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be greater than a vertex olored B provided they are not adjaent. We show that this problem isNP-omplete if the partial ordering on olors ontains at least two inomparable pairs. Otherwise,the problem is in P.2 Basi de�nitionsMost of our terminology and notation will be standard and an be found in any textbook on graphtheory suh as [2℄, and on omputational omplexity suh as [4℄.Throughout this paper a graph G = (V;E) is �nite, simple and loopless. We will always use nfor the number of verties and assume that the verties of the input graph G are integers from 1to n ( in other words we set V = [1; n℄ ). With this assumption we an onsider the vertex set as alinearly ordered set (V;�).The set of available olors is denoted by Col. A oloring of a graph G is a funtion ' : V ! Colso that for every edge uv 2 E we have '(u) 6= '(v). We additionally assume that � is anantisymmetri, reexive and transitive relation on Col, i.e., C = (Col;�) is a partially orderedset. We sometimes all (Col;�) the olor-poset. We will study the omplexity of two oloringproblems in whih we will olor verties of the input graph G with olors in Col satisfying furtherrequirements. We will refer to a oloring that satis�es these requirements as a feasible oloring.Let C 2 Col, the set VC of verties in G olored by C will be alled a olor lass.If (P;4) is a poset, then an antihain is a set S � P so that no two elements from S areomparable ( i.e., for all x; y 2 S we have x 6� y and y 6� x ).Given X;Y � V , an edge with one end-vertex in X and the other in Y is alled an X;Y -edge.Let E(X;Y ) be the set of all X;Y -edges.3 Coloring with ordered olor lassesIn this setion we study the omplexity of the following deision problem :Problem 3.1.Fix a olor-poset (Col;�). Given a graph G = (V;E) with V = [1; n℄, determine whether G an beolored with Col suh that for any two olors A;B with A � B and for any two verties u 2 VAand v 2 VB we have u � v.If a oloring as in Problem 3.1 exists, we say that the graph G an be feasibly olored with (Col;�).Note that if � is the empty relation on Col, then Problem 3.1 is the well-known graph oloringproblem.Theorem 3.2.If the poset (Col;�) does not ontain an antihain of size 3, then Problem 3.1 an be solved inpolynomial time. Otherwise, the problem is NP-omplete.The proof that Problem 3.1 is in P if the longest antihain in (Col;�) has length at most 2 is quitetehnial. For this reason we �rst give the proof for a spei� small poset with all the details. Theproof of the general ase will be done with less detail after that. The fairly straightforward proofthat the problem is NP-omplete if (Col;�) ontains an antihain of length 3 will be the �nal proofin this setion. 2



Lemma 3.3.Let Col = fA;B;Cg and suppose the only relation between the olors is A � B. Problem 3.1 anbe solved in polynomial time for this poset (fA;B;Cg;�).Proof. Suppose a graph G an be feasibly olored with (fA;B;Cg;�). It follows that there existsa vertex v 2 V suh that verties in the set VAC = [1; v � 1℄ are olored A or C, and verties inthe set VBC = [v; n℄ are olored B or C. Therefore, the subgraphs GAC and GBC of G, induedby VAC and VBC , respetively, are bipartite. Suppose GAC has k omponents and GBC has `omponents. Let f(Xi;Xi)gki=1 be the set of bipartitions of onneted omponents fXigki=1 of GAC ,and let f(Yj ; Yj)gj̀=1 be the set of bipartitions of onneted omponents fYjgj̀=1 of GBC .Every bipartite omponent Xi ( respetively Yj ) has exatly two 2-olorings. Thus, we anassoiate eah Xi with a boolean variable xi as follows : if the bipartition Xi of Xi is olored C,then xi = 0; otherwise, xi = 1. Similarly, we assoiate eah Yj with a boolean variable yj : if thebipartition Yj of Yj is olored C, then yj = 0; otherwise, yj = 1.Every (VAC ; VBC)-edge of G imposes a onstraint on a feasible oloring of G. This onstraintan be equivalently expressed in terms of the above boolean variables :� for every (Xi; Yj)-edge of G, the lause xi _ yj should be satis�ed;� for every (Xi; Yj)-edge of G, the lause xi _ yj should be satis�ed;� for every (Xi; Yj)-edge of G, the lause xi _ yj should be satis�ed;� for every (Xi; Yj)-edge of G, the lause xi _ yj should be satis�ed.Let fv be the onjuntion of the above 2-literal disjuntions for all (VAC ; VBC )-edges of G, seeFigure 1 for an example.
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Figure 1: An example of the transformation of a graph G into a 2-CNF formula.Obviously, there exists a feasible oloring of G if and only if the formula fv is satis�able. Anassignment of boolean values to variables in fv an be translated into a oloring of G in linear time.Hene, to �nd a oloring for G feasible with (fA;B;Cg;�), we an use the following algorithm� For eah v 2 V , hek if the subgraphs indued on [1; v � 1℄ and on [v; n℄ are bipartite. If so,onstrut the formula fv and use a 2-SAT solver to hek the satis�ability of the formula. Thegraph G has a feasible oloring if and only if for at least one v 2 V the subgraphs indued on[1; v � 1℄ and on [v; n℄ are bipartite and the formula fv is satis�able.In [3℄, a 2-SAT solver working in linear time in the size of the formula is desribed. Note thateah fv has O(n) variables and O(n2) lauses. Sine there are n hoies for v, Problem 3.1 an besolved in O(n3) steps.We next give the general proofs of the two parts of Theorem 3.2.3



