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tWe introdu
e two variants of proper 
olorings with imposed partial ordering on the set of 
olors.One variant shows very 
lose 
onne
tions to some fundamental problems in graph theory, e.g.,dire
ted graph homomorphism and list 
olorings. We study the border between tra
tability andintra
tability for both variants.1 Introdu
tionWe introdu
e two variants of proper 
olorings with imposed partial ordering on the set of 
olors.Verti
es of all 
onsidered graphs G are labeled with integers from 1 to jV (G)j, and we will use thenormal order of the integers. In parti
ular, the verti
es form a 
ompletely ordered set. The set of
olors forms a partially ordered set. The following ordered 
olorings are proper 
olorings satisfyingadditional requirements.In the �rst 
oloring problem, we require for every two 
olors A;B for whi
h A is smaller than Bin the partial order, that every vertex 
olored A is smaller than every vertex 
olored B. We willshow that this problem is in P if the set of 
olors 
ontains at most two independent 
olors byredu
tion to 2-SAT, and that otherwise it is intra
table.In the se
ond 
oloring problem, we require for every two 
olors A;B for whi
h A is smallerthan B in the partial order, that for every edge whose end verti
es are 
olored by A and B, thatthe vertex with 
olor A is smaller than the vertex with 
olor B. Note that a vertex 
olored A 
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be greater than a vertex 
olored B provided they are not adja
ent. We show that this problem isNP-
omplete if the partial ordering on 
olors 
ontains at least two in
omparable pairs. Otherwise,the problem is in P.2 Basi
 de�nitionsMost of our terminology and notation will be standard and 
an be found in any textbook on graphtheory su
h as [2℄, and on 
omputational 
omplexity su
h as [4℄.Throughout this paper a graph G = (V;E) is �nite, simple and loopless. We will always use nfor the number of verti
es and assume that the verti
es of the input graph G are integers from 1to n ( in other words we set V = [1; n℄ ). With this assumption we 
an 
onsider the vertex set as alinearly ordered set (V;�).The set of available 
olors is denoted by Col. A 
oloring of a graph G is a fun
tion ' : V ! Colso that for every edge uv 2 E we have '(u) 6= '(v). We additionally assume that � is anantisymmetri
, re
exive and transitive relation on Col, i.e., C = (Col;�) is a partially orderedset. We sometimes 
all (Col;�) the 
olor-poset. We will study the 
omplexity of two 
oloringproblems in whi
h we will 
olor verti
es of the input graph G with 
olors in Col satisfying furtherrequirements. We will refer to a 
oloring that satis�es these requirements as a feasible 
oloring.Let C 2 Col, the set VC of verti
es in G 
olored by C will be 
alled a 
olor 
lass.If (P;4) is a poset, then an anti
hain is a set S � P so that no two elements from S are
omparable ( i.e., for all x; y 2 S we have x 6� y and y 6� x ).Given X;Y � V , an edge with one end-vertex in X and the other in Y is 
alled an X;Y -edge.Let E(X;Y ) be the set of all X;Y -edges.3 Coloring with ordered 
olor 
lassesIn this se
tion we study the 
omplexity of the following de
ision problem :Problem 3.1.Fix a 
olor-poset (Col;�). Given a graph G = (V;E) with V = [1; n℄, determine whether G 
an be
olored with Col su
h that for any two 
olors A;B with A � B and for any two verti
es u 2 VAand v 2 VB we have u � v.If a 
oloring as in Problem 3.1 exists, we say that the graph G 
an be feasibly 
olored with (Col;�).Note that if � is the empty relation on Col, then Problem 3.1 is the well-known graph 
oloringproblem.Theorem 3.2.If the poset (Col;�) does not 
ontain an anti
hain of size 3, then Problem 3.1 
an be solved inpolynomial time. Otherwise, the problem is NP-
omplete.The proof that Problem 3.1 is in P if the longest anti
hain in (Col;�) has length at most 2 is quitete
hni
al. For this reason we �rst give the proof for a spe
i�
 small poset with all the details. Theproof of the general 
ase will be done with less detail after that. The fairly straightforward proofthat the problem is NP-
omplete if (Col;�) 
ontains an anti
hain of length 3 will be the �nal proofin this se
tion. 2



Lemma 3.3.Let Col = fA;B;Cg and suppose the only relation between the 
olors is A � B. Problem 3.1 
anbe solved in polynomial time for this poset (fA;B;Cg;�).Proof. Suppose a graph G 
an be feasibly 
olored with (fA;B;Cg;�). It follows that there existsa vertex v 2 V su
h that verti
es in the set VAC = [1; v � 1℄ are 
olored A or C, and verti
es inthe set VBC = [v; n℄ are 
olored B or C. Therefore, the subgraphs GAC and GBC of G, indu
edby VAC and VBC , respe
tively, are bipartite. Suppose GAC has k 
omponents and GBC has `
omponents. Let f(Xi;Xi)gki=1 be the set of bipartitions of 
onne
ted 
omponents fXigki=1 of GAC ,and let f(Yj ; Yj)gj̀=1 be the set of bipartitions of 
onne
ted 
omponents fYjgj̀=1 of GBC .Every bipartite 
omponent Xi ( respe
tively Yj ) has exa
tly two 2-
olorings. Thus, we 
anasso
iate ea
h Xi with a boolean variable xi as follows : if the bipartition Xi of Xi is 
olored C,then xi = 0; otherwise, xi = 1. Similarly, we asso
iate ea
h Yj with a boolean variable yj : if thebipartition Yj of Yj is 
olored C, then yj = 0; otherwise, yj = 1.Every (VAC ; VBC)-edge of G imposes a 
onstraint on a feasible 
oloring of G. This 
onstraint
an be equivalently expressed in terms of the above boolean variables :� for every (Xi; Yj)-edge of G, the 
lause xi _ yj should be satis�ed;� for every (Xi; Yj)-edge of G, the 
lause xi _ yj should be satis�ed;� for every (Xi; Yj)-edge of G, the 
lause xi _ yj should be satis�ed;� for every (Xi; Yj)-edge of G, the 
lause xi _ yj should be satis�ed.Let fv be the 
onjun
tion of the above 2-literal disjun
tions for all (VAC ; VBC )-edges of G, seeFigure 1 for an example.
Xi

