formulas:
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Case 1 f = x ∈ X: αK(x) := {s ∈ S | ψx(s) = 1}.
Case 2 f = ¬g: αK(f) := S\αK(g),
Case 3 f = g ∧ h: αK(f) := αK(g) ∩ αK(h),
Case 4 f = kj(g): α

K(f) := {s | s ∈ P ∈ Pj ⇒ P ⊆ αK(g)}.
There is a very elementary logic defined on the formulas in L called S5. For a
longer discussion of the S5 logic, see Cresswell and Hughes (1968); and for the
multi-person variation, see Halpern and Moses (1992) and also Bacharach,
et al, (1997). Briefly, the S5 logic is defined by two rules of inference, modus
ponens and necessitation, and five types of axioms. Modus ponens means
that if f is a theorem and f → g is a theorem, then g is also a theorem.
Necessitation means that if f is a theorem then kjf is also a theorem for all
j ∈ J . The axioms are the following, for every f, g ∈ L(X, J) and j ∈ J :
1) all formulas resulting from theorems of the propositional calculus through
substitution,
2) (kjf ∧ kj(f → g)) → kjg,
3) kjf → f ,
4) kjf → kj(kjf),
5) ¬kjf → kj(¬kjf).

A set of formulas A ⊆ L(X, J) is called complete if for every formula f ∈
L(X, J) either f ∈ A or ¬f ∈ A. A set of formulas is called consistent if no
finite subset of this set leads to a logical contradiction, meaning a deduction
of f and ¬f for some formula f . We define

Ω(X, J) := {S ⊆ L(X, J) | S is complete and consistent}.

Ω(X, J) is itself a multi-partition with evaluation. For every person j ∈ J
we define its corresponding partition Qj(X, J) to be that generated by the
inverse images of the function βj : Ω(X, J) → 2L(X,J) namely

βj(z) := {f ∈ L(X, J) | kjf ∈ z},

the set of formulas known by person j. Due to the fifth set of axioms βj(z) ⊆
βj(z′) implies that βj(z) = βj(z′). We will write Ω, L and Qj if there is no
ambiguity.

If K = (S,P , J,X, ψ) we define a map φK : S → Ω(X, J) by

φK(s) := {f ∈ L(X, J) | s ∈ αK(f)}.
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This is the canonical map referred to in the abstract, also contained in Fagin,
Halpern, and Vardi (1991).

As stated in the abstract, a cell C of a multi-partition with evaluations has
finite fanout if every choice of i ∈ J and P ∈ P i contained in C the set P
has finitely many elements. In Simon (1999) a cell of Ω was defined to be
surjective if all multi-partitions with evaluations K that map to it by φK do
so surjectively. We construct an example of a countable and surjective cell
of Ω that does not have finite fanout. (In Simon (1999) it was proven that
any cell of Ω with finite fanout is surjective and any surjective cell of Ω must
be countable.)

Central to understanding the relation between surjectivity and finite fanout is
point-set topology. For every multi-partition with evaluationsK = (S,P , J,X, ψ)
we define a topology on the set S, the same as in Samet (1990). Let
{αK(f) | f ∈ L} be the base of open sets of S. We call this the topol-
ogy induced by the formulas. The topology of a subset A of S will be the
relative topology for which the open sets of A are {A ∩O | O is an open set
of S}.
Why is our main result surprising? It is closely related to representations
of multi-partitions with evaluations through canonical structures indexed by
ordinal numbers.

Fagin (1994) defined for any ordinal number γ (and a sets of persons and
primitive propositions) a hierarchically constructed canonical multi-partition
with evaluations Wγ such that Wω is Ω, (where ω stands for the first infinite
ordinal). This canonical structure represented all the possible truth evalua-
tions with the ordinal numbers representing the levels in the construction of
these statements. There are alternative canonical constructions correspond-
ing to the ordinal numbers (Heifetz and Samet 1998, 1999), but with regard
to the first infinite ordinal ω they are the same as Fagin’s. For every multi-
partition with evaluations and ordinal number γ there are canonical maps
defined to the canonical structures Wγ.