Theorem 3.2AIf the poset (Col;�) does not ontain an antihain of size 3, then Problem 3.1 an be solved inpolynomial time.Proof. If P = (P;4) is a poset and u 2 P , then by (P � u;4) we denote the poset with the sameordering 4 on the set P n fug. For a poset P with jP j = p elements that does not ontain anantihain of size 3, we will onstrut of olletion �P of p-tuples � = (�1; : : : �p), where eah �iis a set of one or two elements from P . The onatenation of two tuples � = (�1; : : : ; �k) and� = (�1; : : : ; �`) is � � � = (�1; : : : ; �k; �1; : : : ; �`).The onstrution of �P is reursively as follows :� If P has one element, say P = fag, then �P = f fag g.� If jP j � 2 and P has a maximum element a, then �P = f� � (fag) j � 2 �P�a g.� If jP j � 2 and P has no maximum element, then, sine the longest antihain has length 2, thereare two maximal elements a; b ( so a 64 b and b 64 a, while p 4 a or p 4 b for all p 2 P ). In thatase we set �P = f� � (fa; bg) j � 2 �P�a g [ f� � (fa; bg) j � 2 �P�b g.Note that the number of tuples in �P is �nite.Now we go bak to a olor poset C = (Col;�) with no antihain longer than 3. Set  = jColj.Consider a graph G = (V;E) with V = [1; n℄. Suppose G an be feasibly olored with C. Withany suh oloring we an assoiate a -tuple � = (�1; : : : �) 2 �C and a ( + 1)-tuple of integers(v1; v2 : : : ; v+1) so that :1. We have 1 = v1 � v2 � � � � � v � v+1 = n+ 1.2. For all i = 1; : : : ; , the subgraph of G indued on [vi; vi+1 � 1℄ is an independent set or abipartite graph.3. For all i = 1; : : : ; , the olors appearing on the verties [vi; vi+1�1℄ are exatly the olors in �i.The existene of these tuples follows diretly from the fat that eah antihain in C has length 1or 2, and hene we annot \mix" three or more olors from Col when oloring the graph.Given a ( + 1)-tuple of integers (v1; v2 : : : ; v+1), it is easy to hek if this tuple satis�esonditions 1 and 2 above. If it does, then we an hoose a -tuple � = (�1; : : : �) 2 �C and use thesame tehnique as applied in the proof of Lemma 3.3 to transform the problem of the existene ofa feasible oloring of G in aordane with ondition 3 to the existene of a solution of a ertain2-SAT problem. Hene the question if there exists a oloring of G in aordane with two hosentuples satisfying onditions 1 { 3 an be done in time polynomial in n.The number of ( + 1)-tuples (v1; v2 : : : ; v+1) with 1 = v1 � v2 � � � � � v � v+1 = n + 1is O(n). And the number of tuples in �C is O(2). And so, to hek if a graph G on n orderedverties [1; n℄ an be feasibly olored with C, we need to onsider at most O(n) 2-SAT problems.Using estimates for the numbers of variables and lauses in eah of the 2-SAT problems similar tothose in the proof of Lemma 3.3, we an onlude that Problem 3.1 an be solved in polynomialtime.Theorem 3.2BIf the poset (Col;�) ontains an antihain of size 3 or more, then Problem 3.1 is NP-omplete.Proof. Let C = (Col;�) be a poset ontaining an antihain of size 3 or more. It is obvious thatProblem 3.1 is in NP. To prove the problem is NP-omplete we give a redution from the properK-oloring problem, whih is well known to be NP-omplete for any �xed K � 3.4