Xi
xi

Yk

Y k
yk

Xj

Xj
xj

⇐⇒ (xi ∨ ȳk) ∧ (x̄i ∨ yk) ∧ (x̄j ∨ ȳk)

Figure 1: An example of the transformation of a graph G into a 2-CNF formula.Obviously, there exists a feasible 
oloring of G if and only if the formula fv is satis�able. Anassignment of boolean values to variables in fv 
an be translated into a 
oloring of G in linear time.Hen
e, to �nd a 
oloring for G feasible with (fA;B;Cg;�), we 
an use the following algorithm� For ea
h v 2 V , 
he
k if the subgraphs indu
ed on [1; v � 1℄ and on [v; n℄ are bipartite. If so,
onstru
t the formula fv and use a 2-SAT solver to 
he
k the satis�ability of the formula. Thegraph G has a feasible 
oloring if and only if for at least one v 2 V the subgraphs indu
ed on[1; v � 1℄ and on [v; n℄ are bipartite and the formula fv is satis�able.In [3℄, a 2-SAT solver working in linear time in the size of the formula is des
ribed. Note thatea
h fv has O(n) variables and O(n2) 
lauses. Sin
e there are n 
hoi
es for v, Problem 3.1 
an besolved in O(n3) steps.We next give the general proofs of the two parts of Theorem 3.2.3



Theorem 3.2AIf the poset (Col;�) does not 
ontain an anti
hain of size 3, then Problem 3.1 
an be solved inpolynomial time.Proof. If P = (P;4) is a poset and u 2 P , then by (P � u;4) we denote the poset with the sameordering 4 on the set P n fug. For a poset P with jP j = p elements that does not 
ontain ananti
hain of size 3, we will 
onstru
t of 
olle
tion �P of p-tuples � = (�1; : : : �p), where ea
h �iis a set of one or two elements from P . The 
on
atenation of two tuples � = (�1; : : : ; �k) and� = (�1; : : : ; �`) is � � � = (�1; : : : ; �k; �1; : : : ; �`).The 
onstru
tion of �P is re
ursively as follows :� If P has one element, say P = fag, then �P = f fag g.� If jP j � 2 and P has a maximum element a, then �P = f� � (fag) j � 2 �P�a g.� If jP j � 2 and P has no maximum element, then, sin
e the longest anti
hain has length 2, thereare two maximal elements a; b ( so a 64 b and b 64 a, while p 4 a or p 4 b for all p 2 P ). In that
ase we set �P = f� � (fa; bg) j � 2 �P�a g [ f� � (fa; bg) j � 2 �P�b g.Note that the number of tuples in �P is �nite.Now we go ba
k to a 
olor poset C = (Col;�) with no anti
hain longer than 3. Set 
 = jColj.Consider a graph G = (V;E) with V = [1; n℄. Suppose G 
an be feasibly 
olored with C. Withany su
h 
oloring we 
an asso
iate a 
-tuple � = (�1; : : : �
) 2 �C and a (
 + 1)-tuple of integers(v1; v2 : : : ; v
+1) so that :1. We have 1 = v1 � v2 � � � � � v
 � v
+1 = n+ 1.2. For all i = 1; : : : ; 
, the subgraph of G indu
ed on [vi; vi+1 � 1℄ is an independent set or abipartite graph.3. For all i = 1; : : : ; 
, the 
olors appearing on the verti
es [vi; vi+1�1℄ are exa
tly the 
olors in �i.The existen
e of these tuples follows dire
tly from the fa
t that ea
h anti
hain in C has length 1or 2, and hen
e we 
annot \mix" three or more 
olors from Col when 
oloring the graph.Given a (
 + 1)-tuple of integers (v1; v2 : : : ; v
+1), it is easy to 
he
k if this tuple satis�es
onditions 1 and 2 above. If it does, then we 
an 
hoose a 
-tuple � = (�1; : : : �
) 2 �C and use thesame te
hnique as applied in the proof of Lemma 3.3 to transform the problem of the existen
e ofa feasible 
oloring of G in a

ordan
e with 
ondition 3 to the existen
e of a solution of a 
ertain2-SAT problem. Hen
e the question if there exists a 
oloring of G in a

ordan
e with two 
hosentuples satisfying 
onditions 1 { 3 
an be done in time polynomial in n.The number of (
 + 1)-tuples (v1; v2 : : : ; v
+1) with 1 = v1 � v2 � � � � � v
 � v
+1 = n + 1is O(n
). And the number of tuples in �C is O(2
). And so, to 
he
k if a graph G on n orderedverti
es [1; n℄ 
an be feasibly 
olored with C, we need to 
onsider at most O(n
) 2-SAT problems.Using estimates for the numbers of variables and 
lauses in ea
h of the 2-SAT problems similar tothose in the proof of Lemma 3.3, we 
an 
on
lude that Problem 3.1 
an be solved in polynomialtime.Theorem 3.2BIf the poset (Col;�) 
ontains an anti
hain of size 3 or more, then Problem 3.1 is NP-
omplete.Proof. Let C = (Col;�) be a poset 
ontaining an anti
hain of size 3 or more. It is obvious thatProblem 3.1 is in NP. To prove the problem is NP-
omplete we give a redu
tion from the properK-
oloring problem, whi
h is well known to be NP-
omplete for any �xed K � 3.4



