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THE ‘PRINCESS AND MONSTER’ GAME ON AN INTERVAL

STEVE ALPERN, ROBBERT FOKKINK, ROY LINDELAUF, AND GEERT JAN OLSDER

Abstract. A minimizing Searcher S and a maximizing Hider H move at unit speed on a closed
interval until the first (capture, or payoff ) time T = min {t : S (t) = H(t)} that they meet. This zero-
sum Princess and Monster Game or less colorfully Search Game With Mobile Hider was proposed
by Rufus Isaacs for general networks Q. While the existence and finiteness of the value V = V (Q)
has been established for such games, only the circle network has been solved (value and optimal
mixed strategies). It seems that the interval network Q = [−1, 1] had not been studied because it
was assumed to be trivial, with value 3/2 and ‘obvious’ searcher mixed strategy going equiprobably
from one end to the other. We establish that this game is in fact non-trivial by showing that
V < 3/2. Using a combination of continuous and discrete mixed strategies for both players, we
show that 15/11 ≤ V ≤ 13/9. The full solution of this very simple game is still open, and appears
difficult, though many properties of the optimal strategies are derived here.

1. Introduction

In the final chapter of his classic book Differential Games [18], Rufus Isaacs introduced search
games with mobile hiders, which he also called Princess and Monster Games (see also [7], example
1.4). A Searcher (Monster) and a Hider (Princess) move about a space Q, which we take to be
a network (and later specialize to an interval). The Searcher chooses as his pure strategy a path
S = S (t) of known speed, which we take to be 1. He says “We permit the princess full freedom
of locomotion”, which we take to be any continuous path H = H (t) . (We will establish for the
interval that she need never go faster than the Searcher.) The payoff for this zero-sum game Γ (Q)
is the capture time

(1) T = T (S, H) = min {t : S (t) = H (t)} .

Taking the topology of uniform convergence on compact subsets, the payoff function T is upper
semi-continuous and the searcher mixed strategy space is compact Hausdorff. Consequently the
minimax theorem of Alpern and Gal [4] can be used, as shown in Appendix A of [6] or [14] to
establish the existence of the value V (Q) , an optimal mixed searcher strategy, and an ε-optimal
hider mixed strategy. Recall that a strategy is ε-optimal if the expected payoff is at least V − ε
against any strategy of the opponent. Upper bounds on V = V (Q) in terms of the structure
of Q (and hence the finiteness of V ) are derived in [3]. For general networks Q, it is sometimes
advantageous for the Searcher to wait for a while at a node, a so-called ambush strategy, and
these games are known to be difficult - none have been solved. So the only networks that might
appear possible to solve are those with no nodes (of degree greater than 2) - namely the circle
and the interval. The game Γ (Q) when Q is a circle was indeed a problem suggested by Isaacs
[18, Example 12.4.2], and was solved a long time ago ([23],[1]). The solution, for both players,
is the cohatu strategy: start randomly (uniform distribution); flip a coin; if head (tails) go to
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antipodal point half way around circle clockwise (anti-clockwise), at unit speed. No one seems to
have considered this problem for the other network without nodes, the interval. It seems to have
generally been believed that the game on the interval was trivial. The Searcher should simply start
at a random end and go directly to the other end. (Against this, the hider waits at 0 until time
1− ε, then goes equiprobably to either end.)
It should be noted that this ‘simple’ search strategy, of starting at a random end and going to the
other, is indeed optimal in the related search game with immobile hider, also introduced by Isaacs
[18, Section 12.3]. Indeed, for trees [11] and trees with Eulerian networks attached [2], an optimal
search strategy is to traverse a Chinese Postman path (minimal covering path) equiprobably in
either direction. Of course this is obvious for the interval, where the Hider can hide uniformly or
equiprobably at the ends (or many other optimal strategies - the full class has not been determined).
The value is 1 for this game on an interval of length 2. A related problem on the interval, also with
two mobile agents (they both have unit speed), was analyzed by Howard [17] and by Chester and
Tutuncu [10]. In this rendezvous version of the problem, both players wish to minimize the meeting
time T.
The paper is organized as follows. In Section 2 we establish some elementary lemmas which restrict
the strategies we need to consider in the rest of the paper. In Section 3 we show that the game Γ (I)
is not trivial by using some finitely supported mixed strategies to obtain estimates on it’s value
V . In Section 4 we obtain the bound V ≤ 13/9 by using a continuous mixed searcher strategy. In
Section 5 we obtain the bound V ≥ 15/11 by using a continuous mixed hider strategy.