Let S � Col be an antihain in C with jSj � 3, hosen suh that S is maximal. I.e., for allC 2 Col n S we have that C � A for some A 2 S, or A � C for some A 2 S, but not both ( sine Sis an antihain ). Let ColD � Col be the set of olors C 2 Col nS suh that C � A for some A 2 S,and de�ne ColU � Col similarly for olors in Col n S whih are larger than some olor in S. SetK = jSj, nD = jColDj and nU = jColU j.Given a graph G0 = (V 0; E0) on n0 verties, we onstrut a graph G with ordered vertex set [1; n℄where n = nD+n0+nU , so that G0 has a K-oloring if and only if G an be feasibly olored with C.Let the verties of G be [1; nD℄[ [nD +1; nD +n0℄[ [nD +n0+1; nD +n0+nU ℄. Add edges so thatthe graph on [nD+1; nD+n0℄ is isomorphi to G0, and verties in [1; nD℄[ [nD+n0+1; nD+n0+nU ℄are joined to all other verties.Suppose G0 has a K-oloring. Then we an olor G in aordane with C as follows :� Give eah vertex in [1; nD℄ its own olor from ColD, using some linear extension of the orderimposed by C on ColD.� Color the verties in [nD +1; nD + n0℄ with olors from S, aording to the K-oloring possibleon G0.� Give eah vertex in [nD + n0 + 1; nD + n0 + nU ℄ its own olor from ColU , using some linearextension of the order imposed by C on ColU .It's easy to hek that this oloring of G is feasible with C, where the ruial observation is that Sis an antihain in C and hene every proper oloring with olors from S is always in aordanewith the poset order.Next suppose that G has a feasible oloring with C. Suh a oloring must have the followingproperties :� Eah vertex in [1; nD℄ has a unique olor from ColD, and this olor is smaller than any olorappearing on [nD + 1; nD + n0℄ [ [nD + n0 + 1; nD + n0 + nU ℄.� Eah vertex in [nD+n0+1; nD+n0+nU ℄ has a unique olor from ColU , and this olor is largerthan any olor appearing on [1; nD℄ [ [nD + 1; nD + n0℄.From this it follows that the verties in [nD + 1; nD + n0℄ are olored with olors from S. Sine Sis an antihain, the only requirement to olor those verties with S is that is must be a properoloring. Suh a proper oloring immediately gives a K-oloring of G0.4 Coloring with ordered edgesIn this setion we study the omplexity of the following deision problem :Problem 4.1.Fix a olor-poset (Col;�). Given a graph G = (V;E) with V = [1; n℄, determine whether G an beolored with Col suh that for any two olors A;B with A � B and for any edge (u; v) 2 E withu 2 VA and v 2 VB we have u � v.We will transform this problem into a direted graph homomorphism problem. In this setion, by(u; v) we mean a direted edge ( ar ) from u to v. We will use E to denoted the set of diretededges of a digraph as well.The three semi-omplete digraphs depited in Figure 2 play a ruial role in our haraterization.5
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kFigure 2: The ruial semi-omplete digraphs in the dihotomy haraterization of Problem 4.1.Fk is obtained by taking the transitive losure of F 0k.De�nition 4.2.Let H be a �xed direted graph. An H-oloring of a digraph G is a homomorphism from G to H ( amapping ' from V (G) to V (H) suh that if (x; y) 2 E(G) then ('(x); '(y)) 2 E(H) ). The ayliH-oloring problem asks whether for a given ayli digraph G there is an H-oloring of G.De�nition 4.3.A semi-omplete digraph is a digraph H whih ontains a spanning tournament, i.e., between anytwo verties there is either one ar or both opposite ars. We say that a semi-omplete digraph isquasi-ayli if after removal of all pairs of oppositely direted ars we obtain a transitive aylisubgraph of H.An alternative de�nition of a quasi-ayli semi-omplete digraph is as a semi-omplete digraph inwhih every direted yle ontains at least two ars that ome from pairs of opposite ars. It is easyto see that there is a one-to-one orrespondene between posets and quasi-ayli semi-ompletedigraphs. Given a olor-poset C = (Col;�), to obtain the orresponding digraph take V = Col.And for every two olors A and B, A 6= B, if A � B add an ar (A;B), if B � A add an ar (B;A),and otherwise add a pair of opposite ars (A;B) and (B;A). The resulting semi-omplete digraphis quasi-ayli and will be denoted HC .Similarly, a graph G with ordered vertex set [1; n℄ an be onsidered as a digraph �!G if wereplae all edges uv 2 E(G) with u < v by ars (u; v).Without a proof we note that, with this notation, we have that G has a oloring by C feasiblefor Problem 4.1 if and only if there is an HC-oloring of �!G .Theorem 4.4.Let H be a quasi-ayli semi-omplete digraph. The ayli H-oloring problem an be solved inpolynomial time if H ontains at most one direted 2-yle ( a pair of oppositely direted ars ).Otherwise, the problem is NP-omplete. 6



This is exatly the same dihotomy as for the general H-oloring problem where H is any semi-omplete digraph, f. [1℄. In partiular, the �rst part of the theorem follows from the polynomialityof this problem. But for ompleteness we give a short proof below as well.The seond part of the theorem follows from the Lemmas 4.6 { 4.10 that make up most ofthe remainder of this setion. In those lemma we �rst prove the NP-ompleteness of the ayliH-oloring problem for three ruial quasi-ayli semi-omplete digraphs and then for any quasi-ayli semi-omplete digraph ontaining any of those three as an indued subdigraph.Lemma 4.5.Let H be a quasi-ayli semi-omplete digraph. The ayli H-oloring problem an be solved inpolynomial time if H ontains at most one direted 2-yle.Proof. The problem is trivial if jV (Hj = 1. If jV (H)j = 2 and there is a 2-yle in H, then anayli digraph G has a homomorphism from G to H if and only if the underlying graph of G( obtained by ignoring the diretions on the ars ) is bipartite. Similarly, if jV (H)j = 2 and thereis no 2-yle in H, then an ayli digraph G has a homomorphism from G to H if and only if wean partition V (H) = HD [HU and every ar in H has its tail in HD and its head in HU .So assume jV (H)j � 3. Sine H has an ayli spanning tournament, there are both a universalsink and a universal soure in H, i.e., there is a vertex u 2 V (H) so that for all v 2 V (H), v 6= u,we have (v; u) 2 E(H); and there is a vertex u0 2 V (H) so that for all v 2 V (H), v 6= u0, we have(u0; v) 2 E(H). Sine H has at most one 2-yle f(p; q); (q; p)g and after removing that 2-yle weobtain a transitive ayli subgraph of H, it is easy to hek that we an hoose at least one ofu; u0 di�erent from both p and q.Suppose that the universal sink u in H is di�erent from p and q. Let G be an ayli digraphand let Gi be the sets of sinks in G. Then there is a homomorphism from G to H if and only if thereis a homomorphism from G�Gi to H�u. Indeed, homomorphisms from G�Gi to H�u are easilyextendable to homomorphisms from G to H. The onverse follows sine in any homomorphismfrom G to H, the neighbors of verties in Gi are not mapped to u, and hene we an remap theverties in Gi to u if neessary.A similar observation holds if the universal soure in H is di�erent from p and q. We use indu-tion on jV (H)j to get a straightforward polynomial algorithm to hek if there is a homomorphismfrom H to G.The following follows immediately from the NP-ompleteness of the ordinary 3-oloring problem.Lemma 4.6.Let H0 be the quasi-ayli semi-omplete digraph depited in Figure 2. The ayli H0-oloringproblem is NP-omplete.Lemma 4.7.Let H1 be the quasi-ayli semi-omplete digraph depited in Figure 2. The ayli H1-oloringproblem is NP-omplete.Proof. The problem is obviously in NP. We will show that given a boolean formula f(x1; x2; : : : ; xm)in onjuntive normal form (CNF ), we an onstrut an ayli direted graph eG(f) whih has anH1-oloring ' if and only if f is satis�able. For every boolean variable a of f ( respetively, everyauxiliary variable enoding the boolean value of a subformula of f ), we will onstrut the gadget7