If there is an ordinal α such that the map to Wα is injective, then the multi-
partition with evaluations is called non-flabby, and the first such ordinal is
called the distinguishing ordinal. Otherwise the distinguishing ordinal is the
first ordinal α where all pairs of points which get mapped eventually to differ-
ent places do so to Wα. There is another minimal ordinal β, possibly larger

3



than the distinguishing ordinal, for which the image of the multi-partition
with evaluations in Wβ can be extended to any Wγ with γ > β in only
one unique way. This ordinal is called the uniqueness ordinal. Fagin (1994)
proved that the uniqueness ordinal is a limit ordinal and never greater than
the next limit ordinal above the distinguishing ordinal. Fagin established
that the necessary and sufficient condition for a cell of Ω to have the first
infinite ordinal ω as its uniqueness ordinal is that the cell has finite fanout.
Without explicitly mentioning topology, Fagin (1994) showed that any mem-
ber P of some Qj is a compact subset of Ω. An extension to Wω+1 of an x in
Ω is defined by dense subsets Rj of the various Pj ∈ Qj containing x. There-
fore there is a unique extension of a cell of Ω if and only if for every person
j every Pj ∈ Pj in the cell has only one dense subset, which is equivalent to
the cell having finite fanout.

Is the lack of a unique extension from a cell of Ω (equivalently the lack of finite
fanout) equivalent to the existence of some multi-partition with evaluations
mapping to this cell such that the persons have common knowledge that
some set of formulas valid somewhere in the cell are not valid at any point
in the original multi-partition with evaluations? The surjective property is
exactly the impossibility of such a common knowledge of formula exclusion.

Surprisingly the answer rests upon a property called centeredness. The cen-
tered property has several equivalent definitions; the most straightforward
definition is that a cell of Ω is centered if and only if no other cell of Ω shares
the same set of formulas held in common knowledge (Simon 1999). (The set
of formulas held in common knowledge is a constant throughout any given
cell; see Halpern and Moses 1992). An equivalent formulation of centeredness
is that the cell is an open set relative to the closure of itself. The difference
between centered and uncentered cells is radical; if a cell is not centered then
there are uncountably many other cells sharing the same set of formulas in
common knowledge (Simon 1999). Furthermore the converse does hold for
centered cells of Ω, namely that a centered cell of Ω is surjective if and only
if it has finite fanout (Theorem 3b, Simon 1999).

The lack of finite fanout for a cell C of Ω implies the existence a cluster point
y of some P ∈ Qj that is contained in C. Is the point y is a good candidate
for the existence of a multi-partition with evaluations that maps to C\{y}?
If C is centered there will be such a multi-partition with evaluations that
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maps to C but avoids the point y.

In the next section, we provide some more background necessary to under-
stand our solution. In the third and concluding section, we present our
example of a cell of Ω that is surjective but without finite fanout.

2 More Background

Central to this paper is the first part of Lemma 5 of Simon (1999), which
states that if K = (S; J ; (Pj | j ∈ J);X;ψ) is a multi-partition with evalua-
tions and P is a member of Pj for some j ∈ J then φK(P ) is a dense subset
of F for some F ∈ Qj. This fact was used implicitly by Fagin (1994).

Given a multi-partition with evaluations K = (S; J ; (Pj | j ∈ J);X;ψ) and
a subset A ⊆ S, we define the multi-partition with evaluations VK(A) :=
(A; J ; (Pj|A | j ∈ J);X;ψ|A) where for all j ∈ J Pj|A := {F ∩A | F ∩A 6= ∅
and F ∈ Pj}. We define a subset A ⊆ Ω to be good if for every j ∈ J
and every F ∈ Qj satisfying F ∩ A 6= ∅ it follows that F ∩ A is dense in
F . By Lemma 6 of Simon (1999) A is good if and only if for every z ∈ A
φV

K(A)(z) = z.

The next lemmatta relate directly the good property to our problem.

Lemma 7 of Simon (1999): If K = (S; J ; (Pj|j ∈ J);X;ψ) is a multi-
partition with evaluations then φK(S) is a good subset.