2. Properties of optimal strategies

In this section we present results which restrict the strategies (pure and mixed) that we will need
to consider in the remainder of the paper. We begin by noting that the pure strategy space for the
Hider is the space H consisting of all continuous paths H : [0,∞) → I = [−1, 1]. For the Searcher
the pure strategy space S consists of all paths in H with Lipschitz constant 1, that is

(2) S =
{
S : [0,∞) → I ;

∣∣S (t)− S
(
t′
)∣∣ ≤ ∣∣t− t′

∣∣ , for all t, t′ ≥ 0
}

.

If a Searcher chooses paths that do not cover the entire interval, then hiding at some end gives a
payoff that is infinite. This is absurd, so we may assume that searcher paths are onto. We show
that once the Searcher reaches an end, he should go directly to the other end; but if the Hider
reaches an end, he should stay there. The Hider, while unrestricted in speed, need never go faster
than speed 1 (the Searcher’s maximum speed). We show that both players can optimally use mixed
strategies which respect the symmetry of the interval, that is, the reflection φ (x) = −x. and that
in an optimal hider mixed strategy, the pure strategies do not intersect. Finally, we give some
properties of optimal response searcher strategies.

We say that a pure strategy (path) S is end-reflecting if whenever S (t0) = ±1, we have |S (t)− S (t0)| =
t − t0, for t0 ≤ t ≤ t0 + 1. We say that a pure strategy H is end-absorbing if H (t0) = ±1 implies
H (t) = H (t0) for t ≥ t0. We say that a mixed strategy (for either player) is symmetric if it is
invariant under the reflection φ(x) = −x.

The first three lemmas concern pure strategies which we may ignore in our subsequent analysis
because they are dominated.

Proposition 1. Every pure searcher strategy S ∈ S is dominated by one which is end-reflecting.
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Proof. Suppose S is not end-reflecting, and reaches say +1 at first time t0. Define S∗ as S up to time
t0 and then equal to 1 + t0 − t. Consider any H ∈ H. If T (S, H) ≤ t0, then T (S∗,H) = T (S, H) .
If T (S, H) = t1 > t0, then H (t1) − S∗ (t1) ≥ 0, and since H is continuous and H (t0) − S∗ (t0) =
H (t0) − 1 ≤ 0 the Intermediate Value Theorem implies that T (S∗,H) = t2 for some t2 with
t0 ≤ t2 ≤ t1. Thus in all cases the end-reflecting strategy S∗ satisfies T (S∗,H) ≤ T (S, H) . �

Proposition 2. Every pure hider strategy H is dominated by one which is end-absorbing.

Proof. Assume that H is not end-absorbing and arrives at say +1 at first time t0. Let H∗ be the
end-absorbing strategy that agrees with H up to t0 and then stays at +1. Consider any S ∈ S and
assume, as we may, that T (S, H∗) = t1 > t0. Then S(t1) = 1 ≥ H(t1) and S(t0) < 1 = H(t0) so
the Searcher meets the Hider H between t0 and t1 by the Intermediate Value Theorem. It follows
that T (S, H) ≤ T (S, H∗) for any pure searcher strategy. �

We say that a continously differentiable function is smooth. By reasons that will become clear
below, we may restrict the pure hider strategies to any subset that is dense in S. In particular, we
may consider smooth paths only, without changing the value of the game.

Proposition 3. Every smooth hider strategy in H is dominated by one in S, that is, one with speed
bounded by 1.

Proof. Essentially, the idea is that if H is any smooth Hider and if H∗ is a Hider that follows H
but has speed bounded by 1, then H∗ cannot be caught from behind since the Searcher has the
same speed limit. Let t0 = inf{t ∈ [0,∞) : |H ′(t)| > 1} and assume, as we may, that t0 is finite.
Define H∗(t) = H(t) for t ≤ t0. For t > t0 the Hider H∗ continues to move at speed 1. Since the
interval is bounded, H∗ meets H at some time τ > t0. Now let t1 = inf{t ∈ [τ,∞) : |H ′(t)| > 1}
and repeat the construction inductively.
Suppose that a Searcher S finds H at a time T = T (S, H) when the hiders H and H∗ are in different
locations. So suppose that t0 < T < τ . By symmetry, we may assume as well that H ′(t0) = +1.
Then H∗ has velocity +1 and H∗(t) < H(t) for all t ∈ (t0, t1). Since S(T ) = H(T ) > H∗(T ) and
since the Searcher moves with bounded speed, S(t) > H∗(t) for all t ∈ (t0, T ). This implies that
T (S, H∗) > T (S, H). �

From now on, we shall only consider hider paths of speed ≤ 1. We say that a Hider or a Searcher
runs at time t if |H ′(t)| = 1 or |S′(t)| = 1, respectively. We now consider mixed strategies; i.e,
probability measures on the Borel σ-algebra of S

Proposition 4. There is an optimal searcher mixed strategy, and (for any ε) an ε-optimal hider
mixed strategy, which are invariant under the reflection φ (x) = −x.

Proof. This is just a special case of Theorem 3 of Alpern and Asic [3], where the existence of such
strategies invariant under the isometry group (distance-preserving homeomorphisms) of a network
Q is established. In the case of Q = I, this group consists just of the identity and φ. �

The capture time T (S, H) is upper semi-continuous as a function on the pure strategies H ∈ H and
S ∈ S. This implies that for any ε there exists a ε-optimal finite mixed strategy and in principle
it is possible to determine the value of the game by considering finite mixed strategies only.

Proposition 5. Suppose the Hider is using a mixed strategy concentrated on a finite number of pure
strategies Hj ∈ S, j = 1, . . . , J. Then any optimal response S (t) by the Searcher is of the following
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type, for some renumbering of the Hj: It has capture times T (S, Hj) = tj , with t1 ≤ t2 ≤ · · · ≤ tJ
, where t1 = 0 and

(3) S′ (t) = sign (Hj+1 (tj)− S (tj)) , tj

That is, S moves at maximum speed 1 towards Hj+1 as soon as he has met Hj .

Proof. Let S∗ be any optimal response to the hider mixed strategy which fails (3) for some j.
Number the Hj so that T (S∗,Hj) = t∗j is nondecreasing in j. Suppose that j = k is the smallest
j such that (3) fails. Suppose without loss of generality that Hk+1 (t∗k) > S∗ (t∗k) . Define a new
searcher strategy S (t) with capture times tj ≡ T (S, Hj) by

(4) S (t) =


S∗ (t) , if t ≤ t∗k,
S∗ (t∗k) + (t− t∗k) , if t∗k ≤ t ≤ tk+1,
Hk+1 (t) if tk+1 ≤ t ≤ t∗k+1
S∗ (t) , t∗k+1 ≤ t.

Clearly tj = t∗j except for j = k + 1, when t∗k+1 > tk+1. Hence S∗ could not have been an optimal
response. (Note that the third definition S (t) = Hk+1 (t) is only possible because of our hypothesis
Hk+1 ∈ S, that is, it moves with speed bounded by 1.) �

This result is a simplified version of a similar observation for rendezvous on the line due to Alpern
and Gal [5] (repeated as Theorem 16.10 of [6]). Basically, it says that an optimal response to a
finitely supported hider mixed strategy is to run all the time and turn only when meeting one of
the pure hider strategies. In particular, we can restrict our attention to pure strategies in which the
Searcher runs all the time. In a space-time diagram [−1, 1]× [0,∞), such search paths are depicted
as broken lines of slope ±1 with finitely many turning points, cf Figure 1 below.

Definition 6. A pair of pure hider strategies H1,H2 is called non-crossing if (possibly after
reordering) we have H1(t) ≤ H2(t) for all t ≥ 0. If the inequality holds strictly, we say that they
are non-intersecting.

For pure hider strategies H1 and H2, define new pure strategies H1 ∧ H2(t) = min{H1(t),H2(t)}
and H1 ∨H2(t) = max{H1(t),H2(t)}. Obviously, H1 ∧H2 and H1 ∨H2 are non-crossing.

Proposition 7. The hider strategy that mixes two pure strategies H1,H2 with equal probability
is dominated by the non-crossing hider strategy that mixes H1 ∧ H2,H1 ∨ H2 with equal probabil-
ity. Consequently, any finite mixed hider strategy may be assumed to consist of non-crossing pure
strategies.