Ga = (Va; Ea) de�ned as follows: Va = fv1a; : : : ; v6ag and Ea = f (v2a; v1a), (v3a; v1a), (v3a; v2a), (v4a; v2a),(v5a; v3a), (v5a; v4a), (v6a; v1a), (v6a; v4a), (v6a; v5a) g, see Figure 3.
v1

a

v2

a

v4

a

v5

a

v3

a

v6

a

A

B

C

C

AB

Ga

Pat(Ga) = P 1

v1

a

v2

a

v4

a

v5

a

v3

a

v6

a

A

C

B

A

CB

Ga

Pat(Ga) = P 0Figure 3: The two possible homomorphisms ( oloring patterns ) from Ga to H1 : on the left handside Pat(Ga) = P 0; on the right hand side Pat(Ga) = P 1.Eah gadget Ga is ayli and has only two H1-olorings, alled olor patterns, see Figure 3. Letthe olor pattern P 0 of Ga with '(v1a) = '(v4a) = A, '(v3a) = '(v6a) = B and '(v2a) = '(v5a) = C,represent the fat that the value of the boolean variable a is 0. Similarly, let the olor pattern P 1of Ga with '(v1a) = '(v5a) = A, '(v2a) = '(v6a) = B and '(v3a) = '(v4a) = C, represent the fat thata = 1.Now let us give an overview of the main ideas in the onstrution of eG(f). Firstly, we onstruta gadget Gxi for every variable xi ourring in the formula f . Seondly, for every disjuntivesubformula di of f = d1^d2^� � �^dk, we onstrut an ayli digraphG(di) ontaining a gadget Gdiand using the gadgets Gx1 ; : : : ; Gxm suh that for every H1-oloring of G(di), Pat(Gdi) = P 1 if andonly if olor patterns of Gx1 ; : : : ; Gxm orrespond to a true assignment for di. Finally, we extendeah G(di) to a graph eG(di) suh that the gadget Gdi will have the olor pattern P 1 in everyH1-oloring of eG(di). Sine the gadgets Gx1 ; : : : ; Gxm are ommon for every eG(di), it will followthat there is an H1-oloring of eG(f) = Ski=1 eG(di) if and only if there is a true assignment for f ,i.e., if f is satis�able.In the following we desribe a reursive onstrution of the graph G(d), where d = di. If d hasno _'s, then either d = xj or d = xj, for some j = 1; : : : ;m. As desribed above, add a gadget Gdto G(d). To omplete the onstrution add the ar (v3d; v2xj ) if d = xj , and the ar (v2d; v2xj ) ifd = xj , see Figure 4. First suppose d = xj . If the olor pattern of Gxj is P 0, then beause of thear (v3d; v2xj ), the only possible olor pattern for Gd is P 0, and similarly if the olor pattern of Gxjis P 1, the only possible olor pattern for Gd is P 1. Sine every true assignment of d has xj = 1 andthe remaining variables an have arbitrary values, for every H1-oloring of G(d), Pat(Gd) = P 1 ifand only if olor patterns of Gx1 ; : : : ; Gxm orrespond to suh a true assignment. If d = xj, theargument is similar.Assume now that d ontains an _. Then there are disjuntive subformulas d0 and d00 in f suhthat d = d0 _ d00. We reursively onstrut graphs G(d0) and G(d00) ( in polytime ). Construt G(d)as follows. Take a union of G(d0) and G(d00) and add a new variable gadget Gd and disjuntiongadget onsisting of three new verties w1d; w2d; w3d and the ars (w2d; w1d), (w3d; w2d). Furthermore,add the ars (w1d; v2d0), (w1d; v5d0), (w3d; v2d00), (w3d; v5d00) and (v4d; w2d) onneting disjuntion gadget withthe variable gadgets, see Figure 5.It is easy to hek that in every H1-oloring of G(d0) ( respetively G(d00) ), the gadget Gd08
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Figure 6: The onstrution of eG(d).in G(d0) ( respetively Gd00 in G(d00) ) has olor pattern P 1 if and only if the olor patterns ofgadgets Gx1 ; : : : ; Gxm represent a true assignment for d0 ( respetively d00 ). Otherwise it has olorpattern P 0. Sine the olor patterns of gadgets Gx1 ; : : : ; Gxm represent a true assignment for d ifand only if they represent a true assignment for d0 or d00, it is enough to show that in any H1-oloringof G(d), Pat(Gd) = P 1 if and only if Pat(Gd0) = P 1 or Pat(Gd00) = P 1.Consider an H1-oloring of G(d). If Pat(Gd0) = Pat(Gd00) = P 1, then '(w1d) = '(w3d) = C and'(w2d) = A or B, and hene Pat(Gd) = P 1. ( Note that this is true even if '(w2d) = B; the vertex v4dannot be olored A beause of the ar (v4d; w2d). ) If Pat(Gd0) = P 1 and Pat(Gd00) = P 0, then'(w1d) = C, and sine (w3d; w2d) is an ar, '(w2d) = A and '(w3d) = B. Hene, Pat(Gd) = P 1. Thease Pat(Gd0) = P 0 and Pat(Gd00) = P 1 is analogous to the previous one. If Pat(Gd0) = Pat(Gd00) =P 0, then '(w1d) and '(w3d) is either A or B. Sine G(d) ontains the ars (w2d; w1d) and (w3d; w2d), wemust have '(w2d) = C, and hene Pat(Gd) = P 0. This veri�es the onstrution of the graph G(d).Finally, we extend eah G(d) to a graph eG(d) suh that the gadget Gd will have the olorpattern P 1 in every H1-oloring of eG(d). Then, for every H1-oloring of eG(d), the olor patternsof Gx1 ; : : : ; Gxm must represent a true assignment for d. It follows that eG(f) has an H1-oloring ifand only if f is satis�able.Let Z be the graph with V (Z) = fz1; : : : ; z5g, and E(Z) = f (z2; z1), (z3; z2), (z3; z1), (z4; z3),(z5; z3), (z5; z4) g. Sine z3 has two inoming ( outgoing ) ars from verties onneted by an ar,it annot be olored B ( respetively A ). Hene, z3 must be olored C. Consequently, '(z1) ='(z4) = A and '(z2) = '(z5) = B. Now, we are ready to onstrut eG(d). Take the union of G(d)and Z and add an ar (v2d ; z3), see Figure 6. Obviously, in any H1-oloring of eG(d), Pat(Gd) = P 1.Finally, let us dedue that the direted graph eG(f) is ayli. Firstly, by indution, we showthat for every subformula d used in the onstrution of G(d) is ayli. This is ertainly true forevery d = xj or d = xj. Now, onsider the formula d = d0 _ d00, see Figure 5. By indution G(d0)and G(d00) are ayli and sine all ars inident with the ommon part of G(d0) and G(d00) ( theinput variable gadgets ) end in the ommon part, the union G(d0) [ G(d00) is ayli as well. Thegraph G(d) ontains this union and two new gadgets and all ars onneting these two parts startin the new gadgets and end in the union. Hene, G(d) is also ayli. Thus, for every di in f ,G(di) and obviously also eG(di) is ayli. By the same argument as above their union eG(f) is alsoayli.Lemma 4.8.Let F0 be the quasi-ayli semi-omplete digraph depited in Figure 2. The ayli F0-oloringproblem is NP-omplete. 10