Let S � Col be an anti
hain in C with jSj � 3, 
hosen su
h that S is maximal. I.e., for allC 2 Col n S we have that C � A for some A 2 S, or A � C for some A 2 S, but not both ( sin
e Sis an anti
hain ). Let ColD � Col be the set of 
olors C 2 Col nS su
h that C � A for some A 2 S,and de�ne ColU � Col similarly for 
olors in Col n S whi
h are larger than some 
olor in S. SetK = jSj, nD = jColDj and nU = jColU j.Given a graph G0 = (V 0; E0) on n0 verti
es, we 
onstru
t a graph G with ordered vertex set [1; n℄where n = nD+n0+nU , so that G0 has a K-
oloring if and only if G 
an be feasibly 
olored with C.Let the verti
es of G be [1; nD℄[ [nD +1; nD +n0℄[ [nD +n0+1; nD +n0+nU ℄. Add edges so thatthe graph on [nD+1; nD+n0℄ is isomorphi
 to G0, and verti
es in [1; nD℄[ [nD+n0+1; nD+n0+nU ℄are joined to all other verti
es.Suppose G0 has a K-
oloring. Then we 
an 
olor G in a

ordan
e with C as follows :� Give ea
h vertex in [1; nD℄ its own 
olor from ColD, using some linear extension of the orderimposed by C on ColD.� Color the verti
es in [nD +1; nD + n0℄ with 
olors from S, a

ording to the K-
oloring possibleon G0.� Give ea
h vertex in [nD + n0 + 1; nD + n0 + nU ℄ its own 
olor from ColU , using some linearextension of the order imposed by C on ColU .It's easy to 
he
k that this 
oloring of G is feasible with C, where the 
ru
ial observation is that Sis an anti
hain in C and hen
e every proper 
oloring with 
olors from S is always in a

ordan
ewith the poset order.Next suppose that G has a feasible 
oloring with C. Su
h a 
oloring must have the followingproperties :� Ea
h vertex in [1; nD℄ has a unique 
olor from ColD, and this 
olor is smaller than any 
olorappearing on [nD + 1; nD + n0℄ [ [nD + n0 + 1; nD + n0 + nU ℄.� Ea
h vertex in [nD+n0+1; nD+n0+nU ℄ has a unique 
olor from ColU , and this 
olor is largerthan any 
olor appearing on [1; nD℄ [ [nD + 1; nD + n0℄.From this it follows that the verti
es in [nD + 1; nD + n0℄ are 
olored with 
olors from S. Sin
e Sis an anti
hain, the only requirement to 
olor those verti
es with S is that is must be a proper
oloring. Su
h a proper 
oloring immediately gives a K-
oloring of G0.4 Coloring with ordered edgesIn this se
tion we study the 
omplexity of the following de
ision problem :Problem 4.1.Fix a 
olor-poset (Col;�). Given a graph G = (V;E) with V = [1; n℄, determine whether G 
an be
olored with Col su
h that for any two 
olors A;B with A � B and for any edge (u; v) 2 E withu 2 VA and v 2 VB we have u � v.We will transform this problem into a dire
ted graph homomorphism problem. In this se
tion, by(u; v) we mean a dire
ted edge ( ar
 ) from u to v. We will use E to denoted the set of dire
tededges of a digraph as well.The three semi-
omplete digraphs depi
ted in Figure 2 play a 
ru
ial role in our 
hara
terization.5
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ru
ial semi-
omplete digraphs in the di
hotomy 
hara
terization of Problem 4.1.Fk is obtained by taking the transitive 
losure of F 0k.De�nition 4.2.Let H be a �xed dire
ted graph. An H-
oloring of a digraph G is a homomorphism from G to H ( amapping ' from V (G) to V (H) su
h that if (x; y) 2 E(G) then ('(x); '(y)) 2 E(H) ). The a
y
li
H-
oloring problem asks whether for a given a
y
li
 digraph G there is an H-
oloring of G.De�nition 4.3.A semi-
omplete digraph is a digraph H whi
h 
ontains a spanning tournament, i.e., between anytwo verti
es there is either one ar
 or both opposite ar
s. We say that a semi-
omplete digraph isquasi-a
y
li
 if after removal of all pairs of oppositely dire
ted ar
s we obtain a transitive a
y
li
subgraph of H.An alternative de�nition of a quasi-a
y
li
 semi-
omplete digraph is as a semi-
omplete digraph inwhi
h every dire
ted 
y
le 
ontains at least two ar
s that 
ome from pairs of opposite ar
s. It is easyto see that there is a one-to-one 
orresponden
e between posets and quasi-a
y
li
 semi-
ompletedigraphs. Given a 
olor-poset C = (Col;�), to obtain the 
orresponding digraph take V = Col.And for every two 
olors A and B, A 6= B, if A � B add an ar
 (A;B), if B � A add an ar
 (B;A),and otherwise add a pair of opposite ar
s (A;B) and (B;A). The resulting semi-
omplete digraphis quasi-a
y
li
 and will be denoted HC .Similarly, a graph G with ordered vertex set [1; n℄ 
an be 
onsidered as a digraph �!G if werepla
e all edges uv 2 E(G) with u < v by ar
s (u; v).Without a proof we note that, with this notation, we have that G has a 
oloring by C feasiblefor Problem 4.1 if and only if there is an HC-
oloring of �!G .Theorem 4.4.Let H be a quasi-a
y
li
 semi-
omplete digraph. The a
y
li
 H-
oloring problem 
an be solved inpolynomial time if H 
ontains at most one dire
ted 2-
y
le ( a pair of oppositely dire
ted ar
s ).Otherwise, the problem is NP-
omplete. 6