Proof. Note that at for all t the sets {H1(t),H2(t)} and {H1 ∧H2(t),H1 ∨H2(t)} are the same. So
if S catches the first of the two original hiders H1,H2, then at the same time he catches the first
of the non-crossing hiders H1 ∧H2,H1 ∨H2. Denote this time by t1. By renumbering indices or
reflecting the interval we may assume that S(t1) = H1(t1) and that H1(t1) ≤ H2(t1). Now under
these assumptions, H2 and H1 ∨ H2 are in the same location at time t1 and the Searcher is to
their left. Since H1 ∨H2(t) ≥ H2(t) for all t, the Searcher cannot catch H1 ∨H2 before he catches
H2. �

It follows from Proposition 4 that there exist non-crossing ε-optimal hider strategies that are
symmetric. Any finite collection of non-crossing paths can be approximated arbitrarily closely by a
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collection of non-intersecting paths. So, there exist ε-optimal mixed hider strategies that are finite,
symmetric and non-intersecting.

Proposition 8. Any pure strategy H in a non-intersecting symmetric hider strategy is contained
in half of the interval, that is, H(t) ∈ [−1, 0] or H(t) ∈ [0, 1] for all t.

Proof. If the pure strategy H is used in a symmetric mixed strategy, then so is −H. If H(t) = 0
then H and −H intersects −H(t), but the mixed strategy is non-intersecting. So either H(t) 6= 0
for all t or H is immobile and remains in 0. In both cases, H is contained in half of the interval. �

3. The Interval Game is Not Trivial

The interval game has some fairly obvious strategies for each player that appear like they might
be optimal. If any of these were indeed optimal, we would consider the game to be trivial. The
purpose of this section is to show that none of these strategies are in fact optimal. For the Searcher,
the obvious strategy is to start at a random end and run to the other end; this gives an estimate
V ≤ 3/2 and the bound can be obtained if the Hider waits at the center until time 1− ε and then
runs to a random end. For the Hider, the two stationary strategies may be considered that are
optimal in the immobile version of the game: one of these is to wait at a random end; the other is
to wait randomly along the interval. Both guarantee V ≥ 1, where 1 is the value of the immobile
hider game. We show that the game is not trivial by exhibiting fairly simple strategies establishing
that

1 <
97
75

< V <
47
32

<
3
2
.

Suppose that the Hider starts out with the strategy of hiding at an end point E(t) = 1 and
symmetrically −E(t) = −1. According to Lemma 5 the optimal response of the Searcher is to
start at an end point and run to the other end A(t) = 1 − t, or symmetrically −A(t) = −1 + t.
The strategies A and −A are what Howard [17] called the sweepers in his rendezvous version. The
expected meeting time for this optimal response is 1 and this is a lower bound on V . Similarly,
suppose that the Searcher adopts the sweeper strategies A and −A. Against any hider path H
either V (A,H) ≤ 1 or V (−A,H) ≤ 1. So if the searcher adopts the sweeping strategy, then the
payoff is ≤ 3/2 against any mixed hider strategy and this puts an upper bound on V . The game
would be trivial if V = 1 or V = 3/2, but it is not. In this section we show that 1 < V < 3/2. It
is ε-optimal against the sweeping strategy to loiter around 0 until time 1− ε and then run to one
of the end points. The Searcher can ambush such loiterers by adding a search path that patrols
the centre. More specifically, strategy B starts at 0; runs to the left; follows sweeper A from the
time (1/2) when he meets him, until reaching +1; then (by Lemma 1) goes to −1. Strategies ±A
are each used with probability 7/16, while ±B are each used with probability 1/16. The searcher
strategies ±A,±B are drawn in a space-time diagram in Figure 1.

We now show that this mixed strategy ensures a meeting time less than 3/2 (though admittedly
not much less).

Theorem 9. V ≤ 47
32

= 1. 468 8

Proof. Consider the mixed strategy s in which the Searcher uses ±A each with probability 7/16 and
±B each with probability 1/16. Let H be any Hiding strategy. Let P (t) denote the probability
that T ≤ t. There are two cases: (1) |H (1/2)| ≤ 1/2, and (2) |H (1/2)| > 1/2.
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Figure 1. The searcher strategy for V < 47/32 in a space-time diagram

(i) In this case P (1/2) ≥ 1/16 (because B or −B has been met) and P (1) ≥ 8/16 (because
also A or −A has been met). Furthermore P (2) = 1. Thus