Proof. The problem is obviously in NP. The proof of NP-hardness follows the lines of the proof ofLemma 4.7. We will again show that given a boolean formula f(x1; x2; : : : ; xm) in CNF, we anonstrut an ayli direted graph eG(f) whih has a F0-oloring if and only if f is satis�able.The main di�erenes with the proof of Lemma 4.7 is that the new variable gadgets will sharea four-vertex subdigraph and will have eight olor patterns. This is unavoidable sine in everyF0-oloring, the olors A and B ( respetively, C and D ) are interhangeable. The four-vertexdigraph Z, ommon to all gadgets, has V (Z) = fz1; : : : ; z4g and E(Z) = f (u; v) j u; v 2 V (Z) ^ u >v g, see Figure 7. Note that the digraph Z has a unique F0-oloring up to swapping A and B, or C
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z4Figure 7: The graph Z.and D. Without loss of generality, it is enough to onsider only those F0-olorings ' of eG(f) whihhave '(z1) = A, '(z2) = B, '(z3) = C and '(z4) = D. This assumption will redue the numberof olor patterns of variable gadgets to two.For every boolean variable a of f ( input or auxiliary ), we will onstrut the following ayligadget Ga = (Va; Ea) with Va = fv1a; : : : ; v6ag and Ea = f (v2a; v1a), (v3a; v2a), (v4a; v1a), (v5a; v4a), (v6a; v3a),(v6a; v5a) g. As proposed above, we omplete the onstrution of the gadget by onneting it to theommon digraph Z by ars (v3a; z1), (v4a; z1), (v5a; z1), (v6a; z1), (v2a; z2), (z3; v3a) and (z3; v4a), seeFigure 8. The �gure shows two oloring patterns of Ga : P 0 with '(v1a) = '(v3a) = B, '(v2a) =
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Pat(Ga) = P 1Figure 8: Two oloring patterns of the gadgetGa : Pat(Ga) = P 0 ( on the left ); and Pat(Ga) = P 1( on the right ). The squares labeled with A, B and C represent verties z1, z2 and z3 of thedigraph Z ommon to all gadgets, respetively. For simpliity, we omitted the fourth vertex of Zand the ars inside Z.A;'(v4a) = '(v6a) = D and '(v5a) = C, whih will represent the fat that a = 0; and P 1 with'(v1a) = A, '(v2a) = '(v6a) = C, '(v3a) = '(v5a) = D and '(v4a) = B orresponding with a = 1.For eah disjuntive subformula d = di of f = d1^� � �^dk, the onstrution of eG(d) is analogousto the onstrution in the proof of Lemma 4.7. Therefore, we only desribe the main ingredientsof the onstrution : the base step d = xj or d = xj , the indutive step d = d0 _ d00, and foring theolor pattern of Gd to P 1. In the base step, add the ar (v6xj ; v5d), if d = xj ; or the ar (v5xj ; v5d), ifd = xj, joining the input variable gadget Gxj to variable gadget Gd, see Figure 9. One an easily11
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xjFigure 9: On the left : G(d) for the boolean formula d = xj; on the right : G(d) for the booleanformula d = xj .hek that G(d) is ayli and has the required property.In the indutive step, onstrut G(d) as follows. Take the union of Gd0 and Gd00 , add onenew gadget Gd and three new verties w1d; w2d; w3d. Furthermore, add the ars (v2d0 ; w1d), (v5d0 ; w2d),(v5d0 ; v4d), (w3d; v5d00), (v5d00 ; v4d), (w2d; w1d), (w2d; v1d), and (w3d; w2d), see Figure 10.
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Figure 10: The onstrution of G(d) for the boolean formula d = d0 _ d00 using the union ofgraphs G(d0) and G(d00). In the example we assume that d0 ontains both x1 and x1 whih isindiated by two ars leaving the gadget Gx1 . Similarly, the ars leaving the gadget Gx2 indiatethat x2 or x2 are in both d0 and d00. Finally, no ar leaving the gadget Gxm indiates that neither d0nor d00 ontains xm or xm.We show that in any feasible oloring of G(d), Pat(Gd) = P 1 if and only if Pat(Gd0) = P 1or Pat(Gd00) = P 1. Notie that the ars (v5d0 ; v4d) and (v5d00 ; v4d) guarantee that if one of the gadgets Gd0or Gd00 has olor pattern P 1, gadget Gd must have olor pattern P 1. Now, it is enough to showthat there is a feasible oloring for the three w�verties in eah one of these three ases. Indeed wean olor the w�verties as follows : if Pat(Gd0) = P 1 and Pat(Gd00) = P 0, '(w1) = A, '(w2) = B,'(w3) = D; if Pat(Gd0) = P 0 and Pat(Gd00) = P 1, '(w1) = B, '(w2) = D, '(w3) = C; and ifPat(Gd0) = P 1 and Pat(Gd00) = P 1, '(w1) = A, '(w2) = B, '(w3) = C. It remains to onsider12
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Pat(Ga) = P 1Figure 11: Two oloring patterns of the gadget Ga: Pat(Ga) = P 0 ( on the left ); and Pat(Ga) = P 1( on the right ). The squares labeled with B, C, E1, E2, Ek�1 and Ek represent verties z2, z3,q1, q2, qk�1 and qk of the ommon digraph Z, respetively. For the ase k = 1, the vertiesE1; E2; Ek�1; Ek are the same vertex. For the ases k = 2; 3, some of these verties are naturallyidenti�ed with eah other.the ase when Pat(Gd0) = P 0 and Pat(Gd00) = P 0. We have '(v2d0) = A and '(v5d0) = '(v5d00) = C.The ar (v2d0 ; w1d) fores '(w1d) = B and the ar (w3d; v5d00) fores '(w3d) = D. Furthermore, the ars(v2d0 ; w1d), (w3d; v5d00) and (v5d00 ; w2d) fore '(w2d) = A. Beause of the ar (w2d; v1d), '(v1d) = B. Hene,Pat(Gd) = P 0. This veri�es the onstrution of the graph G(d).Finally, to extend G(d) to eG(d) foring Gd to olor pattern P 1, add the ar (v1d; z2). Let usobserve that the direted graph eG(f) is ayli. Note that if a direted graph ontains a sink ( onlyinoming ars ) or a soure ( only outgoing ars ) then it an be removed from the graph withouta�eting ayliity of the graph. Therefore, it is enough to show that the graph eG(f)0 obtainedfrom eG(f) by removing the verties of Z and the verties w1d and w3d, for every subformula d usedin the onstrution, is ayli. That an be easily seen using a similar argument as in the proof ofLemma 4.7.Lemma 4.9.Let k � 1 and let Fk be the quasi-ayli semi-omplete digraph obtained by forming the transitivelosure of the digraph F 0k depited in Figure 2. The ayli Fk-oloring is NP-omplete.Proof. The redution from SAT is very similar to the redution desribed in the proof of Lemma 4.8.In fat, all the gadgets and onnetions among them require just slight modi�ations. The graph Zin the proof of Lemma 4.8 an be viewed as the transitive losure of the direted path (z4; z3; z2; z1).In this proof the graph Z will be the transitive losure of the path (z4; z3; qk; : : : ; q1; z2; z1). Again,Z has a unique F k-oloring up to swapping A and B, or C and D. In any oloring, '(qi) = Ei andwithout loss of generality, let '(z1) = A, '(z2) = B, '(z3) = C and '(z4) = D. There are k + 4olors available to olor the variable gadget Ga. In order to restrit the number of olor patternsof Ga to two, we replae the following four ars (v3a; z1), (v4a; z1), (v5a; z1) and (v6a; z1) with ars(v3a; qk�1), (v4a; qk�1), (v5a; qk) and (v6a; qk), and add the following two ars (q1; v1a), (q2; v2a). Theolor patterns P 0 and P 1 of the resulting gadget are depited in Figure 11.In the indutive onstrution of eGd, there are no di�erenes in the base step. In the indutivestep, we add a direted path Q of length k from the vertex v3d00 to the vertex w2d. The purpose ofthis path is to forbid olors E1; : : : ; Ek at vertex w2d in the ase when Pat(Gd00) = P 0. In this ase,13