This is exa
tly the same di
hotomy as for the general H-
oloring problem where H is any semi-
omplete digraph, 
f. [1℄. In parti
ular, the �rst part of the theorem follows from the polynomialityof this problem. But for 
ompleteness we give a short proof below as well.The se
ond part of the theorem follows from the Lemmas 4.6 { 4.10 that make up most ofthe remainder of this se
tion. In those lemma we �rst prove the NP-
ompleteness of the a
y
li
H-
oloring problem for three 
ru
ial quasi-a
y
li
 semi-
omplete digraphs and then for any quasi-a
y
li
 semi-
omplete digraph 
ontaining any of those three as an indu
ed subdigraph.Lemma 4.5.Let H be a quasi-a
y
li
 semi-
omplete digraph. The a
y
li
 H-
oloring problem 
an be solved inpolynomial time if H 
ontains at most one dire
ted 2-
y
le.Proof. The problem is trivial if jV (Hj = 1. If jV (H)j = 2 and there is a 2-
y
le in H, then ana
y
li
 digraph G has a homomorphism from G to H if and only if the underlying graph of G( obtained by ignoring the dire
tions on the ar
s ) is bipartite. Similarly, if jV (H)j = 2 and thereis no 2-
y
le in H, then an a
y
li
 digraph G has a homomorphism from G to H if and only if we
an partition V (H) = HD [HU and every ar
 in H has its tail in HD and its head in HU .So assume jV (H)j � 3. Sin
e H has an a
y
li
 spanning tournament, there are both a universalsink and a universal sour
e in H, i.e., there is a vertex u 2 V (H) so that for all v 2 V (H), v 6= u,we have (v; u) 2 E(H); and there is a vertex u0 2 V (H) so that for all v 2 V (H), v 6= u0, we have(u0; v) 2 E(H). Sin
e H has at most one 2-
y
le f(p; q); (q; p)g and after removing that 2-
y
le weobtain a transitive a
y
li
 subgraph of H, it is easy to 
he
k that we 
an 
hoose at least one ofu; u0 di�erent from both p and q.Suppose that the universal sink u in H is di�erent from p and q. Let G be an a
y
li
 digraphand let Gi be the sets of sinks in G. Then there is a homomorphism from G to H if and only if thereis a homomorphism from G�Gi to H�u. Indeed, homomorphisms from G�Gi to H�u are easilyextendable to homomorphisms from G to H. The 
onverse follows sin
e in any homomorphismfrom G to H, the neighbors of verti
es in Gi are not mapped to u, and hen
e we 
an remap theverti
es in Gi to u if ne
essary.A similar observation holds if the universal sour
e in H is di�erent from p and q. We use indu
-tion on jV (H)j to get a straightforward polynomial algorithm to 
he
k if there is a homomorphismfrom H to G.The following follows immediately from the NP-
ompleteness of the ordinary 3-
oloring problem.Lemma 4.6.Let H0 be the quasi-a
y
li
 semi-
omplete digraph depi
ted in Figure 2. The a
y
li
 H0-
oloringproblem is NP-
omplete.Lemma 4.7.Let H1 be the quasi-a
y
li
 semi-
omplete digraph depi
ted in Figure 2. The a
y
li
 H1-
oloringproblem is NP-
omplete.Proof. The problem is obviously in NP. We will show that given a boolean formula f(x1; x2; : : : ; xm)in 
onjun
tive normal form (CNF ), we 
an 
onstru
t an a
y
li
 dire
ted graph eG(f) whi
h has anH1-
oloring ' if and only if f is satis�able. For every boolean variable a of f ( respe
tively, everyauxiliary variable en
oding the boolean value of a subformula of f ), we will 
onstru
t the gadget7



Ga = (Va; Ea) de�ned as follows: Va = fv1a; : : : ; v6ag and Ea = f (v2a; v1a), (v3a; v1a), (v3a; v2a), (v4a; v2a),(v5a; v3a), (v5a; v4a), (v6a; v1a), (v6a; v4a), (v6a; v5a) g, see Figure 3.
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Pat(Ga) = P 0Figure 3: The two possible homomorphisms ( 
oloring patterns ) from Ga to H1 : on the left handside Pat(Ga) = P 0; on the right hand side Pat(Ga) = P 1.Ea
h gadget Ga is a
y
li
 and has only two H1-
olorings, 
alled 
olor patterns, see Figure 3. Letthe 
olor pattern P 0 of Ga with '(v1a) = '(v4a) = A, '(v3a) = '(v6a) = B and '(v2a) = '(v5a) = C,represent the fa
t that the value of the boolean variable a is 0. Similarly, let the 
olor pattern P 1of Ga with '(v1a) = '(v5a) = A, '(v2a) = '(v6a) = B and '(v3a) = '(v4a) = C, represent the fa
t thata = 1.Now let us give an overview of the main ideas in the 
onstru
tion of eG(f). Firstly, we 
onstru
ta gadget Gxi for every variable xi o

urring in the formula f . Se
ondly, for every disjun
tivesubformula di of f = d1^d2^� � �^dk, we 
onstru
t an a
y
li
 digraphG(di) 
ontaining a gadget Gdiand using the gadgets Gx1 ; : : : ; Gxm su
h that for every H1-
oloring of G(di), Pat(Gdi) = P 1 if andonly if 
olor patterns of Gx1 ; : : : ; Gxm 
orrespond to a true assignment for di. Finally, we extendea
h G(di) to a graph eG(di) su
h that the gadget Gdi will have the 
olor pattern P 1 in everyH1-
oloring of eG(di). Sin
e the gadgets Gx1 ; : : : ; Gxm are 
ommon for every eG(di), it will followthat there is an H1-
oloring of eG(f) = Ski=1 eG(di) if and only if there is a true assignment for f ,i.e., if f is satis�able.In the following we des
ribe a re
ursive 
onstru
tion of the graph G(d), where d = di. If d hasno _'s, then either d = xj or d = xj, for some j = 1; : : : ;m. As des
ribed above, add a gadget Gdto G(d). To 
omplete the 
onstru
tion add the ar
 (v3d; v2xj ) if d = xj , and the ar
 (v2d; v2xj ) ifd = xj , see Figure 4. First suppose d = xj . If the 
olor pattern of Gxj is P 0, then be
ause of thear
 (v3d; v2xj ), the only possible 
olor pattern for Gd is P 0, and similarly if the 
olor pattern of Gxjis P 1, the only possible 
olor pattern for Gd is P 1. Sin
e every true assignment of d has xj = 1 andthe remaining variables 
an have arbitrary values, for every H1-
oloring of G(d), Pat(Gd) = P 1 ifand only if 
olor patterns of Gx1 ; : : : ; Gxm 
orrespond to su
h a true assignment. If d = xj, theargument is similar.Assume now that d 
ontains an _. Then there are disjun
tive subformulas d0 and d00 in f su
hthat d = d0 _ d00. We re
ursively 
onstru
t graphs G(d0) and G(d00) ( in polytime ). Constru
t G(d)as follows. Take a union of G(d0) and G(d00) and add a new variable gadget Gd and disjun
tiongadget 
onsisting of three new verti
es w1d; w2d; w3d and the ar
s (w2d; w1d), (w3d; w2d). Furthermore,add the ar
s (w1d; v2d0), (w1d; v5d0), (w3d; v2d00), (w3d; v5d00) and (v4d; w2d) 
onne
ting disjun
tion gadget withthe variable gadgets, see Figure 5.It is easy to 
he
k that in every H1-
oloring of G(d0) ( respe
tively G(d00) ), the gadget Gd08
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Figure 4: On the left : G(d) for the boolean formula d = xj; on the right : G(d) for the booleanformula d = xj .
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Figure 5: The 
onstru
tion of G(d) for the boolean formula d = d0 _ d00 using the union of thegraphs G(d0) and G(d00). In the example above we assume that d0 
ontains both x1 and x1 whi
his indi
ated by two ar
s leaving the gadget Gx1 . Similarly, the ar
s leaving the gadget Gx2 indi
atethat x2 or its 
omplement is in both d0 and d00. Finally, no ar
 leaving the gadget Gxm indi
atesthat neither d0 nor d00 
ontain xm or xm.
9
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z4 z5