T ≤ 1
16
· 1
2

+
7
16
· 1 +

1
2
· 2 =

47
32

(ii) By symmetry we may assume H (1/2) > 1/2. Then P (1/2) ≥ 7/16 (-A has been met),
P (2) ≥ 15/16 (A,-A,B have been met), and P (4) = 1 (all met). Hence

T ≤ 7
16
· 1
2

+
8
16
· 2 +

1
16
· 4 =

47
32

�

We now consider the lower bound on V . In the search game with an immobile hider, the Hider has
two particular mixed strategies that guarantee him an expected capture time of half the length of
the interval: (1) Hide equiprobably at the ends (end-hiding is optimal on trees for such games [11],
and symmetry implies the equiprobability), or (2) hide uniformly (this is optimal for all networks
with Eulerian paths [2]). Mobility usually helps the Hider, for example when Q is the circle of
circumference c an immobile hider can be found (by a random tour) in mean time c/2, while an
mobile hider can be found with best play on both ends in time 3c/4 [1]. The intuitive explanation
is usually that ‘when the Hider is immobile, the searcher does not have to search again any part
of Q already searched (and hence can employ a minimal, Chinese Postman, search path) - but a
mobile Hider might not be met by such a path. However this explanation does not apply to the
interval (though to all other networks), since a Chinese Postman path on an interval will indeed
find a mobile hider - it has search number 1 in the sense of Parsons [20].
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Mobility helps the hider, since V > 1 if the Hider is mobile. To prove that this is true, we select
hider strategies by considering the searcher strategies A and B. The optimal hider strategy against
A,B is to loiter around ±1

2 and just before time 1
2 run either to the middle and back, or to the

end. These two possible paths G, H and their symmetric counterparts are depicted in thick lines
in the left-hand diagram in Figure 2 (the paths do not cross the centre). We combine these with
the two other hider strategies that we considered above: E, hiding at an end, or F , loitering in the
centre F (t) = max{0, t+ε−1}. Then we get a mixed strategy in which the Hider uses {E,F, G,H}
and their symmetric counterparts. According to Lemma 5 the Searcher adopts strategies that start
at 0,±1

2 ± 1 and then run between hider paths. If the Searcher starts out from an end, then by
Proposition 1 it is optimal to adopt strategy A. If he starts out in 0 then the Searcher runs to
±1

2 at which point he may turn, ’strategy B’, or continue to an end and run back, ’strategy M ’ in
Figure 2. Starting from ±1

2 the Searcher either runs to the centre or to an end, ’strategies C and
D’. So the optimal optimal response to a mixed hider strategy on G and H is a mixed searcher
strategy on {A,B, C, D, M} and their symmetric counterparts. Ignoring ε these strategies give the

Figure 2. Left: the optimal hider strategy against A,B in a space-time diagram
(recall that hider paths do not cross the middle); Right: the Searcher’s response to
{E,F, G,H}, up to symmetry the only relevant paths are A,B, C, D and M .
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zero-sum game matrix:

(5)

E F G H
A
B
C
D
M


1 3

2
3
2

5
4

3 0 5
4

3
3
2

15
8

5
4

5
4

5
2

1
2

3
8

3
4

2 0 7
4

2


It turns out that the Hider only uses strategies E,F, G and that the Searcher only uses A,D, M
and of these he hardly ever uses M . The value of this matrix game 97

75 puts a lower bound on V .

Theorem 10. V ≥ 97
75 = 1. 29 3

It is possible to find finitely many hider strategies which optimize his response against A,B, C, D, M
and this would give an upper bound on V . So, in principle, it is possible to construct in an iterative
manner finite mixed strategies that put ever more accurate bounds on V . However, the number of
pure strategies increases exponentially and the approximation of the true value of V appears to be
very slow.

4. A searcher Strategy with a Continuous Initial Distribution

To improve on the upper bound V < 47/32 of Theorem 9, we extend the mixed searcher strategy
which uses {A,B}. We replace the pure strategy B by a continuous mixed strategy sΦ. In this
strategy sΦ the Searcher picks a point x according to a continuous distribution function on the
interval Φ(x) and runs to the right until he meets the sweeper A, then joins the sweeper until he
reaches −1 and runs back to the other end. The symmetric strategy −sΦ starts according to Φ(−x)
and the Searcher runs to the left until he meets the sweeper −A, etc.

