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NUMERICAL APPROACHES TO THE ‘PRINCESS AND
MONSTER’ GAME ON THE INTERVAL

S. ALPERN, R. FOKKINK, R. LINDELAUF, AND G. J. OLSDER

Abstract. Rufus Isaacs introduced Princess and Monster games in the
final chapter of his classic book. The value of the Princess and Monster
game on an interval is as of yet unknown. We present some numerical
results to estimate this value.

In the final chapter of his classic book Differential Games, Rufus Isaacs
introduced the ‘Princess and Monster’ games. A Monster and a Princess
may move about in a restricted space, more specifically in a network, and
the Monster tries to catch the Princess. They are not able to see each other
and that is why this type of game is known as a Search Game [3, 7, 9]. It is
different from the more familiar Game of Pursuit [5], in which both players
have visual contact. In most of the Search Games that have been solved
so far, the Princess is immobile; e.g., [6, 12]. The only Search Game with
a mobile Princess that has been solved is the Princess and Monster game
on a circle, and this was done a long time ago [1, 13]. In a complementary
paper [4] we have shown that the Princess and Monster game on an interval
[−1, 1] is not trivial (not trivial in the sense that for the Monster it is not
optimal to start at one random end and then go as fast as possible to the
other) and that the value V of the game is bounded by 15/11 < V < 13/9.
These bounds were obtained by analytical considerations and computations
that can be checked by hand. In this paper we consider a restricted game
that has a value Vr ≤ V. By numerical simulations we show that Vr ≈ 1.373.

1. Rules of the game

The rules of the game are as follows. The Monster M and the Princess
P may choose an arbitrary initial point on the closed interval [−1, 1]. The
Monster moves at speed bounded by 1, so the trajectory of M, M(t) is a
continuous function with Lifschitz constant 1. The Princess may move at
arbitrary speed. In [4] we have shown that M always moves at maximum
speed and that P need not move at speed greater than 1. If a player moves
at speed 1 then we say that the player runs

The minimax theorem in [2] implies that the value of the game V exists. The
precise optimal strategies for the Monster and the Princess are not known,
but we have derived some properties of optimal strategies in [4]. We have
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shown that it is optimal for the Princess to never cross the mid point and
if she reaches an end, then she should stay there. If the Monster reaches an
end, however, then he should turn and run to the opposite end.

2. A restricted search game on the interval

We have indicated in [4] that V can in principle be computed in an iterative
manner, but the convergence is very slow and not numerically feasible. In
this paper we take a different approach and restrict the number of pure
strategies of the players. For the Monster we allow pure strategies of two
types (the strategies of M and P are indicated by M and P respectively):

M1 Choose an arbitrary initial point on [−1,+1] and choose a direction,
right or left. M runs in that direction until the end and and then he
runs back. In particular, if M starts at an end then he runs to the
opposite end. This is an important pure strategy and if the Monster
moves in this way, then we say that he is a sweeper, as in [10].

M2 Choose an arbitrary initial point on [−1,+1] and choose a direction.
M runs in that direction until he meets the sweeper coming from the
opposite end. Then M turns and joins the sweeper. Subsequently
he keeps running in this direction till the end (at either +1 or −1)
has been reached and then returns to the opposite end.

For the Princess we allow the following pure strategies:
P The Princess chooses an infinitesimal small ε > 0. She either hides

at an end point and remains immobile, or she choose an arbitrarily
initial point in the intervals [−1 + ε,−ε] ∪ [ε, 1 − ε] and remains
immobile there until the sweeper coming from the nearest end is ε
close. Then she runs to the middle and turns when she gets ε close,
where she turns and runs back to the nearest end.

We conjecture that the optimal strategies of both players are mixed strate-
gies which are based upon the pure strategies given above, but we were
unable to prove this. We give some evidence for this conjecture at the end
of the paper. However, we are able to show that against P the optimal
response is to use a mixed strategy on {M1,M2}:

Theorem 1. If the Princess uses a mixed strategy that consists of the pure
strategies of the type listed above, then the optimal response of the Monster
is to use a mixed strategy that consists of pure strategies of the two types
that are listed above.

It is possible to prove this theorem following the approach of Section 5 in
[4]. We only give a sketch of the proof here. If the Princess uses these
pure strategies, then she remains immobile and runs only if the sweeper is
ε-close, or she hides at an end and remains immobile all the time. Therefore
at time t > 0, either the Princess is immobile and P(t) = ±1 or P(t) ∈
(−1 + t + ε, 1 − t − ε), or she is running and P(t) = ±(−1 + t + ε). The
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Monster knows this. If he starts at an end, then his only sensible strategy
is to run to the other end. If he starts in the middle, then he should run
in one direction to increase the chance of catching the Princess while she is
still immobile. Then if he is ε-close to a sweeper, the Monster may turn and
then it is sensible only to run to the other side, or he may continue his run to
the end, turn there and run to the other side. If we ignore ε, which we may
in the limit, then we get the pure strategies given above for the Monster.