Gd

v2

d

G(d)

G̃(d)

Figure 6: The 
onstru
tion of eG(d).in G(d0) ( respe
tively Gd00 in G(d00) ) has 
olor pattern P 1 if and only if the 
olor patterns ofgadgets Gx1 ; : : : ; Gxm represent a true assignment for d0 ( respe
tively d00 ). Otherwise it has 
olorpattern P 0. Sin
e the 
olor patterns of gadgets Gx1 ; : : : ; Gxm represent a true assignment for d ifand only if they represent a true assignment for d0 or d00, it is enough to show that in any H1-
oloringof G(d), Pat(Gd) = P 1 if and only if Pat(Gd0) = P 1 or Pat(Gd00) = P 1.Consider an H1-
oloring of G(d). If Pat(Gd0) = Pat(Gd00) = P 1, then '(w1d) = '(w3d) = C and'(w2d) = A or B, and hen
e Pat(Gd) = P 1. ( Note that this is true even if '(w2d) = B; the vertex v4d
annot be 
olored A be
ause of the ar
 (v4d; w2d). ) If Pat(Gd0) = P 1 and Pat(Gd00) = P 0, then'(w1d) = C, and sin
e (w3d; w2d) is an ar
, '(w2d) = A and '(w3d) = B. Hen
e, Pat(Gd) = P 1. The
ase Pat(Gd0) = P 0 and Pat(Gd00) = P 1 is analogous to the previous one. If Pat(Gd0) = Pat(Gd00) =P 0, then '(w1d) and '(w3d) is either A or B. Sin
e G(d) 
ontains the ar
s (w2d; w1d) and (w3d; w2d), wemust have '(w2d) = C, and hen
e Pat(Gd) = P 0. This veri�es the 
onstru
tion of the graph G(d).Finally, we extend ea
h G(d) to a graph eG(d) su
h that the gadget Gd will have the 
olorpattern P 1 in every H1-
oloring of eG(d). Then, for every H1-
oloring of eG(d), the 
olor patternsof Gx1 ; : : : ; Gxm must represent a true assignment for d. It follows that eG(f) has an H1-
oloring ifand only if f is satis�able.Let Z be the graph with V (Z) = fz1; : : : ; z5g, and E(Z) = f (z2; z1), (z3; z2), (z3; z1), (z4; z3),(z5; z3), (z5; z4) g. Sin
e z3 has two in
oming ( outgoing ) ar
s from verti
es 
onne
ted by an ar
,it 
annot be 
olored B ( respe
tively A ). Hen
e, z3 must be 
olored C. Consequently, '(z1) ='(z4) = A and '(z2) = '(z5) = B. Now, we are ready to 
onstru
t eG(d). Take the union of G(d)and Z and add an ar
 (v2d ; z3), see Figure 6. Obviously, in any H1-
oloring of eG(d), Pat(Gd) = P 1.Finally, let us dedu
e that the dire
ted graph eG(f) is a
y
li
. Firstly, by indu
tion, we showthat for every subformula d used in the 
onstru
tion of G(d) is a
y
li
. This is 
ertainly true forevery d = xj or d = xj. Now, 
onsider the formula d = d0 _ d00, see Figure 5. By indu
tion G(d0)and G(d00) are a
y
li
 and sin
e all ar
s in
ident with the 
ommon part of G(d0) and G(d00) ( theinput variable gadgets ) end in the 
ommon part, the union G(d0) [ G(d00) is a
y
li
 as well. Thegraph G(d) 
ontains this union and two new gadgets and all ar
s 
onne
ting these two parts startin the new gadgets and end in the union. Hen
e, G(d) is also a
y
li
. Thus, for every di in f ,G(di) and obviously also eG(di) is a
y
li
. By the same argument as above their union eG(f) is alsoa
y
li
.Lemma 4.8.Let F0 be the quasi-a
y
li
 semi-
omplete digraph depi
ted in Figure 2. The a
y
li
 F0-
oloringproblem is NP-
omplete. 10



Proof. The problem is obviously in NP. The proof of NP-hardness follows the lines of the proof ofLemma 4.7. We will again show that given a boolean formula f(x1; x2; : : : ; xm) in CNF, we 
an
onstru
t an a
y
li
 dire
ted graph eG(f) whi
h has a F0-
oloring if and only if f is satis�able.The main di�eren
es with the proof of Lemma 4.7 is that the new variable gadgets will sharea four-vertex subdigraph and will have eight 
olor patterns. This is unavoidable sin
e in everyF0-
oloring, the 
olors A and B ( respe
tively, C and D ) are inter
hangeable. The four-vertexdigraph Z, 
ommon to all gadgets, has V (Z) = fz1; : : : ; z4g and E(Z) = f (u; v) j u; v 2 V (Z) ^ u >v g, see Figure 7. Note that the digraph Z has a unique F0-
oloring up to swapping A and B, or C
A