Lemma 11. Suppose that the Searcher uses the mixed strategy sΦ. Let H be a pure hider strategy
and let y = y(H) be the first time that the Hider meets a sweeper. Then the Searcher finds the
Hider before time y if and only if he starts in (H(y)− y, H(0)] and runs to the right, or if he starts
in [H(0),H(y) + y) and runs to the left.

Proof. By Proposition 8 we may assume that H ≥ 0, so H meets the right sweeper A first and
H(y) = 1 − y. We consider only the case that the searcher S initially runs to the right until he
meets A. If S runs to the left the argument is the same. Suppose that s starts in (1 − 2y, H(0)],
so S meets A at time t = 1−S(0)

2 < y. Then S(0) < H(0) and S(t) > H(t) since H(t) < A(t) for
t < y. Therefore S finds H in between time 0 and time t. Now suppose that S does not start in the
interval (1− 2y, H(0)], so either S(0) > H(0) or S(0) < 1− 2y. In the first case, S runs towards A
and finds the Hider at time y. In the second case, the Searcher cannot meet A at time y, while the
Hider can. So the paths of S and H cannot cross before time y. �

Lemma 12. Let f = Φ′ be the probability density. Searchers that start in (H(y) − y, H(0)] and
run to the right catch the Hider with expected time

(6)
∫ y

0
tf (H(t)− t) (1−H ′(t))dt.
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Searchers that start in [H(0),H(y) + y) and run to the left catch the hider with expected time

(7)
∫ y

0
tf (−H(t)− t) (1 + H ′(t))dt.

Proof. Consider a small time interval [t, t + ∆t] when the Hider moves from H(t) to H(t) + ∆H.
Searchers that meet the Hider in that time interval and that have started out from the right, have
started in [H(t)− t + ∆H −∆t, H(t)− t]. Here we use that |∆H| ≤ ∆t since we may assume that
a Hider moves at no greater speed that 1. The probability of a Hider starting out in that interval
is f(H(t)− t)(∆H −∆t) up to first order. The time of capture is t up to first order. By taking the
limit of ∆t → 0 we obtain the integral in (7). By symmetry we obtain (6). �

If a Hider has chosen x = H(0) and y, then he maximizes the expected time of capture, which
comes down to maximizing

(8)
∫ y

0
t
[
f (H(t)− t) (1−H ′(t)) + f (−H(t)− t) (1 + H ′(t))

]
dt.

This integral can be simplified by partial integration, which gives the sum of a constant −yΦ(1−2y)
and the integral in equation (9).

Lemma 13. Let y be the first time that the Hider meets a sweeper. The optimal Hider path from
H(0) to H(y) maximizes

(9)
∫ y

0
Φ (−t + H(t)) + Φ (−t−H(t)) dt.

This is a variational problem. It’s Euler-Lagrange equation is f(−t + H(t)) = f(−t−H(t)), where
as before f is the probability density. A stationary value is H(t) = 0 and this makes sense, since
sΦ is designed against loitering hiders and H(t) = 0 is a minimum. If Φ is the uniform distribution,
then the Euler-Lagrange equation is satisfied by any path and the integral does not depend on H:
it is equal to y(1− y/2).

The integral in (9) represents the payoff against the searchers that start in (H(0) − y, H(0) + y)
and run towards H(0). Once the Hider has met a sweeper, he should run to the end since if the
Searcher uses sΦ he joins the sweeper. So we can determine the payoff V (sΦ,H). Denote x = H(0),
then this payoff is:

(10) 1− Φ(−x) + 2Φ(1− 2y) +
y

2
(1− Φ(x))− y

2
Φ(1− 2y) +

1
2

∫ y

0

Φ(−t + H(t)) + Φ(−t−H(t))dt

This equation is derived as follows. A searcher starts out left from x and runs to the left with
probability (1 − Φ(−x))/2. Such a searcher catches H at time 2. This gives the first term. A
searcher starts out left from 1 − 2y and runs to the right with probability Φ(1 − 2y)/2. Such a
searcher catches H at time 4 and this gives the second term. A searcher starts out right from x
and runs right with probability (1−Φ(x))/2. Such a searcher catches H at time T . This gives the
third term. The fourth term −yΦ(1− 2y) turns up in the partial integration and the final term is
the variational integral.
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We consider a mixed strategy σ for the Searcher, as follows: use the sweeper strategy ±A with
probability p and use the continuous mixed strategy sΦ with probability 1− p. If Φ is the uniform
distribution then ( 10) is equal to

(11)
10 + 2x− (7 + x)y + y2

4
,

which is maximal at x = 1 for any 0 ≤ y ≤ 1 and decreasing in y. If the Searcher takes p = 7/9
then V (σ,H) = 13/9− y/18 + y2/18 which is maximal at y = 0 and y = 1. So against σ, the Hider
optimizes in either of two ways: stick to an end, or run from an end to the middle and back. The
payoff is 13/9, which puts an upper bound on the value of the game that is sharper than the bound
47/32 that we found in the previous section. We summarize this in a theorem.