The value of this version of the search game, with the given restricted classes
of strategies, is indicated by Vr. Because of Thm 1 it satisfies Vr ≤ V.

3. Approximation of Vr by Discretization

As a first approximation of V discretize the interval [−1, 1] and take two grid
points only −1 and +1: the mesh of this simple grid is ∆x = 2. Discretize
time accordingly into time steps of ∆t = 2. It is not hard to see that it is
optimal for both players to choose a grid point at random. The Monster
moves to the other grid point, the Princess remains where she is. The value
of this simple discretized game is 1.

As a second approximation discretize by three grid points −1, 0, 1. Dis-
cretize time accordinly into time-steps of ∆t = 1 allowing the Princess an
ε-advantage: the Princess may move on time n−ε while the Monster moves
on time n for n ∈ N. There is an obvious symmetry in the game: each player
choses −1 and +1 equally likely. Let’s call this the end point strategy E as
opposed to the mid point strategy C (of ”Center”) in which the initial point
is 0. If the Monster chooses an end point, then he runs the opposite end
as quickly as possible. If the Princess chooses an end point, then she stays
there. If the Monster chooses the mid point, then he runs to a random end
and runs back. If the Princess chooses the mid point, she runs to a random
side at time 1− ε. So we get a 2× 2 matrix game (ignoring ε):

E C
E 1 1.5
C 2 0

in which the Monster chooses a row and the Princess a column. The value
of this game is slightly larger: 6/5.

We discretize the game. The Princess and the Monster may only choose an
initial position on a fixed equidistant grid with 2n points, both endpoints
included in this counting (n = 1, 2, . . .). Hence the mesh size ∆ equals
2/(2n − 1). The case with n = 1 coincides with the first approximation
given above. The Princess moves at the time steps ∆−ε, 2∆−ε, . . . and the
Monster moves at time steps 0,∆, 2∆, . . .. The game is over as soon as they
occupy the same grid point. In particular, if the Princess and the Monster
choose the same initial grid point, then the game is immediately over and
the capture time is 0.
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Remark 2. It is obvious that the probability for both players choosing the
same initial point is positive for the finite grid case. Because of the assump-
tion that in such a case capture is immediate, this is to the disadvantage for
the Princess and thus the value of this game is a lower bound for Vr; with
increasing n it will converge from below to Vr.
With the original game on the continuous interval [−1,+1] in mind, the
probability of both players starting at the same interior point is probably zero.
In this vein the capture time, if M and P would start at the same point of
the finite grid, could be defined differently; for instance as the average of the
two possibilities of the position of M being an infinitesimal distance to the
left, or right, of P’s position.

We discretize the interval by putting a symmetric grid with respect to the
mid point. There are n equidistant grid points smaller than 0 and there are
n equidistant grid points greater than 0 at:

{−1,−1 + ∆, . . . ,−1 + (n− 1)∆} ∪ {1, 1−∆, . . . , 1− (n− 1)∆}.
We denote the value of the discretized game by Vn. Obviously Vn → Vr as
n →∞.

n Vn

1 1
2 1.266
4 1.330
8 1.354
16 1.365
32 1.370
64 1.373

Table 1 Numerical approximation of Vr

The matrix in the discretized game has size 8n × 2n and we are unable to
compute Vn for larger n. Our results seem to suggest that the limit value is
Vr = 11/8.

The results of our simulations show that the Princess uses three types of
strategies: either she hides at either end point, with a positive probability
≈ 0.127 at each end point, or she hides at ±ε until time 1 − ε and runs to
a random end with total probability ≈ 0.236 evenly divided over the two
points, or she takes an initial position in (−1, 1) according to a continuous
probability distribution as depicted in Figure 1.
The Monster also uses two discrete strategies and one continuous strat-
egy. He uses the sweeper strategy with probability ≈ 0.80, evenly divided
between the two sweep options. He starts at ±(−1 + ε) and runs to the op-
posite end and back with probability ≈ 0.075 for each option, or he picks an
initial position in (−1, 1) according to a continuous probability distribution
as depicted in Figure 2. If the initial position < 0 then he runs to the right
end and subsequently back; if the initial position is > 0 then he runs first
to the left end and then back. Note that the Monster only uses the pure
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Figure 1. Probability density of the continuous Princess strategy

strategies of M1 and he only uses half of these: if M(0) < 0 then he runs to
+1 and back to −1; if M(0) > 0 then he runs to −1 and back to +1
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Figure 2. Probability density of the continuous Monster strategy

4. Approximation by means of Taylor expansions

The starting assumptions here are that both players use a continuous ini-
tial distribution, with delta functions (concentrated masses) at both ends.
For the Monster we assume a continuous initial density distribution Ml

on (−1,+1) for immediate left turns after the start and a continuous ini-
tial density distribution Mr on (−1,+1) for immediate right turns after
the start. Because of symmetry, Ml(x) = Mr(−x). The remaining mass,
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1−
∫ +1
1 (Ml(x)+Mr(−x))dx, is split into two equal parts which will refer to

the mass concentrations at both ends. The functions Pl and Pr are likewise
defined for the Princess, the only difference being that the Princess does not
immediately after the start turn left or right, but first does not move and
then, at moment min{1 + x, 1− x} − ε, with x being the initial position of
P, turns left or right. This ε-value is arbitrarily small (and positive) and
indicates the fact that the Princess is followed on her heels by the Monster
if both run in the same direction. Obvious constraints are that all these
densities are nonnegative.
Assume the functions Pl and Ml are linear, i.e.