B

C

D

z1

z2

z3

z4Figure 7: The graph Z.and D. Without loss of generality, it is enough to 
onsider only those F0-
olorings ' of eG(f) whi
hhave '(z1) = A, '(z2) = B, '(z3) = C and '(z4) = D. This assumption will redu
e the numberof 
olor patterns of variable gadgets to two.For every boolean variable a of f ( input or auxiliary ), we will 
onstru
t the following a
y
li
gadget Ga = (Va; Ea) with Va = fv1a; : : : ; v6ag and Ea = f (v2a; v1a), (v3a; v2a), (v4a; v1a), (v5a; v4a), (v6a; v3a),(v6a; v5a) g. As proposed above, we 
omplete the 
onstru
tion of the gadget by 
onne
ting it to the
ommon digraph Z by ar
s (v3a; z1), (v4a; z1), (v5a; z1), (v6a; z1), (v2a; z2), (z3; v3a) and (z3; v4a), seeFigure 8. The �gure shows two 
oloring patterns of Ga : P 0 with '(v1a) = '(v3a) = B, '(v2a) =
v4

a
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Pat(Ga) = P 0
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a v6

a

v3

a

v2

av1

a

Ga

A B C

A C

DB

D C

Pat(Ga) = P 1Figure 8: Two 
oloring patterns of the gadgetGa : Pat(Ga) = P 0 ( on the left ); and Pat(Ga) = P 1( on the right ). The squares labeled with A, B and C represent verti
es z1, z2 and z3 of thedigraph Z 
ommon to all gadgets, respe
tively. For simpli
ity, we omitted the fourth vertex of Zand the ar
s inside Z.A;'(v4a) = '(v6a) = D and '(v5a) = C, whi
h will represent the fa
t that a = 0; and P 1 with'(v1a) = A, '(v2a) = '(v6a) = C, '(v3a) = '(v5a) = D and '(v4a) = B 
orresponding with a = 1.For ea
h disjun
tive subformula d = di of f = d1^� � �^dk, the 
onstru
tion of eG(d) is analogousto the 
onstru
tion in the proof of Lemma 4.7. Therefore, we only des
ribe the main ingredientsof the 
onstru
tion : the base step d = xj or d = xj , the indu
tive step d = d0 _ d00, and for
ing the
olor pattern of Gd to P 1. In the base step, add the ar
 (v6xj ; v5d), if d = xj ; or the ar
 (v5xj ; v5d), ifd = xj, joining the input variable gadget Gxj to variable gadget Gd, see Figure 9. One 
an easily11
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d

Gxj

v5

xjFigure 9: On the left : G(d) for the boolean formula d = xj; on the right : G(d) for the booleanformula d = xj .
he
k that G(d) is a
y
li
 and has the required property.In the indu
tive step, 
onstru
t G(d) as follows. Take the union of Gd0 and Gd00 , add onenew gadget Gd and three new verti
es w1d; w2d; w3d. Furthermore, add the ar
s (v2d0 ; w1d), (v5d0 ; w2d),(v5d0 ; v4d), (w3d; v5d00), (v5d00 ; v4d), (w2d; w1d), (w2d; v1d), and (w3d; w2d), see Figure 10.
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Figure 10: The 
onstru
tion of G(d) for the boolean formula d = d0 _ d00 using the union ofgraphs G(d0) and G(d00). In the example we assume that d0 
ontains both x1 and x1 whi
h isindi
ated by two ar
s leaving the gadget Gx1 . Similarly, the ar
s leaving the gadget Gx2 indi
atethat x2 or x2 are in both d0 and d00. Finally, no ar
 leaving the gadget Gxm indi
ates that neither d0nor d00 
ontains xm or xm.We show that in any feasible 
oloring of G(d), Pat(Gd) = P 1 if and only if Pat(Gd0) = P 1or Pat(Gd00) = P 1. Noti
e that the ar
s (v5d0 ; v4d) and (v5d00 ; v4d) guarantee that if one of the gadgets Gd0or Gd00 has 
olor pattern P 1, gadget Gd must have 
olor pattern P 1. Now, it is enough to showthat there is a feasible 
oloring for the three w�verti
es in ea
h one of these three 
ases. Indeed we
an 
olor the w�verti
es as follows : if Pat(Gd0) = P 1 and Pat(Gd00) = P 0, '(w1) = A, '(w2) = B,'(w3) = D; if Pat(Gd0) = P 0 and Pat(Gd00) = P 1, '(w1) = B, '(w2) = D, '(w3) = C; and ifPat(Gd0) = P 1 and Pat(Gd00) = P 1, '(w1) = A, '(w2) = B, '(w3) = C. It remains to 
onsider12
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DEk
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Pat(Ga) = P 1Figure 11: Two 
oloring patterns of the gadget Ga: Pat(Ga) = P 0 ( on the left ); and Pat(Ga) = P 1( on the right ). The squares labeled with B, C, E1, E2, Ek�1 and Ek represent verti
es z2, z3,q1, q2, qk�1 and qk of the 
ommon digraph Z, respe
tively. For the 
ase k = 1, the verti
esE1; E2; Ek�1; Ek are the same vertex. For the 
ases k = 2; 3, some of these verti
es are naturallyidenti�ed with ea
h other.the 
ase when Pat(Gd0) = P 0 and Pat(Gd00) = P 0. We have '(v2d0) = A and '(v5d0) = '(v5d00) = C.The ar
 (v2d0 ; w1d) for
es '(w1d) = B and the ar
 (w3d; v5d00) for
es '(w3d) = D. Furthermore, the ar
s(v2d0 ; w1d), (w3d; v5d00) and (v5d00 ; w2d) for
e '(w2d) = A. Be
ause of the ar
 (w2d; v1d), '(v1d) = B. Hen
e,Pat(Gd) = P 0. This veri�es the 
onstru
tion of the graph G(d).Finally, to extend G(d) to eG(d) for
ing Gd to 
olor pattern P 1, add the ar
 (v1d; z2). Let usobserve that the dire
ted graph eG(f) is a
y
li
. Note that if a dire
ted graph 
ontains a sink ( onlyin
oming ar
s ) or a sour
e ( only outgoing ar
s ) then it 
an be removed from the graph withouta�e
ting a
y
li
ity of the graph. Therefore, it is enough to show that the graph eG(f)0 obtainedfrom eG(f) by removing the verti
es of Z and the verti
es w1d and w3d, for every subformula d usedin the 
onstru
tion, is a
y
li
. That 
an be easily seen using a similar argument as in the proof ofLemma 4.7.Lemma 4.9.Let k � 1 and let Fk be the quasi-a
y
li
 semi-
omplete digraph obtained by forming the transitive
losure of the digraph F 0k depi
ted in Figure 2. The a
y
li
 Fk-
oloring is NP-
omplete.Proof. The redu
tion from SAT is very similar to the redu
tion des
ribed in the proof of Lemma 4.8.In fa
t, all the gadgets and 
onne
tions among them require just slight modi�
ations. The graph Zin the proof of Lemma 4.8 
an be viewed as the transitive 
losure of the dire
ted path (z4; z3; z2; z1).In this proof the graph Z will be the transitive 
losure of the path (z4; z3; qk; : : : ; q1; z2; z1). Again,Z has a unique F k-
oloring up to swapping A and B, or C and D. In any 
oloring, '(qi) = Ei andwithout loss of generality, let '(z1) = A, '(z2) = B, '(z3) = C and '(z4) = D. There are k + 4
olors available to 
olor the variable gadget Ga. In order to restri
t the number of 
olor patternsof Ga to two, we repla
e the following four ar
s (v3a; z1), (v4a; z1), (v5a; z1) and (v6a; z1) with ar
s(v3a; qk�1), (v4a; qk�1), (v5a; qk) and (v6a; qk), and add the following two ar
s (q1; v1a), (q2; v2a). The
olor patterns P 0 and P 1 of the resulting gadget are depi
ted in Figure 11.In the indu
tive 
onstru
tion of eGd, there are no di�eren
es in the base step. In the indu
tivestep, we add a dire
ted path Q of length k from the vertex v3d00 to the vertex w2d. The purpose ofthis path is to forbid 
olors E1; : : : ; Ek at vertex w2d in the 
ase when Pat(Gd00) = P 0. In this 
ase,13