Theorem 14. If the Searcher uses the mixed strategy σ then the optimal response of the Hider
gives a matrix game with value 13/9. In particular V ≤ 13/9.

Now the obvious way to try and improve on this bound is by varying the distribution Φ. Our
computer experiments indicated that the bound of 13/9 can only be improved marginally in this
way. To prove that there is only room for marginal improvement, we consider a specific non-crossing
hider strategy: Hx starts in H(0) = x ≥ 0 and runs towards the sweeper A; turning just ε in front
of the sweeper; then Hx runs back towards the middle but turns once again at time y, before
reaching the middle, to run to the end. So, ignoring ε we can describe this path by Hx(t) = x + t
if t ≤ (1− x)/2 and Hx(t) = 1− t if (1− x)/2 ≤ t ≤ y for x ≥ 0. The variational integral (9) over
this path is:

(12)
1
2

(
Φ(x)(1− x) +

∫ −x

0
Φ(t)dt +

∫ x

1−2y
Φ(t)dt

)
Suppose that y = 1. Then the payoff V (Hx, A) against the sweeper strategy is 3/2. Against the
continuous strategy it is

(13) V (Hx, sΦ) =
3
2
− Φ(−x)− Φ(x)

(1 + x)
4

+
1
4

∫ −x

−1
Φ(t)dt +

1
4

∫ x

−1
Φ(t)dt

Suppose that the Searcher uses a mixed strategy σΦ on {A, sΦ}. Suppose that the Hider uses a
mixed strategy γ on {E,H1,H 1

2
,H0}, where E is the end point strategy. The integrals in (13)

can be bounded from below by finite sums such as
∫ 0
−1 Φ(t)dt ≥ 1

2Φ(−1
2) + 1

2Φ(0). Bounding the
integrals in this way we get a 4× 2 zero-sum matrix game, the value of which is a lower bound on
V (γ, σΦ):

(14)

[
1 3

2
3
2

3
2

3 1 + 1
8Φ(− 1

2 ) + 1
8Φ(0) + 1

8Φ( 1
2 ) 3

2 + 1
4Φ(− 1

2 )− 5
4Φ(0) 3

2 −
7
8Φ(− 1

2 ) + 1
8Φ(0)− 3

8Φ( 1
2 )

]
To minimize the value of this matrix game, the Searcher should choose Φ such that the maximum of{

1 + 1
8Φ(−1

2) + 1
8Φ(0) + 1

8Φ(1
2), 3

2 + 1
4Φ(−1

2)− 5
4Φ(0), 3

2 −
7
8Φ(−1

2) + 1
8Φ(0)− 3

8Φ(1
2)

}
is minimal.

By linear programming we find that the Searcher should choose Φ(−1
2) = 8

25 and Φ(0) = Φ(1
2) = 9

25 .
The value of the matrix game is 337

237 = 1.4219 . . ., which is only marginally smaller than 13/9.
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Theorem 15. If the Searcher uses a mixed strategy σΦ on {A, sΦ} for any distribution Φ then the
Hider can respond by a strategy γΦ such that V (σΦ, γ) > 1. 42 1.

5. A hider Strategy with a Continuous Initial Distribution

To improve on the lower bound V > 97/75 of Theorem 10, we extend the mixed hider strategy
which uses {E,F, G}. We replace the loitering strategies F and G by a continuous mixed strategy
hΦ. In this strategy the Hider picks a point x ∈ [ε, 1− ε] according to a distribution function Φ(x)
and he waits at x until the sweeper A is ε close. Then the Hider runs to ε, turns, and runs back
to 1. In the symmetric strategy −hΦ the Hider picks a point in [−1 + ε,−ε].