Pl(x) = c + dx, Ml(x) = a + bx,

on the interval [−1,+1] and where the constants a, b must be chosen by the
Monster,and (c, d must be chosen by the Princess, subject to the constraints
already mentioned. Thus we face the game

min
a,b

max
c,d

T,

where T denotes the time of capture. Expressing T in terms of the variables
a, b, c, d and subsequently solving the minmax problem (using Maple) we
find

a =
654
4327

, b =
624
4327

, c =
2240
4327

, d =
140
4327

,

and the value of the game is 1.345.
Please note that the admissible class of strategies for the Monster does not
include the optimal strategies as obtained in the discretized game (where,
for instance, M, starting from a point in (−1, 0), would only move to the
right and not to the left). Note also, that the class of admissible strategies
for the Princess are different from the one before (after an initial rest, she
simply runs to one of the two ends and stays there). In spite of the fact that
the optimal strategies (as dealt with in the previous section) are outside
the current admissible classes used, it is surprising to see how close the
numerically obtained values are.
This method can easily be adapted to include different classes of strategies
for the Monster and Princess, such as for instance to include the possibilities
of the previous section. Moreover, the method can be extended to include
second and even higher-order terms in the expansions of Ml and Pl.

5. Conclusions

Our numerical simulations show that in the restricted game the Monster
plays one of the two sweeper strategies S with a total probability ≈ 0.8. The
Monster starts in an internal point of the interval with the complementary
probability ≈ 0.2, let us call this strategy IM. The Princess chooses to hide
at an end E with probability around ≈ 0.25 and starts at an internal point
with probability ≈ 0.75. Let us call this latter strategy IP . The payoff of S
against E and IP is easy to compute. Our simulations indicate that in the
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strategy IM the Monster starts near one end and that he runs to the other
end and back. The payoff of this strategy against E is ε close to 3. The
payoff of IM against IP is unclear. If the probabilities are right, however,
then the matrix of the game should be as follows:

E IP
S 1 1.5
IM 3 4/5(?)

The value of this game is 11/8.

Some preliminary steps taken with respect to Taylor expansions of the op-
timal mixed strategies indicated that this approach seems worthwhile to be
pursued further.

References

[1] S. Alpern (1974). The search game with mobile hider on the circle. Proceeding of the
Conference on Differential Games and Control Theory, Kingston, Rhode Island, July
1973. In Differential Games and Control Theory (E. O. Roxin, P. T. Liu and R.L
Sternberg, eds), 181-200. M. Dekker, New York.

[2] S. Alpern and S. Gal (1998). A mixed strategy minimax theorem without compact-
ness. S.I.A.M. J. Control Optim. 33, no. 2 311-323.

[3] S. Alpern and S. Gal (2003). The Theory of Search Games and Rendezvous. Kluwer In-
ternational Series in Operations Research and Management Sciences, 319 pp, Kluwer,
Boston.

[4] S. Alpern, R. Fokkink, R. Lindelauf, G.J. Olsder (2006). The Princess and Monster
Game on an Interval. submitted for publication.

[5] T. Basar and G. J. Olsder (1995), Dynamic Noncooperative Game Theory (second
edition), Academic Press, New York.

[6] A. Dagan and S. Gal (2004). Searching a network from an arbitrary starting point.
Networks, in press.

[7] S. Gal (1980). Search Games. Academic Press, New York.
[8] S. Gal (2000). On the optimality of a simple strategy for searching graphs. Int. J.

Game Theory 29, 533-542.
[9] A. Y. Garnaev (2000). Search Games and Other Applications of Game Theory.

Springer-Verlag, Berlin.
[10] J. V. Howard (1999). Rendezvous search on the interval and the circle. Operations

Research 47, 550-557.
[11] R. Isaacs (1965). Differential Games. Wiley, New York.
[12] J. H. Reijnierse and J. A. M. Potters (1993). Search games with immobile hider. Int.

J. Game Theory 21, 385-394.
[13] M. I. Zeliken (1972). On a differential game with incomplete information. Soviet

Math. Doklady 13, 228-231.



8 S. ALPERN, R. FOKKINK, R. LINDELAUF, AND G. J. OLSDER

London School of Economics, Houghton Street, London WC2A 2AE, UK
E-mail address: alpern@lse.ac.uk

Delft University, Faculty of Electrical Engineering, Mathematics and In-
formation Technology, P.O. Box 5031, 2600 GA Delft, Netherlands
E-mail address: r.j.fokkink@tudelft.nl

E-mail address: r.h.a.lindelauf@student.tudelft.nl

E-mail address: g.j.olsder@tudelft.nl