'(v2d00) = Ek. If at the same time '(w2d) 2 fE1; : : : ; Ekg, then all verti
es of Q must be in this setof 
olors whi
h is not possible. On the other hand, if Pat(Gd00) = P 1, and hen
e '(v3d00) = D, thenthe path Q does not restri
t any 
olor at w2d. The following table shows all possible 
olorings ofverti
es 
ru
ial for determining the 
olor pattern of Gd depending on Pat(Gd0) and Pat(Gd00).Pat(Gd0) Pat(Gd00) v2d0 v5d0 v3d00 v5d00 w1d w2d w3d v1d v4dP 0 P 0 A C Ek C B A D B DP 0 P 1 A C D D B E1; : : : ; Ek;D C A EkP 1 P 0 E1 D Ek C A B D A EkP 1 P 1 E1 D D D A=B B;E1; : : : ; Ek=E1; : : : ; Ek C A EkThus, one 
an easily see that again Pat(Gd) = P 1 if and only if Pat(Gd0) = P 1 or Pat(Gd00) = P 1.The rest of the proof is analogous to the proof of Lemma 4.8.It 
an be easily seen that a quasi-a
y
li
 semi-
omplete digraph H 
ontains at least two dire
ted2-
y
les, if and only if it 
ontains either H0, H1 or F0 as an indu
ed subdigraph. SuÆ
ien
y istrivial. For the ne
essity suppose that H does not 
ontain H0. Now, if there are two 2-
y
les in Hwhi
h share a vertex then the three verti
es on these two 2-
y
les indu
e H1. Otherwise, take anytwo 2-
y
les. Sin
e they are independent, the four verti
es on them indu
e F0. Therefore, to provethe NP-
ompleteness part of Theorem 3.2, it is enough to show the following lemma.Lemma 4.10.Suppose H is a quasi-a
y
li
 semi-
omplete digraph. If H 
ontains either H0, H1 or F0 ( seeFigure 2 ), as an indu
ed subdigraph, then the a
y
li
 H-
oloring problem is NP-
omplete.Proof. We will distinguish three 
ases:Case 1. We �rst prove that when H 
ontains H0 as an indu
ed subdigraph, the a
y
li
 H-
oloringproblem is NP-
omplete by redu
tion from the proper 3-
oloring problem. In parti
ular, givena graph G, we will 
onstru
t an a
y
li
 digraph �!K whi
h has an H-
oloring if and only if G is3-
olorable.Let A, B and C be the verti
es of H0. Find a dire
ted Hamilton path P in H on whi
h verti
esA, B and C are 
onse
utive ( by using the topologi
al sort on the poset 
orresponding to H ).Let P` ( respe
tively Pu ) denote the subpath of P 
ontaining all verti
es pre
eding ( respe
tivelyfollowing ) the three verti
es A, B and C on P . Note that P has the property that its transitive
losure is H-
olorable. This will be used later in the proof.We 
onstru
t an a
y
li
 digraph �!K as follows. Start with subpaths P` and Pu and verti
esin V (G). Add an ar
 from the last vertex of P` to every vertex in V (G) and from every vertexin V (G) to the �rst vertex of Pu, see Figure 12.Next take the transitive 
losure of this graph. Observe that the resulting graph has manyH-
olorings in whi
h verti
es on P` and Pu are mapped to 
orresponding verti
es in H, and verti
esin V (G) are arbitrarily mapped to verti
es A, B and C. Consider any a
y
li
 orientation of G andadd every ar
 of this orientation to the 
onstru
ted digraph joining 
orresponding verti
es in V (G).The resulting a
y
li
 digraph is �!K .Firstly, suppose that G is 3-
olorable with 
olors A, B and C. For an H-
oloring of �!K 
hoosethe H-
oloring from the previous paragraph that agrees on verti
es in V (G) with the 3-
oloring.14



Pℓ

V (G)