Lemma 9 of Simon (1999): If A is a good subset of a cell C and if A∩ F is
closed for every F ∈ Pj with A ∩ F 6= ∅, then A = C.

We need a few more facts about Ω(X, J) for non-empty X and J . If |J | ≥ 2
then Ω(X, J) is topologically equivalent to a Cantor set, (Fagin, Halpern
and Vardi 1991). A Cantor set with the usual topology is a metric space.
Second we can perceive a Cantor set as {0, 1}N, where each finite sequence
a = (a1, a2, . . . , an) defines a cylinder subset C(a) of {0, 1}N by C(a) := {x ∈
{0, 1}N | xk = ak ∀k ≤ n}. Furthermore all cylinder subsets are themselves
topologically equivalent to Cantor sets, and the same holds for finite unions
of cylinder sets. Third, if |J | ≥ 2 then there exists an uncentered cell of
Ω(X, J) of finite fanout that is dense in Ω(X, J) (Simon 1999).

Due to topological formulations of the centered property, to demonstrate
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that there is a surjective cell without finite fanout requires some topological
insight. Central to our proof is Theorem 9 of Chapter 12 of E. Moise, (1977):

Let X and Y be two totally disconnected, perfect, compact metric spaces
(equivalently Cantor sets) and let X ′ and Y ′ be countable and dense subsets
of X and Y , respectively. There is a homeomorphism between X and Y that
is also a bijection between X ′ and Y ′.

We call a partition P of a metric space D upper (respectively lower) hemi-
continuous if the set valued correspondence that maps every d ∈ D to the
partition member of P containing d is an upper (respectively lower) hemi-
continuous correspondence. (We follow the definitions of Klein and Thomp-
son, 1984.)

Lemma 1: If K := (S; J ; (Pj | j ∈ J);X;ψ) is a multi-partition with
evaluations with a topology (not necessarily that induced by the formulas)
such that
1) for every z ∈ {0, 1}X the set ψ−1(z) is clopen (closed and open) and
2) for every j ∈ N the partition Pj is lower and upper hemi-continuous,
then the map φK : S → Ω(X, J) is continuous.

Proof: It suffices to show that αK(f) is a clopen set for every f ∈ L(X, J).
We proceed by induction on the structure of formulas. The claim is true for
all x ∈ X by the hypothesis and it is likewise true for ¬f and f∧g if it is true
for f and g, due to the clopen property being closed under complementation
and finite intersection. For some f ∈ L(X, J) we assume that αK(f) is
a clopen set. αK(kjf) is an open set by the upper semi-continuity of Pj

and the openness of αK(f). S\αK(kjf) = αK(¬kjf) is an open set by the
openness of S\αK(f) and the lower semi-continuity of Pj. 2

Lemma 2: Given X and J finite, for every j ∈ J the partition Qj(X, J)
of Ω(X, J) is upper and lower hemi-continuous with respect to the topology
induced by the formulas.

Proof: Let x1, x2, . . . be a sequence of points converging to some x ∈ P ∈ Qj

with xi ∈ Pi ∈ Qj for every i = 1, 2, . . ..

To prove that Qj is upper hemi-continuous it suffices to show that if y1, y2, . . .
is a sequence of points converging to y with y1 ∈ P1, y2 ∈ P2, . . . then y is in
P . Let f be any formula such that kjf ∈ y. Since the yi converge to y there
is an N such that for every i ≥ N it must hold that kjf is in both yi and
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xi. But this means that kjf is also in x. The same argument holds for the
formula ¬kjf .

To prove that Qj is lower hemi-continuous it suffices to show that if y ∈ P
then there is a sequence of y1, y2, . . . in P1, P2, . . . respectively that converges
to y. Because there are only countably many formulas and one can create a
new sequence from the diagonal of sequences which come closer and closer to
y, if the claim were not true then there would be some formula f in y and an
N such that f is not in any member of Pi for all i ≥ N . This would imply
also that kj(¬f) is in xi for all i ≥ N and likewise that kj(¬f) is in x. But
this would contradict that the assumption that f is in y and y is in P . 2.