'(v2d00) = Ek. If at the same time '(w2d) 2 fE1; : : : ; Ekg, then all verties of Q must be in this setof olors whih is not possible. On the other hand, if Pat(Gd00) = P 1, and hene '(v3d00) = D, thenthe path Q does not restrit any olor at w2d. The following table shows all possible olorings ofverties ruial for determining the olor pattern of Gd depending on Pat(Gd0) and Pat(Gd00).Pat(Gd0) Pat(Gd00) v2d0 v5d0 v3d00 v5d00 w1d w2d w3d v1d v4dP 0 P 0 A C Ek C B A D B DP 0 P 1 A C D D B E1; : : : ; Ek;D C A EkP 1 P 0 E1 D Ek C A B D A EkP 1 P 1 E1 D D D A=B B;E1; : : : ; Ek=E1; : : : ; Ek C A EkThus, one an easily see that again Pat(Gd) = P 1 if and only if Pat(Gd0) = P 1 or Pat(Gd00) = P 1.The rest of the proof is analogous to the proof of Lemma 4.8.It an be easily seen that a quasi-ayli semi-omplete digraph H ontains at least two direted2-yles, if and only if it ontains either H0, H1 or F0 as an indued subdigraph. SuÆieny istrivial. For the neessity suppose that H does not ontain H0. Now, if there are two 2-yles in Hwhih share a vertex then the three verties on these two 2-yles indue H1. Otherwise, take anytwo 2-yles. Sine they are independent, the four verties on them indue F0. Therefore, to provethe NP-ompleteness part of Theorem 3.2, it is enough to show the following lemma.Lemma 4.10.Suppose H is a quasi-ayli semi-omplete digraph. If H ontains either H0, H1 or F0 ( seeFigure 2 ), as an indued subdigraph, then the ayli H-oloring problem is NP-omplete.Proof. We will distinguish three ases:Case 1. We �rst prove that when H ontains H0 as an indued subdigraph, the ayli H-oloringproblem is NP-omplete by redution from the proper 3-oloring problem. In partiular, givena graph G, we will onstrut an ayli digraph �!K whih has an H-oloring if and only if G is3-olorable.Let A, B and C be the verties of H0. Find a direted Hamilton path P in H on whih vertiesA, B and C are onseutive ( by using the topologial sort on the poset orresponding to H ).Let P` ( respetively Pu ) denote the subpath of P ontaining all verties preeding ( respetivelyfollowing ) the three verties A, B and C on P . Note that P has the property that its transitivelosure is H-olorable. This will be used later in the proof.We onstrut an ayli digraph �!K as follows. Start with subpaths P` and Pu and vertiesin V (G). Add an ar from the last vertex of P` to every vertex in V (G) and from every vertexin V (G) to the �rst vertex of Pu, see Figure 12.Next take the transitive losure of this graph. Observe that the resulting graph has manyH-olorings in whih verties on P` and Pu are mapped to orresponding verties in H, and vertiesin V (G) are arbitrarily mapped to verties A, B and C. Consider any ayli orientation of G andadd every ar of this orientation to the onstruted digraph joining orresponding verties in V (G).The resulting ayli digraph is �!K .Firstly, suppose that G is 3-olorable with olors A, B and C. For an H-oloring of �!K hoosethe H-oloring from the previous paragraph that agrees on verties in V (G) with the 3-oloring.14
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V (G)