It follows from Proposition 5 that the Searcher S either starts at an end, in which case the S is a
sweeper, or he starts in [−1 + ε,−ε ] ∪ [ ε, 1 − ε ] Let y be the first time that S gets ε close to a
sweeper. By symmetry we may assume that this sweeper is A. Since A runs all the time S(t) < A(t)
for t < y. We conclude that S approaches A from the left, so up to time y he catches hiders that
have remained immobile. Clearly, the Searcher should maximize the interval [S(0), S(y)] to catch
as many immobile hiders as possible. So S starts in 1 − 2T − ε and runs to 1 − T − ε. At time y
the Searcher catches all the loitering hiders that have started out from x > S(0) and are running
ε in front of A. The Searcher now effectively has two possibilities, and we leave it to the reader to
check this: either he turns and runs to −1 and back to +1, let’s call this S1, or he continues and
runs to +1 and then back to −1, let’s call this S2. Against the end point strategy the payoffs are
V (S1, E) = 3 and V (S2, E) = 1 + 2T . Ignoring ε the payoffs of these two strategies against hΦ are

(15) V (S1, hΦ) = (1− Φ(2y − 1)) + 1
2

∫ 2y−1
0 f(t)dt +

y(1−Φ(1−y))+Φ(1−2y)+
R 1−y
1−2y f(t)dt

2

V (S2, hΦ) = (1 + y)(1− Φ(2y − 1)) + 1
2

∫ 2y−1
0 f(t)dt +

y(1−Φ(1−y))+(1+y)Φ(1−2y)+
R 1−y
1−2y f(t)dt

2

where, as before, f denotes the density of Φ. To see why this is true, note that the first two terms
in V (S1, hΦ) concern loitering hiders that start out from x < 0: the term first represents the hiders
that start from x < 0 and that are found at the end point −1, the second term represents the hiders
that start from 1− 2y < x < 0, which are caught before time y. The third term represents hiders
that start from x > 0. In the same way we obtain V (S1, hΦ). Both payoffs are functions of y.

We simplify the analysis and consider only the case that Φ is the uniform distribution. Let γ be
the mixed strategy in which the Hider uses {E, hΦ}, with Φ equal to the uniform distribution.
Since V (S1, E) does not depend on T it is optimal for the Searcher to choose y such that V (S1, hΦ)
is minimal.

Theorem 16. If the Hider uses the mixed strategy γ then the optimal response of the Searcher
gives a matrix game with value 15/11. In particular V ≥ 15/11.

Proof. Since V (S1, E) does not depend on y, the Searcher should choose y such that V (S1, hΦ) is
minimal. As is shown in Figure 3, the minimum is at y = 1. So the Searcher S1 runs ε ahead
of the sweeper and the payoff is 3

4 . If the Searcher only uses a mixed strategy on {A,S1}, then

we get a 2 × 2 matrix game
[

1 3/2
3 3/4

]
which has value 15/11. In this game it is optimal for the

Hider to choose the end point strategy E with probability 3
11 and the loitering strategy hΦ with

probability 8
11 . It turns out that the Searcher cannot decrease the value of the game by including
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Figure 3. V (S1, hΦ) as a func-
tion of y

1.9
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Figure 4. 3
11V (S2, hΦ) +

8
11V (S2, hΦ) as a function of y

the strategy S2: 3
11V (S2, E) + 8

11V (S2, hΦ) ≥ 15
11 as illustrated in Figure 4. So if the Hider uses the

mixed strategy γ in which he chooses E with probability 3
11 then the Searcher cannot do better

than expected capture time 15/11. �

6. Conclusions

This paper introduces the apparently easy problem of how best to search for a mobile hider who is
restricted to a known interval. The existence of a Value for this game, and of ε-optimal strategies
for the Searcher and the Hider, follows from a minimax theorem by Alpern and Gal. However
the determination of the value V , much less optimal strategies, seems difficult. The problem has
resisted our attempts to solve it, but we have made significant progress in that direction. We have
established many properties of optimal searcher and hider paths, that is, those that can be used in
optimal mixed strategies. We have established bounds 15/11 ≤ V ≤ 13/9 on the value of the game
by developing a variational theory that can be used to evaluate certain mixed strategies which start
according to a continuous distribution on the interval. We present this problem, the ‘Princess and
Monster Game on an Interval’ as a challenge to the zero-sum game community. We conjecture that
it’s value is 1.4.
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