3 The Example

Let Ω equal Ω(X, {1, 2}) withX any finite non-empty set. Let C be an uncen-
tered cell of finite fanout that is dense in Ω. We assume that π : Ω → {0, 1}N
is a homeomorphism. For every n ∈ N define πn : Ω → {0, 1}n by πn(x)
equaling the a = (a1, a2, . . . , an) ∈ {0, 1}n such that π(x) = (a1, . . . , an, . . .).
This means that π−1

n ◦ πn(x) equals C(πn(x)), the corresponding cylinder
set. If a is the empty sequence in {0, 1}0 then define π0(x) := a and
π−1

0 ◦ π0(x) = Ω for all x ∈ Ω.

Let z be any member of C and for every i = 1, 2, . . . let zi be a member
of C such that π2i−2(zi) = π2i−2(z) but π2i(zi) 6= π2i(z). For every i de-
fine non-empty and mutually disjoint sets Ai,1, Ai,2, . . . Ai,i in the following
way. Let A1,1 equal Ω\ (π−1

2 ◦ π2(z1) ∪ π−1
2 ◦ π2(z)). For 1 ≤ k < i let

Ai,k := π−1
2i−2 ◦ π2i−2(zk)\ π−1

2i ◦ π2i(zk) and let Ai,i := π−1
2i−2 ◦ π2i−2(z)\ (π−1

2i ◦
π2i(zi)∪ π−1

2i ◦ π2i(z)). Because for every a ∈ {0, 1}2i there are four members
b of {0, 1}2i+2 such that a = π2i ◦ π−1

2i+2(b), all the sets Ai,j are non-empty
and homeomorphic to Cantor sets. By Proposition 1, for every i ≥ 1 and
1 ≤ k ≤ i there is a homeomorphism fk : Ai,1 → Ai,k such that fk maps
C ∩ Ai,1 bijectively to C ∩ Ai,k. This implies for every i ≥ 1 that there
exists an upper and lower semi-continuous partition P i of C ∩ (∪i

k=1Ai,k)
such that every partition member of P i has i members, one member in
Ai,k for every 1 ≤ k ≤ i. Notice that all the Ai,k are mutually disjoint,
meaning that Ai,k = Ai∗,j∗ if and only if i = i∗ and k = k∗. Furthermore
the disjoint union ∪i≥1 ∪1≤k≤i Ai,k is equal to Ω\ {z, z1, z2, . . .}. Let P be
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(∪∞i=1P i)∪{z, z1, z2, . . .}, a partition of C. It is straightforward to check that
P is upper and lower semi-continuous. We define A be the multi-partition
with evaluations (C; {1, 2, 3};Q1|C ,Q2|C ,P ;X,ψ|C), with the partition P
corresponding to the third person.

Theorem: φA maps C bijectively to a cell of Ω({1, 2, 3}) that is surjective
but without finite fanout.

Proof: We have by Lemma 1 that φA : C → Ω(X, {1, 2, 3}) is continu-
ous. Since every member of Q1|C , Q2|C , or P is compact, their images in
Ω(X, {1, 2, 3}) are also compact. By Lemma 9 of Simon (1999) φA maps
C surjectively to a cell φA(C) of Ω(X, {1, 2, 3}). Between any two points
of φA(C) there is an adjacency path using images of members of Q1|C and
Q2|C , all finite possibility sets of Ω(X, {1, 2, 3}) – therefore there can be no
proper good subset of φA(C). By Lemma 7 of Simon (1999) this implies
that φA(C) is a surjective cell. Since for every f ∈ L(X, {1, 2}) αΩ(X,{1,2})(f)
gets mapped to αΩ(X,{1,2,3})(f), φA is an injective and an open map (meaning
that open sets are mapped to open sets), and therefore the map φA is also a
homeomorphism of C to φA(C). Therefore the image of the one infinite set
in P is also an infinite set in the cell φA(C), which implies that this cell of
Ω(X, {1, 2, 3}) does not have finite fanout. q.e.d.
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