PuFigure 12: First step in the onstrution of the ayli digraph ~K.Seondly, suppose that �!K has an H-oloring. Sine VP = V (P`) [ V (Pu) indues a transitivetournament in �!K , any suh H-oloring must use all but three verties of H. Sine every vertexof V (G) is inident ( is a tail or a head of an ar ) with every vertex in VP , in any H-oloring of �!Kthe verties in V (G) are mapped to the remaining three verties of H, i.e., G is 3-olorable.Case 2. Next, we prove that when H ontains H1 but not H0 as an indued subdigraph,the H-oloring problem is NP-omplete by redution from the ayli H1-oloring problem ( seeLemma 4.7 ). Let �!G be an ayli digraph for whih we want to deide whether it is H1-olorable.We will onstrut an ayli digraph �!K whih is H-olorable if and only if �!G is H1-olorable. Theonstrution of �!K is exatly as in the previous ase with the only di�erene that �!G already �xes anayli orientation used in the onstrution. However, it is not obvious that there exists a diretedHamilton path in H with three onseutive verties B, C and A induing H1.Consider a poset (V (H);�) orresponding to H. We say that a triple [B;A;C℄ of di�erentverties in H is nie if B � A, and the pairs A;C and B;C are both inomparable. Obviously,there is a nie triple sine H1 is an indued subdigraph of H. Take a direted Hamilton path Pin H on whih there is a nie triple [B;A;C℄ suh that the distane of B and A along P is thesmallest possible. We will show that the distane of B and A on P is one. Suppose by ontraditionthat E 6= B is the immediate predeessor of A on P . Note that for any two X;Y suh that Xpreedes Y on P , H ontains the ar (X;Y ). ( This follows sine either X � Y or X and Y areinomparable. ) Hene, if H ontains both ars (A;E) and (E;A) ( a double ar (A;E) ), then byexhanging A and E we obtain another direted Hamilton path in H with smaller distane of Aand B, a ontradition. Thus, we may assume that H ontains the ar (E;A) but not (A;E), i.e.,E � A. Moreover, either E � C or they are inomparable, sine otherwise C � A.Suppose that B � E. It follows that C and E are inomparable, and hene the triple [B;E;C℄ isnie and has a smaller distane between B and E along P . Hene, B and E must be inomparable.Let F be an immediate suessor of B on P . By a similar argument as above, it follows that B � F ,and A and F are inomparable. Therefore, E 6= F and they are inomparable. Now, [B;F;E℄ is anie triple with distane one between B and F on P , a ontradition.We say that a nie triple [B;A;C℄ on a direted Hamilton path is very nie if the distanebetween B and A along P is one. By the above argument, there is a direted Hamilton path witha very nie triple. Take suh a path P and a very nie triple [B;A;C℄ suh that the sum of thedistanes from B to C and from A to C on P is the smallest possible. We will show that thissum of distanes is three. Without loss of generality suppose that C follows A on P . Supposeby ontradition that E 6= C is the immediate suessor of A on P . If E is inomparable withboth A and B then [B;A;E℄ is a very nie triple with a smaller sum of distanes. It follows that Cand E must be inomparable ( otherwise, by transitivity, at least one of A;C or B;C would beomparable ). If A and E are inomparable as well then A;C;E indue H0 in H, a ontradition.15