PuFigure 12: First step in the 
onstru
tion of the a
y
li
 digraph ~K.Se
ondly, suppose that �!K has an H-
oloring. Sin
e VP = V (P`) [ V (Pu) indu
es a transitivetournament in �!K , any su
h H-
oloring must use all but three verti
es of H. Sin
e every vertexof V (G) is in
ident ( is a tail or a head of an ar
 ) with every vertex in VP , in any H-
oloring of �!Kthe verti
es in V (G) are mapped to the remaining three verti
es of H, i.e., G is 3-
olorable.Case 2. Next, we prove that when H 
ontains H1 but not H0 as an indu
ed subdigraph,the H-
oloring problem is NP-
omplete by redu
tion from the a
y
li
 H1-
oloring problem ( seeLemma 4.7 ). Let �!G be an a
y
li
 digraph for whi
h we want to de
ide whether it is H1-
olorable.We will 
onstru
t an a
y
li
 digraph �!K whi
h is H-
olorable if and only if �!G is H1-
olorable. The
onstru
tion of �!K is exa
tly as in the previous 
ase with the only di�eren
e that �!G already �xes ana
y
li
 orientation used in the 
onstru
tion. However, it is not obvious that there exists a dire
tedHamilton path in H with three 
onse
utive verti
es B, C and A indu
ing H1.Consider a poset (V (H);�) 
orresponding to H. We say that a triple [B;A;C℄ of di�erentverti
es in H is ni
e if B � A, and the pairs A;C and B;C are both in
omparable. Obviously,there is a ni
e triple sin
e H1 is an indu
ed subdigraph of H. Take a dire
ted Hamilton path Pin H on whi
h there is a ni
e triple [B;A;C℄ su
h that the distan
e of B and A along P is thesmallest possible. We will show that the distan
e of B and A on P is one. Suppose by 
ontradi
tionthat E 6= B is the immediate prede
essor of A on P . Note that for any two X;Y su
h that Xpre
edes Y on P , H 
ontains the ar
 (X;Y ). ( This follows sin
e either X � Y or X and Y arein
omparable. ) Hen
e, if H 
ontains both ar
s (A;E) and (E;A) ( a double ar
 (A;E) ), then byex
hanging A and E we obtain another dire
ted Hamilton path in H with smaller distan
e of Aand B, a 
ontradi
tion. Thus, we may assume that H 
ontains the ar
 (E;A) but not (A;E), i.e.,E � A. Moreover, either E � C or they are in
omparable, sin
e otherwise C � A.Suppose that B � E. It follows that C and E are in
omparable, and hen
e the triple [B;E;C℄ isni
e and has a smaller distan
e between B and E along P . Hen
e, B and E must be in
omparable.Let F be an immediate su

essor of B on P . By a similar argument as above, it follows that B � F ,and A and F are in
omparable. Therefore, E 6= F and they are in
omparable. Now, [B;F;E℄ is ani
e triple with distan
e one between B and F on P , a 
ontradi
tion.We say that a ni
e triple [B;A;C℄ on a dire
ted Hamilton path is very ni
e if the distan
ebetween B and A along P is one. By the above argument, there is a dire
ted Hamilton path witha very ni
e triple. Take su
h a path P and a very ni
e triple [B;A;C℄ su
h that the sum of thedistan
es from B to C and from A to C on P is the smallest possible. We will show that thissum of distan
es is three. Without loss of generality suppose that C follows A on P . Supposeby 
ontradi
tion that E 6= C is the immediate su

essor of A on P . If E is in
omparable withboth A and B then [B;A;E℄ is a very ni
e triple with a smaller sum of distan
es. It follows that Cand E must be in
omparable ( otherwise, by transitivity, at least one of A;C or B;C would be
omparable ). If A and E are in
omparable as well then A;C;E indu
e H0 in H, a 
ontradi
tion.15



Hen
e, [A;E;C℄ is a very ni
e triple with a smaller sum of distan
es on P , a 
ontradi
tion.Obviously, if �!G is H1-
olorable, we 
an use this 
oloring to 
onstru
t an H-
oloring of �!K asabove. Conversely, suppose now that �!K has an H-
oloring. As before, it follows that V (�!G) ismapped to some three verti
es of H. Sin
e H0 is not an indu
ed subdigraph of H, the threeverti
es indu
e a subdigraph of H1. Therefore, �!G is H1-
olorable.Case 3. Finally, we prove that when H 
ontains F0 but neither H0 nor H1 as an indu
ed subdi-graph, the H-
oloring problem is NP-
omplete by redu
tion from one of the following problems :the a
y
li
 F0-
oloring problem (Lemma 4.8 ) or the a
y
li
 Fk-
oloring problem for some k � 1( Lemma 4.9 ).Take a dire
ted Hamilton path P in H. Sin
e H0 and H1 are not indu
ed subdigraphs of H,it is easy to see that we 
an make sure that any two in
omparable verti
es in the 
orrespondingposet (V (H);�) are 
onse
utive on P . Sin
e F0 is an indu
ed subdigraph of H there are at leasttwo in
omparable pairs. Take two su
h pairs D;C and B;A whi
h are in this order on P and are
losest to ea
h other. Similarly, it is easy to see that for any vertex E in between C and B on P ,D � E, C � E, E � B and E � A. Therefore, verti
es of the subpath Pm of P from D to Aindu
e Fk where k is the number of verti
es between C and D.We will show that the H-
oloring problem is NP-
omplete by redu
tion from the a
y
li
Fk-
oloring problem. Let P` ( respe
tively Pu ) denote the subpath of P 
ontaining all verti
espre
eding D ( respe
tively following A ) on P . Given �!G , 
onstru
t the a
y
li
 digraph �!K similarlyas in the previous 
ases. Obviously, if �!G is Fk-
olorable, we 
an use this 
oloring to 
onstru
tan H-
oloring of �!K as in the previous 
ases. Conversely, suppose now that �!K has an H-
oloring.We will show that verti
es of V (�!G ) in �!K are 
olored with 
olors on Pm in H. By 
ontradi
tion,suppose x 2 V (�!G) is 
olored by y not on Pm. Without loss of generality let y 2 P`. Sin
e for everyvertex z on P`, there is an ar
 (z; x) in �!K , the 
olor of z must be either in
omparable with y or aprede
essor of y on P . Sin
e there is most one in
omparable vertex with y and it must lie on P`of H, we 
on
lude that the 
olor of z is on P` in H and di�erent from y. Sin
e ea
h vertex on P`of �!K must have a di�erent 
olor, there is not enough 
olors for them, a 
ontradi
tion. Therefore,�!G is Fk-
olorable.Referen
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