Hene, [A;E;C℄ is a very nie triple with a smaller sum of distanes on P , a ontradition.Obviously, if �!G is H1-olorable, we an use this oloring to onstrut an H-oloring of �!K asabove. Conversely, suppose now that �!K has an H-oloring. As before, it follows that V (�!G) ismapped to some three verties of H. Sine H0 is not an indued subdigraph of H, the threeverties indue a subdigraph of H1. Therefore, �!G is H1-olorable.Case 3. Finally, we prove that when H ontains F0 but neither H0 nor H1 as an indued subdi-graph, the H-oloring problem is NP-omplete by redution from one of the following problems :the ayli F0-oloring problem (Lemma 4.8 ) or the ayli Fk-oloring problem for some k � 1( Lemma 4.9 ).Take a direted Hamilton path P in H. Sine H0 and H1 are not indued subdigraphs of H,it is easy to see that we an make sure that any two inomparable verties in the orrespondingposet (V (H);�) are onseutive on P . Sine F0 is an indued subdigraph of H there are at leasttwo inomparable pairs. Take two suh pairs D;C and B;A whih are in this order on P and arelosest to eah other. Similarly, it is easy to see that for any vertex E in between C and B on P ,D � E, C � E, E � B and E � A. Therefore, verties of the subpath Pm of P from D to Aindue Fk where k is the number of verties between C and D.We will show that the H-oloring problem is NP-omplete by redution from the ayliFk-oloring problem. Let P` ( respetively Pu ) denote the subpath of P ontaining all vertiespreeding D ( respetively following A ) on P . Given �!G , onstrut the ayli digraph �!K similarlyas in the previous ases. Obviously, if �!G is Fk-olorable, we an use this oloring to onstrutan H-oloring of �!K as in the previous ases. Conversely, suppose now that �!K has an H-oloring.We will show that verties of V (�!G ) in �!K are olored with olors on Pm in H. By ontradition,suppose x 2 V (�!G) is olored by y not on Pm. Without loss of generality let y 2 P`. Sine for everyvertex z on P`, there is an ar (z; x) in �!K , the olor of z must be either inomparable with y or apredeessor of y on P . Sine there is most one inomparable vertex with y and it must lie on P`of H, we onlude that the olor of z is on P` in H and di�erent from y. Sine eah vertex on P`of �!K must have a di�erent olor, there is not enough olors for them, a ontradition. Therefore,�!G is Fk-olorable.Referenes[1℄ J. Bang-Jansen, P. Hell, and G. MaGillivray. The omplexity of olourings by semiompletedigraphs. SIAM J. Disrete Math., 1(3):281{298, 1988.[2℄ R. Diestel. Graph Theory. Springer-Verlag, Berlin, 3rd edition, 2005.[3℄ S. Even, A. Itai, and A. Shamir. On the omplexity of timetable and multiommodity owproblems. SIAM J. Comput., 5(4):691{703, 1976.[4℄ M. Garey and D. Johnson. Computers and intratability : a guide to the theory of NP-ompleteness. Freeman, San Franiso, 1979.
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